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Optimizing with Low Budgets: a Comparison on
the Black-box Optimization Benchmarking Suite

and OpenAl Gym

Elena Raponi, Nathana€l Carraz Rakotonirina, Jérémy Rapin, Carola Doerr, Olivier Teytaud

Abstract—The growing ubiquity of machine learning (ML)
has led it to enter various areas of computer science, including
black-box optimization (BBO). Recent research is particularly
concerned with Bayesian optimization (BO). BO-based algo-
rithms are popular in the ML community, as they are used for
hyperparameter optimization and more generally for algorithm
configuration. However, their efficiency decreases as the dimen-
sionality of the problem and the budget of evaluations increase.
Meanwhile, derivative-free optimization methods have evolved
independently in the optimization community. Therefore, we urge
to understand whether cross-fertilization is possible between the
two communities, ML and BBO, i.e., whether algorithms that
are heavily used in ML also work well in BBO and vice versa.
Comparative experiments often involve rather small benchmarks
and show visible problems in the experimental setup, such as
poor initialization of baselines, overfitting due to problem-specific
setting of hyperparameters, and low statistical significance.

With this paper, we update and extend a comparative study
presented by Hutter et al. in 2013. We compare BBO tools for
ML with more classical heuristics, first on the well-known BBOB
benchmark suite from the COCO environment and then on Direct
Policy Search for OpenAl Gym, a reinforcement learning bench-
mark. Our results confirm that BO-based optimizers perform
well on both benchmarks when budgets are limited, albeit with
a higher computational cost, while they are often outperformed
by algorithms from other families when the evaluation budget
becomes larger. We also show that some algorithms from the
BBO community perform surprisingly well on ML tasks.

Index Terms—Benchmarking, Black-box optimization, BBOB,
OpenAl Gym, Bayesian Optimization, Reinforcement Learning.

I. INTRODUCTION

Black-Box Optimization (BBO) is an affirmed and rapidly
growing field of optimization and a topic of critical impor-
tance in many application areas including complex systems
engineering, energy and environment, materials design, drug
discovery, chemical process synthesis, and computational bi-
ology [1]. As in other classical optimization contexts, BBO
assumes that we are facing an objective function f for which
we aim to provide a solution x with f(z) as good as possible
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using as little computational effort as possible. The key distin-
guishing property of BBO is that the algorithms learn about
the problem instance f only by querying the quality f(x) of
possible solution candidates x. This may be because we indeed
lack an explicit representation of f (e.g., if simulations or
experiments are required for assessing the quality of a possible
solution) or when we lack efficient approaches to make use
of the instance information (e.g., many real-world scheduling
and routing problems are solved with heuristic approaches).
Simplifying the complexity measurement, in BBO we typically
only account for the number of function evaluations, and
hence aim for identifying high-quality solutions z using as
few function evaluations as possible.

Because of its high practical relevance, people with many
different backgrounds are drawn into BBO, leading to a multi-
tude of approaches in the area, ranging from simple heuristics
such as local search to local/global modeling approaches. To
understand the strengths and weaknesses of these different
methods, fair performance comparisons are needed. Several
platforms and benchmark suites (i.e., collections of benchmark
problems) address this empirical comparison. Some examples
are the Black-Box Optimization Benchmarking (BBOB) col-
lection of the COCO environment [3|], Large-Scale Global Op-
timization (LSGO) [4], Nevergrad [5]], Pseudo-Boolean Opti-
mization (PBO) [|6], and Machine Learning and Data Analysis
(MLDA) [7]]. Apart from these more general benchmarking
suites, there are also problem collections for evaluating and
comparing algorithms for specific BBO tasks such as algo-
rithm configuration and selection [8], [9]], neural architecture
search [10], [11], and expensive global optimization [12];
see [[13| Section 3] for a more exhaustive summary.

