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Anisotropic molecular photoemission dynamics: Wigner time delay
versus time delay from RABBIT measurements
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We investigate signatures of anisotropy on the dynamics of time-resolved near-threshold molecular pho-
toemission through simulations on a one-dimensional asymmetric model molecule. More precisely, we study
the relationship between the fundamental Wigner delays that fully characterizes the dynamics of one-photon
ionization and the delays inferred from two-color interferometric RABBIT measurements. Our results highlight
two different properties pertaining to each of these delays. The first one is related to the inherent necessity to set
an arbitrary electron position origin to define and compute the Wigner delay. The second one is the dependency of
the RABBIT delay on the frequency of the probe laser. Our results show that the angular variations of both delays
converge for a specific choice of the position origin and in the limit of a vanishing infrared probe frequency.

DOI: 10.1103/PhysRevA.109.013101

I. INTRODUCTION

The tools of attoscience have allowed revisiting the process
of photoemission in the time domain since the late 2000s
[1–4]. The ultrafast dynamics revealed by these studies, com-
monly addressed in terms of scattering time delays [5], range
from a few femtoseconds (fs) down to few attoseconds (as).
These pioneering experimental studies were carried out using
the reconstruction of attosecond beatings by interferences of
two-photon transitions (RABBIT) [6–9] and streaking [10]
schemes, that were initially conceived for the temporal char-
acterization of attosecond light sources [11]. Both can be seen
as interferometric pump-probe schemes where a photoemis-
sion process is triggered by an attosecond light pulse in the
extreme ultra violet (XUV) regime, and coherently probed
by a synchronized infrared (IR) field. As attosecond science
evolved towards attochemistry [12], the dynamics of photoe-
mission have been investigated in more elaborate molecular
systems and nanostructures [13–19], including chiral species
[20].

This puts forward essential issues regarding an increas-
ing number of degrees of freedom, among which is the
anisotropy of attosecond-resolved photoemission dynamics
[21–23]. This anisotropy was first raised in numerical exper-
iments on a model CO molecule where orientation-resolved
photoemission dynamics were probed using the streaking
scheme [24]. These simulations, spanning photoelectron en-
ergies up to ∼80 eV, evidenced “stereo” delays reaching up
to several tens of as. The stereo streaking delays simulated
in this work match accurately the angular variations of the
actual scattering delays over most of the covered energy
range. However, discrepancies showing up at lower energies,
below ∼20 eV, suggest a significant influence of the probe
in the measured temporal asymmetries. Indeed, measure-
ments of photoemission delays in He atoms using RABBIT
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[25] have highlighted the symmetry breakdown induced by
the two-photon probe process itself [26–28]. Orientation-
resolved RABBIT experiments further evidenced the imprint
of the initial and final states asymmetry on photoemis-
sion dynamics in Ar atoms [29] and dimers [30]. The first
experiments reporting anisotropic molecular photoemission
dynamics were also performed on CO, using RABBIT in the
0–20 eV photoelectron energy range [31]. The results are con-
sistent with the streaking simulations of Ref. [24], evidencing
an anisotropy reaching several tens of as, with “faster” photoe-
mission from either the C or O side of the molecule depending
on the photoelectron energy. By comparing photoemission
from different electronic channels, this work evidenced ex-
perimental imprints of the initial electron position within the
molecule in the measured orientation-dependent delays [32].
In the same spirit, resonant asymmetric photoemission delays
were recently investigated experimentally in NO [33], also
using RABBIT but with improved angular resolution. These
measurements evidence delays varying by few to several tens
of as when scanning the photoemission angle in the molec-
ular frame, within the 20–40 eV energy range. In Ref. [34],
numerical RABBIT simulations on model molecules simi-
lar to the one used in Ref. [24] evidenced a probe-induced
asymmetry of the measured delays amounting to up to 100
as near-ionization threshold, and persisting significantly over
several tens of eV. These large values were attributed to the
choice of the origin in the definition of the Wigner delays.

Beyond the fundamental time-domain interpretation of
photoemission scattering delays [2,35], the question of their
measurement and notably of the influence of the probe in at-
tosecond pump-probe experiments, has been the subject of an
important theoretical activity, see, e.g., Refs. [36–41]. How-
ever, available analytical models to date accurately predict the
dependency of the measurements with respect to probe param-
eters such as the wavelength, but none account explicitly for
the anisotropy of the pertubation induced by the measurement.

In this paper, we clarify the role of the arbitrary origin in
the definition and computation of Wigner delays and study
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the imprint of the average initial electron position in delays
measured using the RABBIT technique. This indirectly raises
issues regarding the role of the probe wavelength in RABBIT
measurements. Our work is based on numerical simulations
performed on a one-dimensional (1D) asymmetric model
molecule. The paper is organized as follows. The model
molecule is presented in Sec. II. The influence of the electron
position origin on the orientation-resolved Wigner scattering
delay is investigated in Sec. III and the influence of the probe
wavelength in orientation-resolved RABBIT measurements
independently in Sec. IV. Eventually, we address in Sec. V
the anisotropic differences between the fundamental Wigner
delays and RABBIT measurements, which inherit the origin-
dependency of the first and the wavelength-dependency of the
second.

By default, equations are expressed in atomic units (a.u.).

