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Abstract

Failure detectors (FDs) are a fundamental abstraction that plays a central
role in the design of distributed systems. FDs are distributed oracles that
provide processes with unreliable information about process failures, often in
the form of a list of trusted or suspected process identities. In this article, we
propose a timer-based FD which assesses the quality of its input links, and
exchanges its local estimations with other nodes. Nodes use this information
to adjust their timers dynamically. Capturing the variations in the quality
of each link reduces the number of false suspicions without degrading failure
detection time. We present experiments on a dataset of real traces collected
on PlanetLab, and compare our approach to well-known state-of-the-art al-
gorithms. Our results show that our new algorithms yield a good trade-off
in terms of failure detection speed and accuracy in real scenarios.

Keywords: Failure Detectors, Quality of Service, Fault Tolerance,
Distributed Algorithms, Reliability

1. Introduction

Many distributed systems must handle failures in order to ensure reliable
and continuous services. Some critical services, such as distributed storage
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systems [1], [2], [3] replicate their state across geo-distributed nodes to re-
main available in the event of a region-wide system outage. These services
often use State Machine Replication [4] based on consensus algorithms [5] to
maintain the consistency between replicas despite failures. The performance
of these services directly affect the user-perceived latency. More generally, in
a cloud computing context, some of the servers spread on several datacenters
may be available while others are heavy loaded or crashed and, in this case,
users might have to wait for available servers to continue executing their re-
spective application. In order to tolerate failures or temporal unavailability,
distributed services must use a mechanism that detects node failures and a
second one that guarantees the correct execution of the system/application
despite of failures.Therefore, the first mechanism, failure detection, is crucial
in the engineering of such services.

A failure detector (FD) is an oracle which provides information about
process crashes [6]. It is unreliable because it can make mistakes, for in-
stance by erroneously suspecting a non faulty node (false suspicion), or by
not suspecting a process that has actually crashed. The FD can eventually
correct detection mistakes.

The literature about FDs comprises several implementations [7, 8, 9, 10,
11, 12, 13, 14]. Most of these are timer-based FDs where nodes exchange
heartbeat messages and wait for them within a time bound (timeout). For
every node it monitors, the FD keeps track of the arrival time of the last n
heartbeats in a sliding window; it then uses this log to estimate the arrival
time of the next heartbeat. If the expected heartbeat does not arrive within
the estimated arrival time, the FD suspects a failure of the monitored node.
By adjusting the estimated arrival time of heartbeats, FDs try to reach a
good trade-off between the speed of the detection (completeness property)
and the avoidance of false suspicions (accuracy property).

Chen et. al’s FD [7] was the first FD implementing a sliding window to
estimate the arrival time of the node’s next hearbeat. To mitigate the impact
of sudden network latency slowdowns on false detections, the authors extend
the arrival time estimation with a constant safety margin. Later FDs such
as the ones presented in [8, 14, 15] also use heartbeats and sliding windows,
but compute the safety margin dynamically. In [8], the computation of the
safety margin exploits Jacobson’s algorithm: the round-trip time estimation
used in the TCP protocol. In [14], the authors propose two safety margin
adaptation strategies: one relies on the prediction of error changes, and the
other on the probability of correctness of the next arrival time estimate.
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In [15] QoS parameters are self-configured, including the safety margin, by
exploiting feedback control theory. All of these FDs provide good results in
LAN environments where network conditions are relatively stable, yet they
do not perform well over WANs where network conditions change fast due
to traffic bursts. Furthermore, every FD relies on its own view to adapt the
dynamic safety margin, even though another FD might have a more accurate
view of the monitored node.

We propose a new cooperative failure detector, called Stab-FD, which
observes the stability of communication links to adapt the safety margin.
By detecting sudden delay variations in network links, Stab-FD dynamically
calibrates the safety margin. This approach reduces the number of failure
suspicions providing good accuracy, without degrading the failure detection
time significantly.

