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Abstract

In the Arctic, large planktonic copepods form a crucial hub of matter and energy owing to the role their 

12 energy‐rich lipid stores play for the biological carbon pump and for marine trophic networks. Until 

now, such lipid stores could be estimated manually from pictures of individuals sampled via plankton 

nets. Unfortunately, with this traditional approach, the link with environmental information would at 

15 best be crude, at worst lost. Since the past ~15 years, in situ imaging devices provide images whose 

resolution allows to estimate an individual copepod’s lipid sac volume and reveal a wealth of 

ecological information inaccessible otherwise. However, when done manually, weeks of work are 

18 needed by trained personnel to obtain such information for a handful of samples. We removed this 

hurdle by training a machine learning algorithm to estimate the lipid content of individual Arctic 

copepods from in situ images. This algorithm obtains such information at a speed (a few minutes) and a 

21 resolution (individuals, over half a meter on the vertical) allowing us to revisit historical datasets of in 

situ images to better understand the dynamics of lipid production and distribution and to develop 

efficient monitoring protocols at a moment when marine ecosystems are facing rapid upheavals and 

24 increasing threats.
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Introduction

27 Since the turn of the 21st century, the use of in situ optical methods to sample plankton individuals and 

communities has grown exponentially. The number of samples, as well as the pace of sampling has 

exponentially increased year after year. Today, all major oceanic basins and many regional seas have 

30 been explored by these modern tools (Irisson et al., 2022). Moreover, tens of different devices have 

been designed and deployed to collect images at all scales relevant for plankton ecology, from microns 

to metres, from high vertical resolution from in situ tows to large horizontal scales thanks to 

33 autonomous gliders or ship-based continuous flow instruments (Lombard et al., 2019). This has led to a 

dramatic increase in the quantity of images to analyse that definitely requires the help of automated 

methods to treat all this precious information.

36 The quantity and quality of information that plankton imagery can reveal is arguably as momentous as 

what satellite ocean colour imagery has become about 30 years ago for our ability to understand and 

simulate oceanic biogeochemical systems (Groom et al., 2019). While the recent and systematic use of 

39 images revealed previously inaccessible ecological patterns (e.g., Drago et al., 2022; Sonnet et al., 

2022; Trudnowska et al., 2021; Vilgrain et al., 2021) and strengthened a trait-based approach of marine 

ecology (Martini et al., 2021), they were hindered from the start by the bottle-neck of human’s 

42 implication in image processing. As even the basic taxonomic identification of individuals sampled in 

net tows by experts has always been a lengthy process, it was obvious that orders of magnitude increase 

in the inflow of data could not be handled by “traditional” approaches.

45 In the meantime, machine learning approaches soared in many spheres of our societies, and their 

potential for research stirred a lot of interest in the communities of researchers who were already 

instrumenting many biological systems with, among other data loggers, cameras. The first application 

48 in imagery in which machine learning proved to be both useful and efficient was taxonomic 

identification and sorting (Irisson et al., 2022). This major improvement already allowed several studies 

to reveal how more precise and detailed our understanding of marine ecosystems would be by using in 

51 situ imaging data in conjunction with widespread measurements of environmental variables (e.g., 

Schmid et al., 2018, 2016; Schmid and Fortier, 2019). However, machine learning can obviously do 

much more than simply help categorize images into broad taxonomic groups: it is particularly well 

54 suited to provide measurements and estimates of individual properties visible from the images 

(Orenstein et al., 2022).