II. NUMERICAL TOOLBOX

A. Model molecule

We performed our simulations on a 1D model molecule,
reminiscent of the ones used, e.g., in Refs. [24,34]. It is made
of a single active electron initially bound to an asymmetric
effective potential. Its Hamiltonian reads

H0 = −1

2

∂2

∂x2
+ VN-e(x), (1)

where x is the electron coordinate and

VN-e(x) = − q√
(x − X1)2 + a2

− (1 − q)√
(x − X2)2 + a2

(2)

is an asymmetric double soft-core potential. The parameters
X1, X2 represent the (fixed) positions of the nuclei, q is an ef-
fective atomic charge, and a is an arbitrary screening constant.
This set of parameters are numerical knobs that can be tuned
to assign the model some desired properties. Here we set the
charge q to 0.33 a.u. and the internuclear distance R = |X2 −
X1| to 1.115 Å. The screening parameter (a = 0.198 Å) was
adjusted to obtain an ionization potential Ei = 29.77 eV. The
resulting potential function is shown in Fig. 1(a). It was thus
designed with some arbitrariness to obtain realistic molecular
features, and more specifically, to reflect the difference of
electronegativity between the two atoms in a heteronuclear
molecule. The asymmetry is reflected in the ground-state
wave function �0(x), also displayed in Fig. 1(a), which is the
initial state in all the simulations presented hereafter.

B. 1D polar coordinates

In the present work, we solved the time-independent
Schrödinger equation (see, e.g., Sec. III A) using a partial-
wave expansion consisting in expressing any function of x ∈
R in terms of its odd and even components. It relies on 1D
“polar” coordinates for the electron position, namely, a radius
r = |z| ∈ R+ and an angle θ = arccos(z/|z|) ∈ {0◦, 180◦},
where z = x − xref is the “cartesian” coordinate x referred to
an arbitrary origin xref. More details about this approach are
provided in the Appendix. This technical choice has no prac-
tical consequence on the results presented hereafter, which are
numerically converged. Nevertheless, it tightens the analogies

FIG. 1. One-dimensional model molecule. (a) Electron-nuclei
potential VN-e(x) as a function of the electron position x (dark yellow
full curve). The ground-state electronic wave function is also shown
(light blue filled curve). (b) Electronic continuum wave function (full
curve) selected at the energy ε = 4.35 eV by a one-photon transition
from the electronic ground state. Odd-parity reference wave function
(dashed curve) used to define and compute the orientation-dependent
phase shifts. The displayed continuum wave functions are normal-
ized such that their amplitudes asymptotically converge to 1 on
the left-hand side of the molecule. In this figure, the left or right
discrimination and the parity refer to the arbitrary x = 0 position
(indicated by a vertical dotted line).

between the present work and the usual approaches invoked
in three dimensions (3D), see, e.g., [14]. As will be discussed
further, it highlights the arbitrariness of the origin of the
partial wave expansion, i.e., the origin xref chosen here to
discriminate the right and left sides of the molecule.

All through the paper, θk represents the direction of pho-
toemission, restricted to two discrete values θk = 0◦ (emission
towards the right, x > 0) and 180◦ (towards the left, x < 0).

III. FUNDAMENTAL DYNAMICS:
ANISOTROPIC WIGNER DELAYS

We first studied how the asymmetry of the model molecule
is reflected in the so-called stereo Wigner delays [24,31], i.e.,
the relative photoelectron scattering delay towards one side of
the molecule (here left) in comparison to the other (right).

A. Selected continuum wave function

To this end, we computed and analyzed the continuum-
wave functions selected by one-photon ionization processes
(SCWF). The SCWF formalism [42] is a convenient approach
which unambiguously separates the computation of electronic
continuum wave functions in the framework of photoemis-
sion from their analysis in terms of scattering dynamics. For
a given transition leading to a final energy ε, the selected
continuum state is defined in 1D as

|�ε,sel〉 =
∑

k=1,2

〈�ε,k|d̂|�0〉|�ε,k〉, (3)
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TABLE I. Orientation-resolved Wigner delays τw(θk ) [Eq. (4)]
computed at ε = 4.35 eV for three values of the reference position
xref arbitrarily discriminating the right (θk = 0◦) and left (θk = 180◦)
sides of the asymmetric model molecule.

xref (Å) −0.20 +0.00 +0.20

τw(0◦) (as) +15.6 −0.5 −16.5
τw(180◦) (as) −8.9 +7.2 +23.3

where |�0〉 is the initial bound state, d̂ is the dipole operator
associated with the process, and {|�ε,1〉, |�ε,2〉} is an arbi-
trary orthonormal eigenstate basis for the doubly degenerate
continuum at the considered energy.

As an illustration, the SCWF computed for ε = 4.35 eV
(full curve) is shown in Fig. 1(b). It corresponds to an ioniza-
tion triggered by a 35.67-eV photon, i.e., the 21st harmonic
of a 800-nm IR laser. Photoemission dynamics are encoded
in the spectral variations of the phases of its asymptotic oscil-
lations [42]. The origin chosen to discriminate the right and
left sides of the molecule is here the origin of the x axis (i.e.,
xref = 0), which is itself arbitrary.

B. Orientation-resolved Wigner phase shifts and delays

The orientation-dependent phase shifts of the SCWF,
η(θk ), are defined and computed with respect to an arbitrary
intermediate reference wave at the same energy. For the latter,
we took the radial s Coulomb wave of the hydrogen atom
centered at x = xref, displayed as a dashed curve in Fig. 1(b).
This is a typical choice to characterize photoemission dy-
namics in terms of delays since molecular continuum waves
behave asymptotically as Coulomb waves. Note that these
phase shifts depend by definition on the origin xref chosen to
discriminate the left and right sides of the molecule, or, in
other words to set up the 1D partial-wave expansion in terms
of even and odd components when computing the SCWF, see
the Appendix.