A Stab-FD node (observer) assesses the stability of its input links from
every monitored node. The observer uses these stability estimates to calibrate
the timeout values. However, in a WAN context, the quality of links are not
homogeneous and a well-connected node can have a better link quality to
observe a node n relatively to some other nodes far from n. In order to
improve the quality of detection, observer nodes also include their local view
of suspected nodes and information about stability of their input links in
their heartbeat messages to compare their observed relative quality of links.
Based on this information, an observer node can better deduce the accuracy
of its current safety margin with respect to a monitored node, and re-calibrate
the safety margin when it receives a more precise view about the monitored
node’s liveness.

To evaluate the quality of service (QoS) of our FD, we conduct exper-
iments over real traces collected on PlanetLab [16] using UDP heartbeat
messages, and compare it with Chen [7] and Bertier [8] FDs, two well-known
FDs in the literature. Our results show that our approach outperforms its
predecessors according to the traditional evaluation metrics for FDs: false
detection avoidance, query accuracy probability, and detection time.

In summary, aiming at reducing detection time and improving applica-
tion stability, the main contribution of Stab-FD is to combine both dynamic
adaptation of timers, thanks to a dynamic safety margin computation, and
an opportunistic cooperation where nodes piggyback in heartbeat messages
information about their local view of suspected nodes and stability of their
input links.

The rest of this paper is organised as follows. Section 2 introduces our

3



model and provides some background about Chen’s and Bertier’s failure de-
tectors. Section 3 describes Stab-FD and its algorithms. Section 4 presents
our evaluation results. Section 5 discusses some related work, and we con-
clude in Section 6.

2. Model and Background

We consider a distributed system which consists of a finite set of N pro-
cesses Π = {p1, . . . , pN}, with one process per node. Processes can fail by
crashing and can recover with the same id. We assume no bounds on message
latencies [17] and that local clocks have bounded drift. In such systems, it
is impossible to precisely determine whether a remote process has failed or
whether it is just very slow [18]. Processes associate an increasing sequence
number with each message emission to allow for the detection of message
loss. For the current implementation, we consider that there exists a link
lp→q from every process p to every other process q.

Chen’s FD relies on a heartbeat strategy where every non faulty process
periodically sends an ‘I am alive’ message to other processes. The algorithm
estimates the expected arrival time EA for the next heartbeat message, then
uses EA to compute a freshness point. The freshness point time determines
the moment the failure detector of a node p will start to suspect that a
monitored node q has crashed if no message was received from q. The formula
for the next freshness point l + 1 is:

τl+1 = EAl+1 + α (1)

where α is a constant safety margin chosen by the user.
To compute EAs, Chen’s FD maintains a sliding window of size n for every

monitored node, with information regarding the n previous heartbeats. Let
s1, . . .,sn be the sequence number of those heartbeats, and A1, . . .,An their
reception times at p. The estimation of the expected arrival time EAl+1 is:

EAl+1 ≈
1

n

(
n∑

i=1

Ai − η.si

)
+ (l + 1)η (2)

where η is the heartbeat sending interval. This equation first normalises each
Ai with a backwards shift of η.si time units, then computes the average of
the A′is, and finally shifts it forward by (l + 1)η.
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In [8], Bertier et al. use the same mechanism as Chen for estimating
expected arrival times (see Equation 1). The computation of EA also relies
on a sliding window of the n previous heartbeat arrival dates. Their ap-
proach differs in that it computes freshness points in a dynamic way. It uses
Jacobson’s estimation [19] to adapt the safety margin upon every reception
of a heartbeat. The adaptation of the safety margin α is a function of the
error in the last estimation. Parameter γ represents the importance of a
new measure with respect to the previous ones. The delay represents the
estimate margin, and var the magnitude between errors. β and φ ponder the
variance. Upon the reception of a heartbeat at time A, the estimation of α
is computed as follows:

error = A− EA− delay
delay = delay + γ · error
var = var + γ · (|error| − var)
α = β · delay + φ · var

3. Stable FD

In this section we introduce our Stable Failure Detector (Stab-FD) and
its cooperative version StabC-FD.