Page 2 of 17

http://mc.manuscriptcentral.com/jplankt

Journal of Plankton Research

https://www.zotero.org/google-docs/?7J3Dfx
https://www.zotero.org/google-docs/?8430On
https://www.zotero.org/google-docs/?9qCgwX
https://www.zotero.org/google-docs/?hyFgSW
https://www.zotero.org/google-docs/?hyFgSW
https://www.zotero.org/google-docs/?t4sbx8
https://www.zotero.org/google-docs/?SZe3Gi
https://www.zotero.org/google-docs/?TfkMZR
https://www.zotero.org/google-docs/?TfkMZR
https://www.zotero.org/google-docs/?vTW78Z


For Peer Review

3

57 Among the many individual properties measurable from images, the visual estimation of lipid stores is 

an obvious research target, owing to the important role energy‐rich lipids play for the biological carbon 

pump (Pinti et al., 2023; Record et al., 2018) and for marine trophic networks up to humans (Belton 

60 and Thilsted, 2014). Productive, lipid‐rich food webs in the ocean depend on a handful of large pelagic 

copepod species that form a hub of matter and energy between the intense but often short-lived 

microbial primary production and upper trophic levels (Kattner and Hagen, 2009). In this study, we 

63 decided to revisit the first study that provided a very detailed account of the spatio-temporal vertical 

organisation of a community of lipid-rich copepods from a productive environment. Schmid et al. 

(2018) studied the dynamics of planktonic copepod assemblages in the North Water Polynya between 

66 Greenland and Canada (named Pikialasorsuaq by Inuit communities) by using the Lightframe On-sight 

Keyspecies Investigation (LOKI) imaging system. A machine learning method (a random forest 

algorithm) was then used to identify and classify species and development stages of the dominant 

69 copepods in the system. However, estimates of individual total lipid content (mg) or lipid fullness (% 

of biovolume) had to be done “manually”, by a human clicking with a mouse on individual images 

imported in the ImageJ software. 

72 In Schmid et al. 2018, the first author measured a total of 822 images chosen randomly to be 

representative of the copepod community sampled by their device. The area of the lipid sac (mm2) was 

measured for each individual following the manipulation procedure described above, and then used in a 

75 published empirical relationships that allowed for estimating total lipids (Vogedes et al., 2010), while 

lipid fullness was simply the proportion of the surface of the prosome of the individual occupied by the 

lipid sac area. Then, this information obtained at the individual level was related to environmental 

78 variables such as temperature and chlorophyll a fluorescence to produce high spatial resolution profiles 

of 1-m bins. The authors detected diel vertical migration patterns specific to development stages and 

species, as well as ontogenetic migrations related to the accumulation of lipid stores induced by the 

81 diapause life-cycle strategies of Calanus congeneric species. Obviously, while providing a very 

interesting proof of concept, such a time consuming procedure is not suitable for the exploration of the 

extensive images databases already constituted, and even less for an eventual operationalization of such 

84 an approach in the current context of expanding monitoring of marine ecosystems (Lombard et al., 

2019). As a result, we have developed and validated a machine learning approach based on 

convolutional neural networks (CNN) for estimating the total lipid content (mg) of oil sacs in 

87 individual images of these crucial components of the Arctic pelagic ecosystems. 
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Methods

Images and annotation

90 Sampling took place between the 15th of August and the 2nd of September 2013 in the Northwater 

Polynya in the Canadian Arctic (see Schmid et al. 2016 for more details). From a total of 16 vertical 

tows of the LOKI, 14,558 zooplankton images have been validated (i.e. artifacts and duplicated images 

93 removed) and sorted by a trained random forest algorithm into many classes that contained information 

of species but also on development stages and even orientation of the images (e.g. dorsal, lateral, etc.). 

Schmid et al. (2018) then used a subset of 822 images taken during a Lagrangian drift experiment to 

96 estimate visually, following Vogedes et al. (2010), the lipid content from advanced development stages 

of the three dominant calanoid species known to accumulate significant lipid stores within an oil sac 

inside their transparent prosome: C. hyperboreus stages C3 to adult female (F), C. glacialis stages C4 

99 to F and Metridia longa stages C5 to F (Fig. 1). 

Within the original images, we found 2,920 that fit these criteria. We reviewed each one of them, and 

we found 2,309 that presented an oil sac visible enough to be annotated by a human. Moreover, since 

102 large images contained many LOKI-introduced artifacts (glares, borders, etc.), we filtered them out and 

left only those with both height and width smaller than 600 pixels to reach a count of 2,216 images left. 