The orientation-resolved Wigner delays are then defined as
the group delay

τw(θk ) = ∂η(θk )

∂ε
. (4)

When computing them, among a series of numerical tests,
we ensured that the phase shifts were evaluated in a region
where they do not depend on their computation distance on
either side of the origin, i.e., in the asymptotic region where
the potential is symmetric. However, they naturally inherit the
xref dependency from η(θk ). The dependency of the Wigner
delays with respect to this analysis parameter is illustrated in
Table I, with the values of τw(θk ) obtained at ε = 4.35 eV for
xref = −0.20, 0, and +0.20 Å, respectively. With these data,
one can verify that shifting the origin from 0 to a given value
xref is equivalent to modifying the path difference between
the photoelectron and the arbitrary intermediate reference by
−xref on the right side and +xref on the left side. Indeed, it
induces a delay shift on each side of the molecule which can

be accurately modeled as [31,32]

δτw(θk ) = cos θk
xref√

2ε
, (5)

i.e., the time needed for an electron with constant velocity√
2ε to cover the path difference δx = +xref towards the left

or −xref towards the right.
Our simulations covered photoelectron energies ranging

over ∼10 eV near threshold. The obtained orientation-
resolved delays towards the left and right sides of the molecule
are displayed in Figs. 2(a), and 2(b), respectively, for a series
of xref values comprized between −0.20 and +0.20 Å. They
typically lie in the attosecond range. It is noteworthy that such
small, sub-Å, displacements of the origin (which here remain
“within” the molecule) induce considerably large relative vari-
ations of the delays, with no converging pattern [see the linear
dependency given by Eq. (5)].

These orientation-resolved delays depend not only on
an arbitrary origin, but also on the nature of a refer-
ence system (here Coulomb waves), which is also arbitrary.
This last dependency nevertheless vanishes when consider-
ing the stereo-Wigner delays [24,31,34], defined here as the
difference


τw = τw(180◦) − τw(0◦). (6)

Figure 3 shows the values of 
τw obtained with the
orientation-resolved delays commented above (Fig. 2). They
are here of the same order of magnitude than the delays
τw(θk ) themselves. We verified with a few test cases that these
values remain unchanged when using intermediate reference
plane waves instead of Coulomb waves. However, the xref

dependency remains just as pronounced as for the orientation-
resolved delays.1

The linear dependency of the stereo Wigner delay with
respect to the origin, which is considered to be the main
cause for the channel-dependent delay variations reported in
Ref. [31], is inherent to its very definition. In practice, the
most natural choice consists in setting the origin to the average
electron position in the initial state

〈x〉0 =
∫ +∞

−∞
x|�0(x)|2 dx. (7)

Characterizing the initial state with this average position is as
relevant as characterizing the photoemission dynamics, in the
final state, in terms of group delays.2 Here, 〈x〉0 = −0.16 Å.

1It is important to note that the origin dependency concerns only the
orientation-dependent (or partial-wave) analysis of the SCWF, but
not the SCWF itself which is by essence origin invariant. It therefore
impacts the phase shifts and the associated group delays, but not
observables such as the orientation-dependant ionization probabilites
(which are proportional to the squared asymptotic amplitudes of
the SCWF on each side of the molecule [42]).

2The question of the origin-dependency is generally overlooked in
studies dealing with atoms or centrosymmetric molecules, including
in standard textbooks on scattering theory, where it is “naturally,”
implicitly and undisputedly set at the center of symmetry for obvious
practical reasons.

013101-3



MORGAN BERKANE et al. PHYSICAL REVIEW A 109, 013101 (2024)

FIG. 2. Orientation-resolved Wigner delays [Eq. (4)] towards the (a) left and (b) the right sides of the molecule as a function of the
photoelectron energy. The data are displayed for a set of reference positions xref discriminating the left and right sides of the molecule. The
delays are defined with respect to Coulomb waves centered at xref. The xref = 0 results (dashed-dotted curve) were obtained through SCWF
computations and analysis (see text) and were used to infer the xref 	= 0 results (alternating line styles, see labels) using the ε- and xref-dependent
correction given in Eq. (5). The full curves correspond to the data obtained for xref = 〈x〉0 [see Eq. (7)].

The corresponding data in Figs. 2 and 3 are displayed in full
lines.

This arbitrary choice is also comforted by theoretical stud-
ies regarding particle scattering in 1D anisotropic potentials
[43]. Nevertheless, it remains to be confronted to the context
in which the stereo Wigner delays are investigated experimen-
tally, using interferometric schemes based on the RABBIT [8]
and streaking [10] setups. In the present work, we focus on
the RABBIT approach, as discussed below.

IV. RABBIT SIMULATIONS:
ANISOTROPIC MOLECULAR DELAYS

In this section, we investigate the anisotropic photoemis-
sion dynamics inferred from RABBIT measurements. This
part is a priori independent of the previous section since, as
we will see, the dependencies of the “RABBIT delays” are
fundamentally different from the one discussed for the Wigner
delays. Following the RABBIT scheme, we simulated photoe-
mission from our asymmetric model molecule with a comb
of XUV odd harmonics of an IR laser, dressed by the fun-

FIG. 3. Stereo Wigner delays 
τw [Eq. (6)] as a function of the
photoelectron energy ε, computed for a set of reference positions xref,
see caption of Fig. 2.

damental field with frequency ω0. We solved numerically the
time-dependent Schrödinger equation (TDSE) starting from
the ground state, the dipole interaction with the XUV, and IR
pulses being implemented in the velocity gauge. The light
pulse vector potentials were all assigned sin2 temporal profiles
lasting 40 fs (15 periods of a 800-nm laser, full durations).
The harmonics were synchronized with no “attochirp,” for the
sake of simplicity, but were time shifted by an adjustable delay
τXUV-IR with respect to the IR pulse (relative to their maxima).
We set the intensities safely in the perturbative regime, no-
tably to prevent any significant transitions involving more than
one IR photon.