An approach commonly used for expensive optimization
problems (for which the available number of function eval-
uations can be very small) uses surrogates to approximate the
problem instance f, with the idea that the approximation f
can be used to locate interesting solution candidates without
requiring evaluations of the true problem f. Recently, Machine
Learning (ML) has gone down this road and proposed several
tools for BBO along these lines. In particular, a large field of
research is Bayesian Optimization (BO), which is based on the
Efficient Global Optimization (EGO) algorithm [14]. Despite
its success, BO is stated to be limited to less than 15 parame-
ters [15], [16] and a few thousand evaluations [17] according
to the literature. To overcome this issue, recent research started
to explore space partitioning and local modeling. In fact,
learning a classifier that locates the samples on a promising



subregion of the domain with high probability might be more
effective than learning a regressor on the whole domain.
Among other partitioning strategies, the Latent Action Monte
Carlo Tree Search (LA-MCTS) [[18] recursively learns space
partition in a hierarchical manner using Monte Carlo Tree
Search (MCTS) [19]. Therefore, in addition to BO, MCTS
has also been adapted from control and games to BBO [18]],
[20]. However, both the BO and MCTS tools for BBO have
rarely been compared to existing BBO methods in a systematic
and satisfactory manner. For example, the comparisons in the
LA-MCTS paper [18] depend heavily on poor initialization of
competitors, and the baselines used in the paper are not made
available in the provided code, while the comparisons in [21]]
consider only the simple (1+ 1) sampling method and not the
more sophisticated (and often better performing) BBO meth-
ods provided by the Nevergrad platform, although they refer to
the comparison as ‘Nevergrad’. However, we note some efforts
to make neutral and comprehensive comparisons. Extensive
comparisons in Nevergrad [5] tend to favor more classical
methods such as tools from mathematical programming like
Cobyla [22] and others [23|], [24] or evolution strategies
[25] like CMA-ES [26], possibly equipped with surrogate
models [27]]-[29]]. Hutter et al. [30]] ran SMAC-BBOB, a well-
known BO framework, on the BBOB benchmark suite and got
positive results for BO when the budget of admissible function
evaluations is fairly small. However, their investigation on
expensive black-box functions only assesses SMAC against
CMA-ES, yielding a rather limited benchmarking study.

Overall, there is widespread utilization of black-box op-
timization algorithms in the ML field, yet there exists a
deficiency in conducting comprehensive comparisons between
the algorithms favored in ML domains and those favored
by evolutionary computation researchers. Recent papers [2]
raised doubts on the reproducibility of some results in the ML
community. In this work, we update and extend the comparison
made in [30]] by adding several state-of-the-art solvers and by
comparing not only on the BBOB benchmark suite but also —
as it is closer to ML — on direct policy search for OpenAl Gym
problems [31]. We evaluate the performance of various BBO
algorithms, considering solvers commonly associated with the
ML community as well as more classical heuristics, and testing
over a range of budgets that allow us to draw fair and unbiased
conclusions.

II. BLACK-BOX OPTIMIZATION ALGORITHMS

We briefly summarize the algorithms included in our com-
parison, along with a brief description of two main classes of
interest, BO and LA-MCTS.

A. Bayesian Optimization

BO [14], [32] is a sequential design strategy targeting global
optimization of black-box functions that do not assume any
functional forms. It is particularly advantageous for problems
where the objective function is difficult to evaluate, is a black
box with some known structure, relies upon less than 20
dimensions, and where no information about sensitivity and
derivatives is available. Since the objective function does not

have an explicit mathematical formulation, BO treats it as a
random function and places a prior over it. A Kriging model,
also known as Gaussian Process Regression (GPR), can be
used as a prior probability distribution over functions in BO.

BO starts with sampling an initial Design of Experiments
(DOE) of size ng: X = [x1),x® . x()]T where the
sample i is denoted as x(*) = (xgi), ...,xg)) € X C RP [33].
The corresponding objective function values are denoted as
y = (f(x®), f(x@)), ..., f(x()))T. Conventionally, a cen-
tered Gaussian process prior is assumed on the objective
function: f ~ gp(0,K(,-)), where K: X x X — R is a
positive definite function — also known as kernel function —
which computes the autocovariance of the process.

Often, a Gaussian likelihood is taken, leading to a conjugate
posterior process [34], ie., f |y ~ gp(f(-), K'(-,-)), where
f and K’ are the posterior mean and covariance function,
respectively.

On an unknown point x, f(x) yields the maximum a
posteriori estimate of f(x) whereas §%(x) = K'(x,x)
quantifies the uncertainty of this estimation. The posterior
process is, again, a GPR. Based on the posterior process,
promising points are identified via the so-called infill-criterion,
i.e., by optimizing an acquisition function that balances f
with 32 (exploitation vs. exploration). A variety of infill-
criteria has been proposed in the literature, e.g., Probability
of Improvement [32], [35]], Expected Improvement [35]], and
the Upper Confidence Bound [36], [|37]]. When a new candidate
point is selected by the infill criterion, it is evaluated and added
to the BO data set, which is used to update the GPR posterior.
This process is repeated until a stopping condition is met, i.e.,
a good enough result is located or the computational budget
is exhausted.

B. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [[19]] is a solver that
migrated from trees of bandits for games and control, in-
cluding alpha-zero [38]], [39], to applications in BBO [18]],
[40]. Its evolved version, LA-MCTS [/18]], progressively learns
and generalizes promising regions in the problem space by
recursively partitioning so that solvers like BO can access
these regions to improve their performance. At any iteration ¢
of the algorithm, a training dataset D; = (X,Y) of all the
points evaluated so far is available. A tree node A represents
a subregion of the search space 4. Therefore, D; N Q4 is
the set of all the samples falling in the subregion €24. MCTS
uses the Monte Carlo simulation to accumulate value estimates
that lead to highly rewarding trajectories in the search tree. In
other words, MCTS pays more attention to promising nodes
(i.e., subregions of the search space), in order to avoid the
need to brute force all possibilities. This is done by using
an Upper Confidence Bound (UCB) policy. More specifically,
each node has an associated UCB value and, during selection,
the child node with the highest UCB value is considered.
The statistics used to compute the UCB are (1) n4, which
is the number of samples in D; N2 4, and (2) the node value
va == (g .ep, N4 f(@:))/na.

Therefore, in LA-MCTS, which is the MCTS-based op-
timizer that we include in the comparisons of this study,



promising regions are found by recursively partitioning the
search space based on latent actions. In one iteration, LA-
MCTS starts building the tree by partitioning and then selects
a region based on UCB. Finally, sampling is performed in
the selected region using BO. In this way, BO avoids over-
exploring the search space, and its performance improves,
especially for high-dimensional problems.

C. Selection of BO-based Algorithms

From the large collection of existing BO-based solvers, we
have selected the following ones for our empirical comparison:
e BO: the Bayesian Optimization algorithm [41] imple-
mented in Nevergrad. The python class is a wrapper over

the bayes_opt package [42].

e LA-MCTS [18]: as described above, LA-MTCS is an
MCTS-based derivative-free meta-solver that recursively
learns space partition in a hierarchical manner. Sampling
is then performed in the selected region using BO.

e Turbo [43]: a trust-region-inspired algorithm using
Thompson sampling rather than the optimization of an
acquisition function to find new candidate solutions in
each subregion. Turbo20 denotes the multi-trust-regions
counterpart of Turbo.

e AX [44]: a modular BO framework that uses BoTorch
primitives for optimization over continuous spaces. It
automates the selection of optimization routines, reducing
the amount of fine-tuning required.

e SMAC [45]: a sequential model-based algorithm for
algorithm configuration to optimize the parameters of
arbitrary algorithms. It scales well to high dimensions and
is particularly suitable for hyperparameter optimization of
ML algorithms. The main core consists of BO. SMAC2
refers to SMAC-HPO, i.e., SMAC with hyperparameter
optimization.

o HyperOpt [40]: library for serial and parallel hyper-
parameter optimization, designed to accommodate BO
algorithms based on Gaussian processes and regression
trees. We use the version based on Parzen estimates.

o Optuna [47]: automatic hyperparameter optimization soft-
ware framework which uses state-of-the-art algorithms
for sampling hyperparameters and pruning unpromising
trials. By default, Optuna implements a BO algorithm
(Tree-structured Parzen Estimator).

D. Classical Black-box Optimization Algorithms

As baselines commonly used in the broader BBO context
we consider CMA, which stands for CMA-ES, a well-known
evolution strategy [26], Cobyla, a tool from mathematical
programming [22], particle swarm optimization (PSO [48]),
and NGOpt from Nevergrad [5]], a wizard that combines many
classical algorithms in various ways [49]]. In the use cases
considered in this work (sequential, low-dimensional, noise-
free problems), NGOpt mainly uses CMA, Cobyla, and (1+1)-
type sampling equipped with metamodels.

We also include DefaultCMA [26], a version of CMA
without the BBOB-specific initialization used for the exper-
iments of CMA on BBOB [50]. We do this to show that

ad hoc initialization of CMA-ES does not lead to significant
improvement over DefaultCMA.