As machine learning models typically require input of a constant size, and LOKI images have a dark 

105 background, we aligned each image in the center and pad its borders with black so the resulting image 

is of a constant size of 600 by 600 pixels. It is important to note that each pixel in a LOKI image 

corresponds to a size of 23 μm. Annotation, which is an important step of the process, has been done as 

108 follows: (i) open original LOKI images in the ImgLab Open Source application (https://imglab.in; 

https://github.com/NaturalIntelligence/imglab), (ii) trace the contour of the oil sac with the polygon 

tool, (iii) and export the annotations in the COCO JSON format, which stored the contour as a matrix 

111 of vertex coordinates. 

Machine learning algorithm

We used the fastai library (Howard et al., 2018) implementation of the Convolutional Neural Network 

114 (CNN) model U-Net (Ronneberger et al., 2015), with a ResNet34 backbone (i.e. the initial layers; He et 

al., 2015), pretrained on the ImageNet dataset (Deng et al., 2009). The library, the model and the 

dataset are all publicly available. Using pretrained models is a common practice in research situations 

117 such as ours; it is called transfer learning (Orenstein and Beijbom, 2017). Indeed, when training a 
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neural network classifier, the initial layers are trained to detect simple features such as curves and slant 

lines, whatever the objects to identify are. It is only the final layers of a network classifier that 

120 eventually learns to identify classes relevant for the project. Moreover, retraining a very complex 

network model such as ResNet34 from scratch would require a number of annotated images that would 

far exceed what we could provide (ImageNet contains more than 14 millions of labeled images), an 

123 issue that is quite common in environmental and engineering research as well (e.g., Robbes and Janes, 

2019).

However, while the ResNet34 network has been trained to classify whole images (e.g., whether the 

126 animal in the image is a cat or a dog), we used it for segmentation, i.e., to predict for each pixel of the 

image whether it belongs to an oil sac or not. The U-Net neural network architecture provides a 

framework for image segmentation that can leverage many different pretrained classification CNN, 

129 including ResNet34 (Ronneberger et al., 2015).

Data split

The dataset was divided into a train set and test set following a 90%-10% split proportion, while also 

132 taking into account the particularities of the data obtained at each towing location. Indeed, the LOKI 

device can, on rare occasions, create almost-duplicated images that should be split when constructing 

the training and validation datasets. It is important to avoid any data-leakage (information flow) 

135 between both datasets. After the split, the training and test set contained 1991 and 225 images, 

respectively. 

Training

138 We used the default fine-tuning procedure of the fastai library for training our model. We optimized the 

Cross Entropy loss function. For determining the necessary length of training, we used the early 

stopping technique. Eventually, the model trained for 26 epochs that took just under 4 hours on a single 

141 Nvidia T4 GPU. To find the optimal learning rate, we used the one cycle policy introduced by Smith 

and Topin (2017), implemented in the fastai library. A typical neural network training procedure 

includes data augmentation, especially for models that learn on images. During training, we used the 

144 standard fastai augmentation methods, i.e. random flipping, rotating, zooming and re-lighting.
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Validation

It is a common practice in machine learning to optimize models on one metric that has convenient 

147 mathematical properties, and assess model quality on another that is easily interpretable. In this case we 

used the intersection over union (IoU) metric, also known as the Jaccard index, which is the most used 

metric for evaluating the performance of tasks such as segmentation or object detection (Jaccard, 1901; 

150 Taha and Hanbury, 2015). Given the prediction for a single LOKI image, we can count the number of 

pixels in the oil sac. Then, we can combine the fact that all LOKI images have pixels of the same size 

to estimate the volume of the oil sac and the mass of lipids of each individual, following Vogedes et al. 

153 (2010), as did Schmid et al. (2018).

Results

The vast majority of selected images were well suited for an automated image analysis, owing to their 

156 transparency, resolution and orientation (Fig. 1). Individuals had a visible lipid sac, but with a wide 

range in size (lipid fullness). For example, we can see a C. glacialis C5 individual with a very full lipid 

sac (Fig. 1B), as well as a very well-defined C. hyperboreus female with a much depleted lipid sac 

159 (Fig. 1H).