A. Photoelectron spectra

Orientation-resolved photoelectron spectra were computed
using narrow spectral filters [44] applied to the left and right
sides of the wave function at the end of the simulations. To
safely discriminate photoelectrons leaving towards each side
of the molecule, we let the wave function propagate a few
fs after the end of the pulses. In the present context, we
emphasize that these spectra do not depend on the origin
set to discriminate the right and left sides of the molecule,
consistently with their experimental equivalent.

The spectra consist in a series of main peaks (HA2q+1),
evenly separated by a 2ω0 energy gap, associated with the
absorption of each harmonic. Additional sidebands, each in-
duced by two-photon transitions involving one harmonic and
one IR photon, show up in between. Each sideband (SB2q)
results from two interfering pathways: (i) absorption of both
harmonic 2q − 1 and an IR photon and (ii) absorption of
harmonic 2q + 1 and stimulated emission of an IR photon.
Therefore, the intensity of each sideband, on each side of the
molecule, oscillates at a 2ω0 frequency when scanning τXUV-IR

[7].
As an illustration, Fig. 4 shows the SB22 RABBIT spectra

obtained with a standard fundamental photon energy of ω0 =
1.55 eV, which corresponds to a wavelength λ0 = 2πc/ω0 =
800 nm (c is the light velocity). Figures 4(a) and 4(b) display
the spectra obtained on the left and right sides of the molecule,
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FIG. 4. Orientation-resolved SB22 towards the (a) left and
(b) right sides of the model molecule, in RABBIT simulations at
800-nm probe wavelength. The spectra are shown for five values of
the pump-probe delay τXUV-IR (see inset key) sampling a complete
oscillation, see Eq. (8).

respectively, for five values of τXUV-IR covering a full os-
cillation in the RABBIT spectrogram. They reveal a clear
asymmetry in the overall ionization probability, in favor of the
left side (a similar asymmetry is observed in the one-photon
case, see the SCWF amplitudes on Fig. 1). They also highlight
the typical τXUV-IR dependency of the SB magnitudes inherent
to RABBIT, on each side of the molecule.

B. Orientation-resolved molecular phases and delays

Information on the photoemission dynamics are encoded in
the phases of the sideband oscillations, the so-called “atomic”
(or, here, “molecular”) phases [7]. While the orientation de-
pendency of these oscillations are hardly visible on Fig. 4, we
will see that they are significant when interpreted in the time
domain at the attosecond scale.

In our simulations, orientation-resolved molecular phases
ϑ (θk ) were extracted from the photoelectron spectra by fitting
the interferometric pattern function [7]

f (τXUV-IR) = P(θk ) + Q(θk ) cos[2ω0 × τXUV-IR − ϑ (θk )] (8)

to the spectrally integrated intensity of each sideband on each
side of the molecule (θk = 0◦, 180◦). All the θk-dependent
quantities play the role of fitting parameters.

Various schemes were developed over the past years to
analyze these phases in the time domain, see, e.g., the reviews
[40,41]. Our present study focuses on the orientation-resolved
“molecular delays” defined as

τmol(θk ) = ϑ (θk )

2ω0
. (9)

They express the angular variations of the so-called “atomic’
(or “molecular”) delays that were first introduced to in-
terpret RABBIT experiments in terms of photoemission
dynamics [4].

We first present and analyze the results obtained with
the standard fundamental wavelength, λ0 = 800 nm. We
considered odd harmonic orders ranging from 21 to 29, pro-
ducing sideband photoelectrons near threshold (ε < 15 eV).
The orientation-resolved molecular delays on the left and right
sides of the molecule are displayed in Figs. 5(a) and 5(b),
respectively (circles connected by dash-dotted guidelines, see
wavelength labels). Their overall trend is typical of molecular
delays in smooth continua, their magnitude decaying mono-
tonically when the sideband energy increases. Their values lie
in the 100 as range, with a relatively small anisotropy, which
remarkably contrasts with the much shorter one-photon coun-
terparts displayed in Fig. 2. The anisotropy is nevertheless
significant at the attosecond timescale, consistently with pre-
vious experimental and theoretical studies [24–26,31]. This
can be seen in Fig. 6 where the stereo molecular delays


τmol = τmol(180◦) − τmol(0
◦) (10)

are plotted (same legend). Ranging within a few tens of as at
the lowest considered sideband, the magnitude of 
τmol also
follows a global decaying trend when ε increases.3 They also
significantly differ from the stereo Wigner delays computed

3That trend is not necessarily monotonic, e.g., for λ0 = 800 nm the
delay changes sign around SB28.

FIG. 5. Orientation-resolved molecular delays [Eq. (9)] measured on the (a) left and (b) right sides of the molecule as a function of the
average sideband energy. The data were obtained in a series of RABBIT simulations with various “probe” wavelength values (see labels). The
actual data, shown as symbols, are connected with guidelines for each value of λ0 (with alternating line styles). For simplicity, the sideband
labels are displayed for the standard 800-nm case only (dashed-dotted lines).
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FIG. 6. Stereo molecular delays 
τmol [Eq. (10)] as a function
of the average sideband energy, computed for a set of λ0 values
in RABBIT simulations, see caption of Fig. 5.

at xref = 〈x〉0, in spite of lying within a similar as scale. Note
that no alternative choice in the origin provides a satisfactory
agreement between the one-photon and two-photon stereo
delays with these 800-nm RABBIT simulations, as will be
further discussed in Sec. V. As expected and in contrast
to the Wigner delays studied in Sec. III, the (orientation-
resolved) molecular delays bear no intrinsic dependency with
respect to the arbitrary origin xref. Nevertheless, these mea-
surable quantities depend on the “probe” laser wavelength
λ0 [37,38] We illustrate this in Table II, which displays the
values of τmol(θk ) obtained at SBn×22, on each side of the
molecule, when the fundamental wavelength is varied fol-
lowing the geometric progression 2n−1 × 800 nm (n = 1–5).4