III. BENCHMARK PROBLEMS

Extensive comparisons have already been proposed in Nev-
ergrad [49], focusing on reproducibility, real-world, and dif-
ferent problem sizes. We propose here additional experiments
in the well-known BBOB framework [50], chosen for its
simplicity/canonicity, and for OpenAl Gynﬂ commonly used
in the reinforcement learning (RL) environment [S1]-[59].

BBOB: The BBOB collection contains 24 functions, with
known difficulty (e.g., non-separability, ill-conditioning, differ-
ent levels of multimodality, adequate or weak global structure,
etc.). Although all functions are defined and can be evaluated
over RP, the default search domain is [—5,5]”; that is, in
contrast to Nevergrad’s experiments in [3[, [[60], the BBOB
suite has a focus on bounded domains.

BBOB offers a possibility to randomize both the position
of the optimal solution (that is, test functions are randomly
shifted in the domain) and the function value of the optimum
(test functions are randomly shifted in the co-domain). To
reduce bias with respect to problem encoding, we run the
algorithms on 15 randomly chosen instances per test function
and dimension. We consider six different dimensions (2, 3, 5,
10, 20, and 40).

As suggested in [30], we focus on a relatively small budget
of 10D or 100D function evaluations (the default setting for
BBOB experiments is 1000D). When a method crashes, we
rerun it with the remaining budget.

For the BBOB experiments, our key performance measure
is the empirical cumulative distribution function (ECDF) of
the runtimes needed to reach the optimal objective value with
a given precision At, i.e., the runtime depends on a given
target function value (f; = fope + At) and is computed across
all runs of an optimizer on a function, as the total number of
function evaluations before reaching f; divided by the number
of trials that actually reached f;. Informally, the ECDF shows
the proportion of problems solved within a given budget, with
the budget indicated on the x-axis.

OpenAl Gym with Direct Policy Search: Firstly, we work
on a multi-deterministic Open Al Gym with tiny neural nets.
Indeed, we analyze a small version (small number of neurons,
low budget) to fit the low-budget context of the present work.
Multi-deterministic here means that for a given algorithm,
a different seed is drawn at random for each repetition,
and this list of seeds is used for all algorithms. There are
different seeds so that we avoid overfitting, and the list of
seeds is the same over the different algorithms so that we
have statistical pairing. This means that parameters are not
tuned based on specific landscapes (e.g., bounded/unbounded
domains, prescribed optimal regions, and multimodality of the
objective function). This is somewhat analogous to random
perturbation of the optimum in classical BBO benchmarks in
the sense that the objective function is deterministic but drawn
randomly.

Uhttps://www.gymlibrary.dev/
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Within the gym library, we select a few environments
to compare algorithms based on (1) average loss (i.e. av-
erage negated reward) and (2) average winning rates (i.e.,
the frequencies at which one method outperforms another):
MountainCar-v0 (D = 12), Pendulum-v0 (D = 15),
GuessingGame-v0 (D = 24), HotterColer-v0 (D = 24),
CartPole-v0 (D = 28). CartPole-vl (D = 28), NChain-
v0 (D = 40), and MountainCarContinuous-v0 (D = 8).
We chose these problems with D < 50 because they are
sufficiently challenging and are not too hard in our context
of tiny networks and minimal budget, i.e., not all algorithms
perform equally. Here we use a neural factor (i.e., the scaling
coefficient used in the benchmarking suite to choose the size
of neural networks) of 1. The dimension, i.e., the total number
of weights, is a consequence of the number of neurons, which
in turn is based on the scaling factor (the number of neurons
per hidden layer is the neural factor multiplied by the input
dimension).

In a second set of experiments we include problems with
dimensions D < 264 for larger networks defined by setting
the neural factor to 3, which parameterizes the size of the
hidden layer. This bound on the dimension and the different
neural factor lead to a different subset of OpenAl Gym prob-
lems: LunarLanderContinuous-v2, Blackjack-v0, Pendulum-
v0, HotterColder-vO, MountainCarContinuous-v(Q, CartPole-
v0, Acrobot-v1l, NChain-v0, GuessingGame-v0, CartPole-v1.

Winning percentage rates are evaluated at fixed budgets
of 25, 50, 100, 200, and 400 function evaluations for both
settings (neural factor 1 and 3), while bigger budgets are also
considered for the bigger networks (see Sections IV and V in
the Supplementary Material).