The performance of the model is generally satisfactory, with an overall median IoU of 0.82 and a 

highly negatively skewed distribution (Fig. 2). However, IoU values distribution changed significantly 

162 according to the individual’s species (Table 1): while median IoU values are above 0.8 in both the 

training and validation sets for the Calanus congeners, but they are significantly lower for M. longa 

individual images (0.64 and 0.41, respectively).

165 The model produced individual lipid content estimates that varied widely, from a minimum of 4.9 10-3 

mg of total lipid, to a maximum of 3.68 mg. M. longa individuals dominate values lower than 0.1 mg, 

followed by C. glacialis and C. hyperboreus. The latter are the only individuals with lipid content 

168 larger than 1 mg. The relative errors in the prediction of individual lipid content from the automatic 

image analysis are small, but they still reach > 5% for the small M. longa individuals (Table 2). 

Moreover, our estimates coming from both annotations and model predictions compare well with the 

171 values previously obtained in Schmid et al. (2018), except for M. longa for which we detected more 

lipids (Table 2).
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Discussion

174 Limitations and potential improvements to the approach

Our model performed remarkably well, as illustrated by a vast majority of IoU values being higher than 

0.75 and only a handful of them spreading towards zero. It is interesting, nonetheless, to explore the 

177 images for which the model performed the worst. For 49 images (2.3%), the IoU value was lower than 

0.3. Among those, two broad categories of images could be described. The first (c.a. 22% of the bad fit) 

is formed by good quality images of large individuals whose lipid sac has been identified and annotated 

180 correctly by the human operator, while the model did not predict the correct area (Fig. 3A & 3B). It 

could have been lured by contrasting features in the image, such as a strong glare at the bottom of the 

lipid sac. Such outcome could probably be addressed via a more careful pre-treatment of the image, 

183 such as modifying the contrast, brightness or hue (Shorten and Khoshgoftaar, 2019). The second 

category (c.a. 78% of the bad fit) is composed by images of such quality that a human cannot reliably 

identify a lipid sac. A lipid sac location had nonetheless been identified (most likely wrongly so), and 

186 hence the model evaluated poorly while being potentially right in identifying the lipid sac (Fig. 3C & 

3D). This could be fixed by putting more effort into a pre-selection phase before submitting the images 

to such a model, even though this may not be a trivial task. Another option would be reinforcement 

189 learning, i.e. to add a second step of annotation, to correct for the initial errors revealed by the model 

for the poorly-labelled images, and then run the model again. This is an avenue we will explore in a 

future project for which we plan to expand the approach to past datasets (see below).

192 Ecological relevance of fast and accurate lipid content estimations for individual copepods

Some long-chained fatty acids that are essential for all animals (e.g. docosahexaenoic acid - DHA - and 

eicosapentaenoic acid - EPA) must be obtained from planktonic primary producers via the hub of 

195 matter and energy formed by copepod communities toward higher trophic levels, including human 

population (Parrish, 2009; Record et al., 2018). More generally, lipid is the currency of productive 

marine trophic networks that rely on short-lived but intense periods of primary production (blooms), 

198 since it is the most efficient form of energy and carbon storage, easily transferable among the different 

actors of the network. Lipid accumulation by zooplankton even plays a significant role in the marine 

biological carbon pump and the global carbon cycle (Jónasdóttir et al., 2015). Pinti et al. (2023) showed 

201 that five species of lipid-rich copepods spread around the globe in productive, high-latitude 

ecosystems, contribute to almost 1% of total carbon export, and up to 3% of carbon sequestration 
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mediated by the global biological pump. They conclude by stating that including more information on 

204 other species, as well as more precise information in terms of lipid content, vertical and seasonal 

distribution for these species could help reaching better estimates of the global carbon cycle.