This λ0 sampling ensures all SBn×22 sidebands to be centered
at the same photoelectron energy than SB22 for the 800-nm
case (ε = 4.35 eV). It thus allows assessing the evolution of
τmol(θk ) with respect to λ0 solely. Indeed, we observe here
that the orientation-resolved molecular delays depend signif-
icantly on λ0. That dependency is not only the result of the
division by ω0 on the right-hand side (r.h.s.) of Eq. (9) since
the orientation-resolved molecular phases ϑ (θk ) themselves
depend on λ0 in an antagonist way (see the same table and the
above-mentioned references).

The data obtained for higher sideband orders SBn×(2q+1)

with the same set of wavelengths are also displayed in Figs. 5
and 6. The conclusions regarding the λ0 dependency are the
same as for SBn×22. Focusing on that dependency, one should
note that the orientation-resolved delay τmol(θk ) associated
with each sideband energy, on each side of the molecule,
follows an apparent logarithmic trend with respect to λ0 [in
Fig. 5, for each SBn×2q, the values of τmol(θk ) are ∼ evenly
spaced while λ0 follows a geometric progression]. As will be
discussed in Sec. V, this is consistent with previous studies
and state of the art analytical derivations. However, the λ0

4Results for the largest considered wavelength (12 800 nm) were
obtained using second-order perturbation theory rather than by solv-
ing the TDSE to avoid numerical issues related to the tight spectral
proximity of the photoelectron peaks.

TABLE II. Orientation-resolved molecular phases ϑ (θk ) and de-
lays τmol(θk ) [Eq. (9)] associated with SBn×22 for five values of
the fundamental wavelength λ0, 2n−1 × 800 nm (n = 1–5). These
sidebands share the same average photoelectron energy ε = 4.35 eV.

λ0 (nm) 800 1600 3200 6400 12 800

ϑ (0◦) (rad) −0.4872 −0.3747 −0.2661 −0.1762 −0.1097
ϑ (180◦) (rad) −0.5234 −0.4024 −0.2831 −0.1858 −0.1148
τmol(0◦) (as) −103.4 −159.0 −225.8 −299.0 −372.6
τmol(180◦) (as) −111.0 −170.8 −240.3 −315.4 −389.8

dependency of their angular variations, namely, of the stereo
molecular delays 
τmol at fixed ε, is no longer logarithmic
(see Fig. 6). Strikingly, it instead appears to be converging
when λ0 increases.

In the next section, we investigate numerically the link
between the fundamental stereo Wigner delays and the mea-
surable stereo molecular delays, by addressing the ways to
account for the dependencies pertaining to each of them.

V. RABBIT AS A PUMP-PROBE SCHEME
TO MEASURE WIGNER DELAYS

When the RABBIT technique is used to investigate the
dynamics of photoemission in terms of Wigner delays [4],
it is seen as an interferometric pump-probe scheme where
the XUV harmonic pulse initiates single-photon ionization
processes that are probed by the fundamental field at λ0 (typ-
ically in the IR domain). Within this paradigm, atomic (or
molecular) delays are considered as measurements of Wigner
delays, modified by a correction term resulting from the IR
probe stage. Retrieving the first out of the second thus requires
the knowledge of the probe term, as introduced in Ref. [4].
Here, we will see that the asymmetry of our model molecule
induces angular variations of the molecular-Wigner delay dif-
ferences that are significant on the attosecond scale.

Using the orientation-dependent delays introduced in the
previous sections, we define here the orientation-resolved
probe delay as

τprobe(θk ) = τmol(θk ) − τw(θk ). (11)

Below, we confront our orientation-averaged results to an
available analytic model, before focusing on the details of
their angular variations.

A. Orientation averaged delays

A convenient closed-form expression modeling the λ0 de-
pendency of this correction was derived using asymptotic
expansions and well-delineated approximations, see [38,45].
With the notations of the present paper, it reads

gε(λ0) = Z

(2ε)3/2
[2 − ln(εcλ0)]. (12)

Z is, in principle, the charge associated with the asymptotic
Coulomb field felt by the photoelectron, but it can also be used
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TABLE III. Effective charge obtained by fitting the average
probe delay τ̄probe [Eq. (13)] with the formula given in Eq. (12), as
a function of λ0 at fixed ε for each series of sidebands SBn×2q (n
parametrizes the λ0 sampling, see caption of Table II). The standard
relative error for each fit is indicated in brackets.

2q : 22 24 26 28
Z [err]: 0.80 [2%] 0.84 [2%] 0.85 [3%] 0.84 [5%]

as an adjustable parameter compensating for some approxi-
mations. This formula and related ones (see also Ref. [37]) are
commonly exploited as such in experimental and theoretical
studies, see, e.g., Refs. [14,17,26,33].

The function given in Eq. (12) notably underlines the
overall logarithmic λ0 dependency of the molecular delays,
anticipated earlier when commenting our results displayed in
Fig. 5. In addition, it refers to Wigner delays defined with
Coulomb reference waves, which is the natural choice for pho-
toemission. However, it is an isotropic expression.5 Hence,
it cannot account for orientation-resolved measurements that
reveal angular variations of the probe term, as, e.g., experi-
mentally in He [25] and theoretically in noble gas atoms [27],
as well as in the present simulations, as developed below.