IV. RESULTS OF THE EMPIRICAL COMPARISON

Results for BBOB: Figs. [[|and [2] present results with budget
equal to 10D and 100D, respectively, in dimension D. The x-
axis is the budget divided by the dimension, in logarithmic
scale, while the y-axis shows the frequency of problems
solved, i.e., the higher, the better. The plots are built by
using the COCO/BBOB post-processing tool. It aggregates
problems with different target precision values and displays
the runtime distributions with simulated restarts [3]], [[61]. The
default target precision values are 51 evenly log-spaced values
between 102 and 1078, The complete data set is archived
on Zenodo [[62] and allows further comparison with other
BBOB data sets through the original COCO platform [3]] or
the IOHanalyzer web-interface [63]].

Our experiments for a budget of 10D reproduce the results
in [30], where SMAC outperforms CMA. However, SMAC
performance decreases with increasing dimension. Similar
to all BO-based algorithms, its computational complexity
increases significantly with increasing dimension and with
increasing budget.

Although we tested fewer optimizers for the D = 20 and
D = 40 cases due to the high computational cost, it is
interesting to note that Cobyla, which is simply based on linear
interpolation, often performs better than all other solvers.
Although there is no tuning for our present results from Cobyla

on BBOB, it outperformed all BO-based algorithms. Cobyla is
also the algorithm selected by the NGOpt wizard for the test
cases considered, which explains their similar performance.

Fig. [2] shows that both versions of CMA — defaultcma and
cmafmin2 (and NGOpt16, which uses CMA as a component)
— perform better than all other solvers when a larger budget
of function evaluations is available.

We conclude by remarking that, in the BBOB benchmark
with our specific setting using a low budget, there are elements
that have a significant impact on the overall result:

o The LinearSlope function, which has optima in the cor-
ners, is difficult for methods that assume that the optimum
is supposed to be inside.

e The precision parameter, ranging from le — 8 to 100
by default, has a significant impact on results. Since
our budget is much smaller than the default setting, the
percentage of the problems that are successfully solved
is smaller than the typically reported ones.

In an additional set of experiments, we verified that removing
LinearSlope or changing the precision parameter does not
change the overall picture of our results.

Table [l and Table [ list the total execution time in sec-
onds for 15 runs on the 24 BBOB functions for budget
10D and 100D, respectively. Note that NGOpt sometimes,
in particular when the budget is sufficiently large compared
to the dimension, spends a significant time learning a meta-
model and checking in cross-validation whether this meta-
model could be applied. NGOpt can hence be unexpectedly
more expensive in lower dimensions, which in our experiments
leads to the non-monotonic behavior of the running time with
respect to the dimension. DefaultCMA, Turbo20, and SMAC2
have comparable execution times to CMAFmin2, Turbo, and
SMAC, respectively. AX, BO, LAMCTS, and SMAC showed
a total time of more than 20 000 seconds in dimension 10. As
their computational cost became unmanageable for dimension
20, we stopped the runs after 3-day wall-clock time. We
therefore do not report results for these algorithms for the
20- and 40-dimensional BBOB functions with 10D budget.
The same algorithms, with the exception of SMAC, plus
Optuna, are excluded from the experiments with a higher total
evaluation budget (100D) due to their excessive computational
cost for that budget.

Results for the Direct Policy Search on OpenAlI Gym:
In Fig. 3] we provide an independent comparison of black-
box solvers applied to the Ng-Full-Gym benchmark, which
is Nevergrad’s direct policy search applied to OpenAl Gym.
More precisely, is the optimization of a neural network as a
controller for OpenAl Gym problems. We plot the unscaled
loss, defined as the opposite of the reward the agent accu-
mulates over time. Here, the lower the curve, the better the
performance. The non-monotonic trend of the curves with
respect to the elapsed budget is due to the fact that, for a
given problem and algorithm, we perform new runs each time
the total budget of the evaluations is updated. As a conse-
quence, the algorithm may choose a different parametrization
depending on the total budget or the ratio between the budget
and the dimension of the specific benchmark, leading to a
statistically significant difference in performance. In addition,



TABLE I
TOTAL COMPUTATIONAL TIME IN SECONDS FOR THE BBOB BENCHMARK
BUDGET = 10D

Dimension 2 3 5 10 20 40
CmaFmin2 30 31 33 38 50 90
AX 32267 | 65044 | 63808 | 291845
Turbo 116 1118 3572 11535 | 58670 | 48700
Cobyla 16 24 32 51 86 202
NGOpt 90 204 303 563 167 336
BO 1087 2129 5486 23274
Optuna 48 121 409 1733 7388 | 37431
Lamcts 389 1941 9804 47218
SMAC 5978 9258 | 26295 66733
HyperOpt 34 117 420 1969 7716 | 21835
PSO 15 20 31 70 183 587
TABLE II

TOTAL COMPUTATIONAL TIME IN SECONDS FOR THE BBOB BENCHMARK
BUDGET = 100D

since we perform independent runs for different budgets and
average over the repetitions, some variability in performance
is to be expected.