Our approach was particularly well suited to estimate accurately and efficiently the amount of lipids 

207 accumulated within the highly productive (sub)polar and upwelling ecosystems. The global error in the 

lipid biomass predicted by the model relative to annotation remained small, at 1%. Moreover, while the 

frequency distributions of individual lipid content revealed the well-known disproportionate role 

210 played by large individuals of the Calanus congeners, they also provided information impossible to 

obtain by usual sampling approaches (e.g., net tows). For instance, these distributions could be 

presented at a high vertical resolution and correlated to environmental measurements to provide new 

213 insights into fine-scale ecosystem regulations (similar to Schmid et al. 2018). Moreover, changes over 

time in the ranges and median values of species-specific distributions of lipid content could reveal 

changes in copepod community phenology, in communities compositions, in planktonic ecosystem 

216 functions or any combination of these (see, for example, the changes hypothesized in the modelling 

study of Renaud et al., 2018).

Future developments

219 Our approach could provide new information if applied to historical datasets collected with LOKI 

instruments since the beginning of the 2010s. The LOKI has been deployed on many campaigns since 

its first deployment (e.g., Hildebrandt et al., 2017; Massicotte et al., 2020; Niehoff et al., 2017; Schmid 

222 and Fortier, 2019) and the widespread use of centralized databases such as EcoTaxa 

(https://ecotaxa.obs-vlfr.fr); e.g. (Drago et al., 2022) will greatly facilitate the reanalysis of existing 

data. Even though such datasets are relatively recent, the accelerating pace of climate change impacts 

225 on (sub)arctic marine ecosystems in particular makes such an approach particularly relevant. It could 

significantly enhance our ability to finely monitor marine ecosystems (e.g. Cornils et al., 2022), while 

keeping the operational burden and monetary investments at a sustainable level. Many in situ imagers 

228 can be deployed on rosettes or to replace traditional nets, but the treatment of the huge amount of 

information collected has long been the limiting factor when considering a more widespread 

deployment of these approaches (Lombard et al., 2019). For example, Irisson et al. (2022) estimated 

231 based on the past few years of routine operations that a single ZooScan instrument produces about 1 

billion pixels containing ∼2 million objects per year, while approximately 100 of which are now 

distributed worldwide. Cornils et al. (2022) showed recently from a case study in the Fram Strait how 
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234 these instruments can be used for monitoring purposes by providing abundance data and taxonomic 

resolutions that are comparable to microscopic analyses with a fraction of its human cost and effort. 

However, efforts have still to be invested to improve the speed and accuracy of traits identification and 

237 measurements derived from individual images analysis in order to gain a finer understanding of marine 

ecosystems functioning while both their forcing and responses are rapidly changing (e.g. Panaïotis et 

al., 2022; Orenstein et al. 2021). 
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Table 1. IoU scores in training and validation datasets, split by copepod species.

Species Image set Median IoU N

Training 0.86 1131Calanus hyperboreus

Validation 0.81 141
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Training 0.82 415Calanus glacialis

Validation 0.80 40

Training 0.64 349Metridia longa

Validation 0.41 35

336 Table 2. Median total lipid content per individual (TL, in mg ind-1) estimated from the area of the lipid 

sac, following Vogedes et al. (2010). Data are presented for annotated areas, areas predicted by the 

model, the relative error between both, as well as values from the original study of Schmid et al. 

339 (2018).

Species TL annotated TL predicted Relative error Schmid et al. 

(2018)

C. hyperboreus 672.1 679.9 1.2 % 699

C. glacialis 411.7 412.4 0.17 % 357

M. longa 94.5 99.9 5.7 % 55.6

Figures

342 Figure 1. Examples of model performance on selected LOKI images. A) Metridia longa adult female, 

B) Calanus glacialis C4, C) C. glacialis C5, D) C. glacialis adult female, E) Calanus hyperboreus C3, 

F) C. hyperboreus C4, G) C. hyperboreus C5, H) C. hyperboreus adult female. Green: annotation of 

345 lipid sac location. Red: lipid sac location estimated by the model. Yellow: overlap between both (IoU, 

see text). 

Figure 2. Frequency distribution of individual A) IoU values and B) lipid estimates produced by the 

348 model, according to each species of copepod analyzed: Metridia longa (smallest individuals, c.a. 2 to 3 

mm), Calanus glacialis (large individuals, c.a. 2.5 to 4 mm) and C. hyperboreus (largest individuals, 

c.a. 3 to 7 mm). Vertical line in A) shows median IoU = 0.82.