To assess the relevance of gε(λ0) in the context of the
present work, we fitted it to the orientation-averaged probe
delays obtained in our numerical experiments

τ̄probe = 1

2

∑
θk=0◦,180◦

τprobe(θk ), (13)

using the effective charge Z as the sole fitting parameter. Note
that the average value τ̄probe does not depend on the origin xref

in contrast to the orientation-resolved counterpart τprobe(θk ).6

Indeed, the correction term inherited from τw(θk ), modeled
by Eq. (5), cancels out when averaging over θk (this can be
verified, e.g., with the data of Table I).

The fit was done independently for each sideband series
SBn×2q, each of them corresponding to a fixed photoelectron
energy ε. The four series provide consistent Z values, lying
around 0.83 within the standard error of the fits (� 5%), see
Table III. The average probe term τ̄probe is displayed against
λ0 in Fig. 7, for the four considered series of sidebands. The
fits, displayed on the same figure, appear to accurately follow
the orientation-averaged numerical data, within the timescale
of the plot.

We will now take a closer look at the angular variations
of the probe delay which are not taken into account by the
analytic model function gε(λ0), but nevertheless manifest at
the attosecond timescale [34].

5Its isotropy comes from the hypothesis according to which the
λ0 field probes the photoelectron outside the system- and channel-
specific short-range interaction zone, i.e., where it feels only the
universal (isotropic) Coulomb tail of the ionic potential.

6This is consistent with the results obtained in [14], where
orientation-averaged simulations reached a satisfactory agreement
with experiments without considering the origin issue.

FIG. 7. Average probe delay against the RABBIT probe wave-
length λ0. Numerical results [Eq. (13)] are displayed as circles.
Alternating dashed and dotted lines correspond to the universal
closed-form expression [Eq. (12)], where Z was used as a fitting pa-
rameter, see Table III. The results are displayed for the four sideband
datasets considered all through the paper. For simplicity, each set is
labeled with the sideband order in the 800-nm case.

B. Reconciliating orientation-resolved molecular
and Wigner delays

We eventually address the angular variation


τprobe = τprobe(180◦) − τprobe(0◦) (14)

= 
τmol − 
τw, (15)

hereafter referred to as the stereo probe delay. In contrast to
the orientation-resolved or -averaged probe delays, it is not
affected by the choice of the reference-wave used to define the
Wigner delays. Instead, it inherits the origin dependency of the
Wigner delay, see Sec. III, and the wavelength-dependency of
the molecular delay, see Sec. IV and above.

The values of 
τprobe obtained in our simulations are
shown in Fig. 8 against the photoelectron energy ε. Fig-
ures 8(a) to 8(c) correspond to a given probe wavelength λ0

value 2(n−1) × 800 nm (n = 1, 3, 5). We performed a system-
atic scan of xref and only show a selection of representative
cases (each guideline corresponds to a given value of xref).7

Looking at Fig. 8(a), one can see that at 800 nm no
xref value allows the stereo probe delay to vanish at all
energies: the arbitrary coordinate origin xref = 0 and the ini-
tial average position xref = 〈x〉0 [= −0.16 Å, see Eq. (7)]
making no exception. At this point, one may conclude that
standard RABBIT measurements cannot provide arbitrarily
accurate access to the angular variations of Wigner delays in
molecular photoemission.

7We checked that the finite-difference approximation

∂η

∂ε

∣∣∣∣
ε2q


 η(ε2q + ω0) − η(ε2q − ω0)

2ω0
, (16)

which underlies any attempt to link the atomic or molecular phases to
the Wigner delays [4], remains accurate in all the considered cases. In
the most pathological situation, i.e., at the lowest considered energy
probed with the largest laser frequency ω0 (SB22 at 800 nm), this
approximation induces an error of few 0.1 as.
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FIG. 8. Stereo correction delay 
τprobe [Eq. (14)] as function of the photoelectron energy ε. Each panel [(a)–(c)] corresponds to a given
value of λ0 used to measure the molecular delays. The data, shown as alternating filled and empty circles connected with guidelines, were
computed at the energies of the sidebands considered in the RABBIT simulations. Each line corresponds to a given value of xref used to define
and compute the Wigner delays. Solid lines correspond to the datasets obtained with xref = 〈x〉0 = −0.16 Å, which converge to 0 at all energies
when λ0 increases. Dash-dotted lines correspond to the datasets obtained with the arbitrary origin xref = 0. For simplicity, the sidebands are
labeled for the (a) 800-nm case only.

However, the results obtained at larger wavelengths single
out the average initial position 〈x〉0 as a specific xref origin
for which 
τprobe does strikingly vanish at all energies, when
λ0 increases. This observation eventually comforts the idea
that RABBIT virtually probes molecular photoemission dy-
namics with high accuracy. It also confirms the average initial
electron position as a statistically representative parameter
implicitly characterizing the dynamics studied by such exper-
iments, as assumed in Ref. [31].

On the theory side, it provides an objective criterion for
setting the electron position origin in anisotropic scattering
delays computations. It is important here to keep in mind that

τprobe as such [Eq. (11)] is not an experimentally measurable
quantity. Its xref dependency directly issues from the definition
of the term 
τw and has nothing to do with the measure-
ment of the term 
τmol. Significant values of 
τprobe at large
photoelectron energies are thus spurious signatures of an in-
appropriate reference position in the theoretical definitions of
the (stereo) Wigner delay. They are therefore related to an
ill-defined clock rather than to a physically relevant asym-
metry in the photoemission dynamics. In contrast, nonzero

τw persisting at low energies in standard 800-nm RABBIT
measurements (even though the position origin is properly set)
are signatures of the asymmetric probe influence on the mea-
surements. They however vanish when the probe wavelength
increases.