We add the following algorithms to our comparison: QO-
RandomSearch [64], MetaTuneRecentering [|65], and MetaRe-
centering [[66] are variants of random search that are fully
parallel and reduce redundancies compared to random search.
We also add NGOptl6RL and SpecialRL from Nevergrad:
NGOpt16RL is Nevergrad’s wizard NGOpt optimized specifi-
cally for RL problems; SpecialRL runs the base NGOpt16RL
for half of the budget and then uses test-based population size
adaptation (TBPSA) [67] in the second half. Moreover, since
the OpenAl Gym suite contains problems that are unbounded
with optima at a small scale, we add algorithms that can adjust
the scale of the search. GeneticDE and RotatedTwoPointsDE,
for example, are designed to extrapolate the scale from some
variables to others and find the right scale before running the
classic DE [68] algorithm. MetaTuneRecentering performs a
DoE entirely designed to choose the right scale depending on
the relationship between budget and dimension. MultiCMA is

Dimension 2 3 S 10 a tentative robustification of CMA that runs three copies of

%‘E;S min2 3 Zi? = 12} = 9(55 o 823 CMA. We also consider a (1+1) evolutionary algorithm [69],

Cobyla 197 307 774 345 which is a simple and fast state-of-the-art heuristic for ad-

NGOpt 625 1254 3070 333 justing the scale, Diagonal CMA [26], which uses a diagonal

EIMACO 22‘1‘8% 20? ?5)2 ?5}‘22(8) 8?;;;% covariance matrix, and its scaled version, Scaled Diagonal

yperOpt . .

PSO 0 To1 70 753 CMA 15]]. Fmally., we add tp our portfolio Lamcts Tqrbo (18],
an improved version of vanilla LA-MCTS coupled with Turbo
to draw new samples in the selected node of the Monte
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Tlustration of the ECDF of runtimes on the BBOB functions f1-f24, using 51 targets uniformly spaced on a log scale between 1e — 8 and 100. Plots

log10(# f-evals / dimension)

are shown for dimension D equal to (a) 2, (b) 3, (c) 5, (d) 10, (e) 20, and (f) 40 and budget 10D. X-axis: budget/dimension in log-scale. Y-axis: frequency
of solving at the requested precision. Overall, Cobyla and NGOpt16 (which heavily relies on Cobyla) perform best in these examples.
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Fig. 2.
the analysis. Overall, CMA algorithms and NGOpt16 perform best here.

Carlo search tree at each iteration. For a complete list of all
algorithms compared, see Section VI in the Supplementary
Material.

Although we cannot derive comprehensive recommenda-
tions from Fig. 3] because of the high variability of results
across different benchmarks and dimensions, some conclu-
sions can be drawn from the observation of similar patterns.
First, we note that Fig. 3B and [3d| corresponding to
problems of intermediate dimension (D = 15 and D = 24)
show no significant differences in solver performance. On

o
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As Fig. |I|but with a 100D budget and only for dimensions (a) 2, (b) 3, (c) 5, and (d) 10. Some methods, which are too slow, are removed from

of the competitors in [18§].

For an in-depth comparison, we also present aggregate
plots based on average winning rates (e.g., Fig. ), where
we observe good results for the BO-based methods: BO is
the most powerful solver for the lowest budget, while AX,
NGOpt16RL and PSO turn out to be the best algorithms
(within the confidence intervals) when aggregating results
across all budgets (Fig. ff). This means that vanilla BO
is actually good for fast low-precision approximations on
difficult problems, whereas AX, NGOptl6RL and PSO can

the contrary, for the low-dimensional test cases in Fig. [33 be recommended when optimizing low-dimensional problems