351 Figure 3. Examples of LOKI images for which the model performed badly. A) C. hyperboreus adult 

female (IoU=0.059) for which no obvious problem in either the image or the annotation is identified, 

B) C. hyperboreus C4 (IoU=0.102) for which a glare in the image could be a problem, C) (IoU=0) & 

354 D) (IoU=0.229) Metridia longa adult female for which the lack of contrast (dark image in C; bright 
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image in D) could be problematic. Moreover, the annotation in C is most likely wrong. Green: 

annotation of lipid sac location. Red: lipid sac location estimated by the model. Yellow: overlap. 
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Calanus glacialis C4, C) C. glacialis C5, D) C. glacialis adult female, E) Calanus hyperboreus C3, F) C. 

hyperboreus C4, G) C. hyperboreus C5, H) C. hyperboreus adult female. Green: annotation of lipid sac 
location. Red: lipid sac location estimated by the model. Yellow: overlap between both (IoU, see text). 
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Figure 2. Frequency distribution of individual A) IoU values and B) lipid estimates produced by the model, 
according to each species of copepod analyzed: Metridia longa (smallest individuals, c.a. 2 to 3 mm), 

Calanus glacialis (large individuals, c.a. 2.5 to 4 mm) and C. hyperboreus (largest individuals, c.a. 3 to 7 
mm). Vertical line in A) shows median IoU = 0.82. 
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Figure 3. Examples of LOKI images for which the model performed badly. A) C. hyperboreus adult female 
(IoU=0.059) for which no obvious problem in either the image or the annotation is identified, B) C. 
hyperboreus C4 (IoU=0.102) for which a glare in the image could be a problem, C) (IoU=0) & D) 

(IoU=0.229) Metridia longa adult female for which the lack of contrast (dark image in C; bright image in D) 
could be problematic. Moreover, the annotation in C is most likely wrong. Green: annotation of lipid sac 

location. Red: lipid sac location estimated by the model. Yellow: overlap. 

50x25mm (300 x 300 DPI) 

Page 16 of 17

http://mc.manuscriptcentral.com/jplankt

Journal of Plankton Research



For Peer Review

Statement of significance

Large planktonic copepods form a crucial hub of matter and energy in productive pelagic ecosystems by 
converting primary production blooms into voluminous stores of lipid that are available all year long for 
higher trophic levels and contribute for a significant portion of the biological carbon pump. Hence it is 
crucial to make accurate and timely measurements of these lipid stores. Until now, such information 
could be retrieved from binocular pictures of individuals sampled via plankton nets. Unfortunately, with 
this traditional approach, the link with environmental information, both abiotic (e.g. depth, 
temperature, light level, oxygen concentration, etc.) and biotic (e.g. chlorophyll concentration, plankton 
community structure, etc.) would at best be crude, at worst lost. Since the past ~15 years, in situ 
imaging devices provide images whose resolution allows to estimate an individual copepod’s lipid sac 
volume and reveal a wealth of ecological information inaccessible otherwise. This has been pioneered 
by Schmid, Fortier & Maps 2018 (doi: 10.1093/plankt/fby012) despite a serious methodological 
bottleneck: estimating the surface area occupied by a lipid sac within a copepod’s prosome had to be 
done manually, so that weeks of work were needed by trained personnel to obtain such information for 
a handful of samples. With this article, we removed this hurdle by training a machine learning algorithm 
to estimate the lipid content of individual Arctic copepods from in situ images. This work conducted on 
the same dataset than in Schmid et al. (2018) now allows us to obtain such information at a speed (a 
few minutes) and a resolution (individuals, over half a meter on the vertical) unheard of. We think such 
solutions are necessary to revisit historical datasets of in situ images to better understand the dynamics 
of lipid production and distribution in pelagic ecosystems and to put in place efficient monitoring 
protocols at a moment when marine ecosystems are facing rapid upheavals and increasing threats.
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