Hence, stereo Wigner delays are encoded in RABBIT
measurements with attosecond resolution, when the position
origin is properly set and in the limit of a vanishing probe
frequency, or at sufficiently large photoelectron electron en-
ergies.8 Their angular variations are related to differences
in the potential energy landscape explored by the photo-
electron while escaping the molecule in one direction or
the other, and cannot be directly related to the “technical”,
potential-independent, correction given in Eq. (5). This partly

8We reproduced the stereo Wigner delays displayed in Fig. 9(a) of
Ref. [34] and verified that a proper correction of the origin brings the
data significantly closer to the 800-nm- RABBIT delays reported in
the same figure, in particular, at large energies.

contradicts the interpretations of the authors of Refs. [31,34],
without questioning the main conclusions of these studies.

On the experimental side, the probe wavelengths cannot
be arbitrarily increased in practice as it is done in the present
simulations. The question of the magnitude of 
τprobe thus
remains to be dealt with, even when properly setting the
position origin.9 That magnitude is expected to highly depend
on the degree of asymmetry of the probed molecule, among
other things. Deriving a universal λ0- and ε-dependent model
formula for 
τprobe is beyond the scope of the present paper.
In this last part, we will review what can be learned from our
simulations with respect to this probe term.

First, one should note that, in the present case, 
τprobe

is relatively small, even for λ0 = 800 nm. In the considered
near-threshold energy range, it hardly exceeds 10 as around
4 eV and then decays monotonically, reaching ∼2 as before
14 eV. We can thus expect the stereo probe delay to quickly
reach the sub-as timescale, which should make it negligi-
ble when considering photoemission at much higher energies
and when the molecular asymmetry is not too pronounced.
This includes the results published in Ref. [24] where stereo
Wigner delays were investigated numerically in the context
of streaking rather than RABBIT. As mentioned earlier in
the Introduction, these results show no significant difference
between the Wigner and streaking delays beyond ∼20 eV.

We also investigated the evolution of 
τprobe against the
probe wavelength, for each of the considered photoelectron
energies. The results are displayed in Fig. 9. The striking
alignments of the data, for each energy, in this log-log plot
suggest a general λ0 dependency following simple decaying
power laws, as confirmed by fitting the data with a λ

−p
0 law.

We obtained p values around 1 slowly increasing with the
photoelectron energy, see Table IV. We performed additional
3D simulations on the H atom (not shown here), where we
measured orientation-resolved atomic delays with RABBIT.
We found that their angular variations, when they are signif-
icant, also display λ0 dependencies following similar power

9All through the remainder of the paper the choice xref = 〈x〉0 is
assumed.
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FIG. 9. Stereo probe delay [Eq. (14)] as a function of the probe
wavelength λ0, for each set of sidebands centered at a given energy
(each set is labeled with the sideband order of the 800-nm case). The
numerical data obtained in our simulations are indicated as symbols
(same legend as in Fig. 7). The fits of the function h(λ0) = a × λ

−p
0

to each set of data are shown as lines (alternating dashed and dotted
styles). The fitted values of the exponent p are provided in Table IV.
The plot is displayed in a log-log scale.

laws, which stabilize when λ0 increases, towards exponent
values within ∼0.75–1.5 depending on the orientation. In that
case, the angular (momentum) dependency of the probe delay
term is attributed to the �-dependent ∼1/r2 centrifugal barrier
[28], the plain atomic potential being otherwise spherically
symmetric. We also performed an equivalent study on the
asymmetric 1D model molecule used in Ref. [34]. We could
fit the stereo probe delay to the λ

−p
0 law with very high

accuracy, with exponent values within 0.8–0.9 in the same
energy range. We eventually considered a more pathological
case, provided by the asymmetric 1D model molecule of
Ref. [42]. Its potential is composed of a single soft-Coulomb
well augmented with a barrier on one side only (see Fig. 3
of Ref. [42]). Its ground state is essentially symmetric, while
the barrier induces relatively large stereo-Wigner delays in the
100-as range a few eV above the ionization threshold. Here,
the obtained stereo probe delay follow a λ

−p
0 law with a lower

and variable accuracy, and a broader dispersion of p values (up
to 2). We could partly relate the inaccuracies of the fits to the
pronounced spectral variations of the scattering phase shifts,
implying a breakdown of the finite difference approximation
needed to relate the RABBIT molecular delays to the Wigner
delays, see footnote 7 on p. 16.

These empirical, numerical findings suggest the existence
of an underlying analytical law for the angular variations
of 
τprobe depending on the molecule asymmetry, the pho-

TABLE IV. Power laws obtained by fitting the stereo probe delay

τprobe [Eq. (14)] with h(λ0) = a × λ

−p
0 , at fixed ε for each series

of sidebands SBn×2q (n parametrizes the λ0 sampling, see caption
of Table II). The standard relative error for each fit is indicated in
brackets.

2q : 22 24 26 28
p [err]: 0.88 [5%] 1.03 [4%] 1.09 [3%] 1.08 [1%]

toelectron energy, and the probe laser wavelength. Such an
analytical law remains to be established.

VI. SUMMARY AND CONCLUSION

Using numerical experiments, we reviewed the physics
underlying the concepts of Wigner delay that characterize
single-photon ionization processes and of so-called atomic or
molecular delay inferred from RABBIT measurements, their
interpretations and their connections.

The simulations were performed on a simple 1D asymmet-
ric model molecule, with a particular focus on the angular
variations of the delays with respect to the photoelectron ejec-
tion direction and on the intrinsic dependencies of the delays
with respect to theoretical and experimental parameters.