and Bgl we observe a very clear superiority of the BO-
based solvers (BO and AX), HyperOpt, PSO, and the wizard
NgOpt16RL, all consistently belonging to the 5-best group.
On the other hand, Fig. [3¢] 31} and 3] show that the quality
of the performance of the 5-best group deteriorates as the
dimension of the problem increases. Indeed, we observe the
lowest loss values at the end of the total evaluation budget
for population-based algorithms like DE and CMA, which are
known to be powerful heuristics to address difficult black-box
problems when a large number of function evaluations are
available. However, for lower budgets of up to 100 function
evaluations, the best-performing algorithms are still BO, AX,
HyperOpt, PSO, and NgOpt16RL. On the contrary, Lamcts-
Turbo consistently performs poorly on OpenAl Gym bench-
marks, regardless of problem budget and dimension, in sharp
contrast to the results shown in [[18]], where LA-MCTS was
reported to perform well on some OpenAl Gym problems. We
suspect that this discrepancy is caused by a poor initialization

with low to medium budgets. Furthermore, Fig. @ confirms, on
the one hand, the good performance of NGOpt16RL, PSO, and
HyperOpt for benchmarks with tiny neural networks, and, on
the other hand, the poor search capabilities of Lamcts-Turbo,
regardless of the available budget. For higher dimensions,
Fig. ] shows that BO-based solvers become less competitive,
although they still perform among the best for the smallest
budgets (25 and 50 evaluations). For larger budgets, we see
that CMA and DE start becoming more competitive, which
is in line with [49]. However, Fig. [5f] shows a supremacy
of HyperOpt, which is designed for large-scale optimization
for models with hundreds of parameters, and PSO, which
performs surprisingly well considering that it is a classical
heuristic originating from the BBO field and rarely used in
ML applications. It can also be noted that Cobyla does not
perform as well as for BBOB, while PSO performs constantly
well for intermediate budgets from 50 to 400 total evaluations.

Fig. 1 in the Supplementary Material extends the present
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Fig. 3. Multi-deterministic Open AI Gym with tiny neural net: a random seed is randomly drawn for each optimization run so that overfitting is more difficult.
See Fig. Efor an aggregated view. The legend lists all the compared algorithms with two numbers in parentheses: These are the performance values for the
last and second-to-last budgets on the x-axis, respectively. The first number is also used to sort the algorithms by performance.

results to budgets 800, 1600, and 3200 for both tiny and a total budget of 1600 evaluations for big neural nets. The
big neural nets. Here, as the total budget increases, a smaller ~RL-specific algorithms, SpecialRL, and NGOpt16RL achieve
set of algorithms are compared: AX is affordable for runs the best performance for the largest budgets, followed by the
on tiny neural nets up to a budget of 800 evaluations, and various CMA and DE versions, leaving PSO and HyperOpt
BO and Lamcts-Turbo become too expensive when exceeding behind.



All in all, our results on OpenAl Gym show the com-
petitiveness of BO-based methods for small dimensions and
evaluation budgets (up to 100 evaluations), comparably to
other solvers, while solvers from other families perform better
as the budget increases. We note that this is different behavior
from the BBOB benchmarks, where BO-based methods never
rank first and show only average performance.

V. CONCLUSION

Our results provide insight into the comparison between
different state-of-the-art BO methods, commonly used in ML,
and more classical BBO heuristics. We compared the solvers
on the BBOB benchmark suite from the COCO environment,
which is well-known in the BBO community, and on OpenAl
Gym problems, which are from the RL domain. On the BBOB
comparison, we noted that Cobyla and the Nevergrad wizard
perform best for any tested dimensionality from 2D to 40D
with a total budget of 10D. They were consistently better
than SMAC and Turbo, which was highlighted as a strong BO
method in [21]]. It is worth noting that Turbo and HyperOpt
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have the advantage of being computationally cheaper than
other BO methods. Moreover, HyperOpt performed among
the best on OpenAl Gym, with the exception of the largest
considered budget for big neural nets. Good performance was
also observed for PSO, which is commonly considered a
classical heuristic and hardly ever used for ML tasks. For the
larger budget of 100D, CMA or the Nevergrad wizard perform
best regardless of the considered dimension of the problem.

In general, we found that the OpenAl Gym benchmark is
very sensitive to variable scaling. While BBOB focuses on
translations of optima and might therefore favor algorithms
tuned for this setting, direct policy search for OpenAl Gym
has an unbounded domain and depends differently on the
initialization scaling and the ability of the algorithm to change
scaling as needed. We optimized the scaling to Bayesian
Optimization methods for obtaining results in Fig. @] and then
we ran the experiments to get the (possibly more neutral)
results in Fig. 5] without any change.

Overall, tools based on heavy use of machine learning
are computationally more expensive and perform roughly

Hyperopt
NGOpt16RL
MultiCMA
OnePlusOne
RotatedTwoPointsDE
GeneticDE

Cobyla
QORandomsearch
MetaRecentering
MetaModel

cMA

DiagonalCMA
SDiagonalCMA
MetaTuneRecentering
SpecialRL
MultiScaleCMA
Lamcts-Turbo

(b)

@
C

o
Q

[0]

=
[6)]
o

Q’O(" O 2 X OW®%HJ < £ WwdWoowg 9 <o < O < é\o’qé\ O 4 %X 8 4w wo<wgEeco< o << < D0 D
= o 2 3 5 2
oo pETI@agsgEzsto0sg0L:s8e35z3¢£: RO P T < §Exgoe=0%8 3353532535 £ 8 £
SRS L] 29208 0252220505358 SN L T &2 S 22588 Q80§ %5353
S g S8%edé g8E23h% Sgif Pt g &g ¢ T E3488225: g5 ¢
g ] = T 5 B
& ] sEa88E =8FyEE 583 & g &8 ss85 =95 gy
PENS) =z 2 T T & 8 H s & B & =z & = ° S & s 2 5 &
& 5 o 5 (7] — o c 3 © a5 5 o 2 © 4 u
& 5 5 ] 5 ]
& 2 2 < a = 4 S @ = c
< ] S 2 2 3 o 2 2
bl I3 5 £ & Kl
& ] = ]
= =
100
75
50
25
KR ¢
¢ T 0 FELle $3ITT3I3ITTITTIITITIIITSTSS
g s RV o> Y
> L0 U S ¥y I TS ITTITITITIISITISI
(,003‘4,)\'”@ 2 22dA IS AIASAAR2DSg *Qe'o,}v L L
$ P00 X 0 2 02 u <3 wo < o < I < o 25w o "< 3 < ©
St iggzagzg8e: g £ & TEBSLEE8EEEE %
N - L I 5 s 2 9
& 2388 3 E 2 3 & 2 g8 Ty sz 8
; s2ss H s 5 4 z
T o = (7] & D)
gard g : g = &4 g

RotatedTwoPointsDE
DiagonalCMA
QORandomsSearch
MultiScaleCMA
MetaRecentering
SDiagonalCMA
Lamcts-Turbo
MetaTuneRecentering

(e) Budget 400

DiagonalCMA
OnePlusOne
QORandomsearch
MetaRecentering
SDiagonalCMA
Lamcts-Turbo
MultiScaleCMA

w
o
2
IS
S
&
g
g
=l
2
gl
s
2

(f) All budgets

Fig. 4. Same results as reported in Fig. El but aggregated comparison as provided by Nevergrad [5]]. Row A column B shows the frequency at which method
A outperformed method B for the given budget. 9 distinct problems per budget. We include only problems for which the dimension is D < 50. Methods are
ranked per average winning rate; best methods are listed first. Note that winning rates are all very close to each other: only PSO is significantly better. Fig.
presents similar experiments but with bigger neural nets. Fig. 1 in the Supplementary Material extends the present results to budgets 800, 1600, and 3200.
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Fig. 5. Same as Fig. E but with bigger nets (neural factor 3 in Nevergrad’s benchmark scaling). 11 distinct problems per budget. We truncated at dimension
< 264. Dimension ranges from 24 to 264 instead of 8 to 40 in Fig. E Due to the computational cost, it was not possible to finish the runs for SMAC. Fig.
1 in the Supplementary Material extends the present results to budgets 800, 1600, and 3200.

equivalently to mathematical programming or evolutionary
techniques. In future work, we plan to compare BO and other
methods in discrete settings as well. Our results also indicate a
high relevance of initializing the solvers with the right scaling.
Identifying suitable methods for a dynamic control policy is
therefore another topic that we aim to investigate in future
works. Of course, it remains interesting to periodically up-
date our comparisons with new state-of-the-art solvers. Since
all our experiments are performed with Nevergrad, such an
ongoing benchmarking is largely facilitated: users can simply
add their favorite method and compare their results to the ones
reported above.
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