We verified that our orientation-averaged results are con-
sistent with an available analytical formula [38] for the
difference between the molecular and Wigner delays. By
construction, that formula accounts for the wavelength de-
pendency of the molecular delay on the one hand and for
the specific choice of Coulomb reference waves to define and
compute the Wigner delays on the other hand. However, it
is an isotropic formula that cannot account for the angular
variations of the molecular and Wigner delays nor of their
differences.

Addressing this issue puts forward the intrinsic depen-
dency of the orientation-resolved Wigner delays with respect
to an arbitrary electron position origin, which does not con-
cern molecular delays. Our simulations, however, show that
orientation-resolved molecular phases and Wigner delays can
be related, when and only when the latter is defined with a
specific origin corresponding to the average electron position
in the initial bound state. This demonstrates empirically that
the initial average electron position is encoded in RABBIT
measurements and thus provides an unambiguous prescrip-
tion for setting the electron position origin in the definition
and computation of orientation-resolved Wigner delays. A
different position origin, when not corrected, can lead to
dramatically and spuriously large delays even when it is set
“within” the molecule, i.e., a few tenths of Å from the average
initial position. The magnitude of such artificially enhanced
delays is then likely to hide the actual, physically relevant,
anisotropic dynamics occurring at the attosecond scale.

Moreover, our simulations reveal angular variations of the
molecular delays matching those of the Wigner delays in the
limit of a vanishing RABBIT probe frequency. The wave-
lengths considered in our simulations extend way beyond
those routinely available in real-life experiments. However,
the differences observed even at 800 nm are rather small.
They also decay rapidly when the photoelectron energy in-
creases. Therefore, one can expect them to be negligible in
many practical cases, depending on the photoelectron energy
and the degree of asymmetry of the molecule. Finally, the
observed trend with respect to λ0 will serve as a basis for
further analytical developments in view to include a proper
angular dependency in the probe term, also with more elab-
orate field configurations [46–49]. This will allow observing
the dynamics of a most fundamental quantum process in all
its complexity, with actual attosecond accuracy.
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APPENDIX: PARTIAL-WAVE EXPANSION IN 1D

1. 1D polar coordinates

In 1D, position is commonly characterized by a single
coordinate z ∈ R. Alternatively, it can be expressed via a set
of two “polar” coordinates consisting in

a radial coordinate r = |z| (r ∈ R+),

an angular coordinate θ = arccos(z/|z|) (θ ∈ {0, π}). (A1)

In spite of being unusual, this representation is of interest to
highlight existing analogies between 1D scattering problems
[43,50] and problems in higher dimensions where partial-
wave expansions are standard.

2. Angular basis functions

In analogy with 3D spherical harmonics, let us introduce
the following set of basis functions:

Y�(θ ) = 1√
2

cos� θ, � ∈ {0, 1} (A2)

for the discrete angular coordinate θ introduced in Eq. (A1).
Defined as such, the functions are orthogonal and normalized
to unity

(Y�|Y�′ ) = δ��′ , (A3)

where δ is the Kronecker symbol and the ( | ) bra-ket notation
refers to the scalar product with respect to the angular variable

(A|B) =
∑

θ=0,π

[A(θ )]�B(θ ). (A4)

The two functions further verify the following composition
rule:

Y�(θ )Y�′ (θ ) =
√

2[δ��′ × Y0(θ ) + (1 − δ��′ ) × Y1(θ )]. (A5)

One must note that the values assigned to the index � are
arbitrary. In particular, this “quantum number” cannot be
associated with an angular momentum since the angular co-
ordinate is not continuous (see Noether’s theorem [51]), i.e.,
rotation is not defined in one dimension. However, it is related
to the parity properties of 1D functions, as exploited in the
following.

3. Partial waves

The even ( f0) and odd ( f1) components of any function F
can be defined as

f�(r) = 1√
2

[F (r) + (−1)�F (−r)] (A6)

for all r ∈ R+. The normalization factor 1/
√

2 is here intro-
duced such that F (z) expressed with the (r, θ ) coordinates

takes the simple form of a partial-wave expansion

F (z) =
∑
�=0,1

f�(r)Y�(θ ). (A7)

Hence, Y0(θ ) corresponds to the angular part of an even func-
tion of z and Y1(θ ) to the one of an odd function.

4. Schrödinger equation

We consider the time-independent Schrödinger equation

[
−1

2

d2

dz2
+ V (z) − ε

]
�(z) = 0, (A8)

of a 1D particle (of mass equal to 1) with total energy ε, where
the 1D partial-wave expansions of the potential and of the
solution wave function read

V (z) =
∑
�=0,1

v�(r)Y�(θ ), (A9)

�(z) =
∑
�=0,1

ψ�(r)Y�(θ ). (A10)

Projecting the Schrödinger equation [Eq. (A8)] on the angular
basis {Y0(θ ),Y1(θ )}, and using Eqs. (A3), (A6), and

(
Y�

∣∣∣∣ d2

dz2

∣∣∣∣Y�′

)
= δ��′

d2

dr2
, (A11)

one gets the following coupled equations for the radial func-
tions ψ�(r):

[
−1

2

d2

dr2
+ v0(r) − ε

]
ψ�(r) + v1(r)ψ1−�(r) = 0, (A12)

where the odd component of the potential v−1(r) is responsi-
ble for the coupling between the two partial waves ψ0(r) and
ψ1(r).

The continuity conditions of the solution wave function
�(z) translate into the following boundary conditions at the
origin:

ψ ′
0(0) = 0, (A13)

ψ1(0) = 0, (A14)

to be imposed when implementing the numerical resolution of
the system [Eq. (A12)]. In the doubly degenerate continuum,
two linearly independent wave functions can be obtained by
solving the system with two linearly independent arbitrary
sets of initial conditions {ψ0(0), ψ ′

1(0)}.
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