Stab-FD and StabC-FD are heartbeat-based FDs that exploit both the
heartbeat arrival estimation strategy of Chen’s FD and the variation con-
ditions of the network links. To this end, they observe the quality of each
input link to obtain estimations about the stability of remote nodes. A node
q is considered stable by p if q’s heartbeat messages always arrive before the
expiration of the timer associated with q. If such is not the case, for instance
because of network delays or message losses, p will start viewing q as less
stable. Thus, p should dynamically adapt its estimation of q’s stability value
in order to take into account network condition variations. Furthermore, as
an attempt to better capture the current quality of input links, p includes
q’s stability value in the computation of the safety margin (Chen’s FD) to
calibrate the timer. Finally, since it is not possible to obtain information
regarding arrival times of lost messages, we apply a uniform distribution of
expected arrival times to fill in the gaps induced by adjacent message losses
in Chen’s FD sliding window.

Algorithms 1 and 2 actually correspond to StabC FD, our extended co-
operative version of Stab FD. To study the non cooperative Stab algorithm,
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the reader may disregard all lines prefixed by ∗ and all underlined variables.
We first describe Stab and the variables it uses, and then move on to the
cooperative version StabC .

3.1. Stab-FD

p uses the following local variables and parameters:

� ∆H : the frequency of heartbeat message emissions (an input parameter
of the algorithm).

� suspected : the set of processes currently suspected of being faulty.

� timer : a vector where timer[q] keeps the maximum delay that p will
wait for the next heartbeat from q.

� stab: a vector where stab[q] is p’s estimation of the current stability
value of lq→p, its input link from q.

� Sinit: the initial stability value of all input links (an input parameter
of the algorithm).

� mist : a vector where mist[q] accumulates the number of mistakes that
p has made about node q.
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Algorithm 1 Stable Failure Detector algorithm for node p

1: Initialization
2: for each node q 6= p in Π do
3: stab[q]← Sinit

4: mist[q]← 0; mistprev[q]← 0
5: count[q]← 0
6: timer[q]← ∆H

7: start timer[q]
*8: rmist[q]← 0; rcount[q]← 0
*9: ∆RS [q]← ∆init

10: end for
11: suspected← ∅
12: nmsg ← 0
*13: for each node q in Π do
*14: for each node r in Π do
*15: ldet[q][r]← 0
*16: end for
*17: end for

18: Task T1 every ∆H [HeartBeat sending]
19: Send HB(nmsg, suspected, stab) to Π−
{p}

20: nmsg ← nmsg + 1
21: End of Task T1

22: Task T2 [timer expiration]
Upon expiration of timer[q]

23: if q /∈ suspected then
24: suspected← suspected ∪ {q}
*25: detnode[q]← ∅
26: end if
27: End of Task T2

28: Task T3 [Heartbeat reception]
29: Upon reception of
30: HB(nh, suspectedq, stabq) from q at

time t
31: stop timer[q]

32: if q ∈ suspected then
. False suspicion of q

33: suspected← suspected− {q}
34: mist[q]← mist[q] + 1
*35: for each node in r ∈ detnode[q] do

. False remote suspicion
*36: rmist[r]← rmist[r] + 1
*37: end for
38: end if
39: UpdateWindow(WA[q], t, nh)
40: EA[q]← ComputeEA(WA[q])
41: count[q]← count[q] + 1
42: timer[q]← EA[q]+ComputeMargin(q)

43: start timer[q]
. Remote detection of failure

*44: for each node r 6= p ∈ suspectedq do
*45: if stabq[r] > (1 + ∆RS [q]) ∗ stab[r]

and (ldet[q][r] = 0
or (ldet[q][r] 6= 0 and
nh > ldet[q][r] + ∆msg)) then

*46: if q /∈ detnode[r] then
*47: ldet[q][r]← nh
*48: end if
*49: if r /∈ suspected then
*50: suspected ← suspected ∪
{r}

*51: detnode[r]← {q}
*52: else
*53: detnode[r] ← detnode[r] ∪
{q}

*54: end if
*55: end if
*56: end for
57: End of Task T3
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Algorithm 2 FD algorithm for node p: Update

58: Task T4 every ∆U [Update]
59: for each node r 6= p do
60: if mist[r] = mistprev[r] then
61: ∆S ← 0.1
62: else
63: ∆S ← −(mist[r]−mistprev[r])/count[r]
64: end if
65: stab[r]← max(0, stab[r] + Sinit ∗∆S)
66: mistprev[r]← mist[r]
67: count[r]← 0
*68: if rmist[r] 6= rmistprev[r] then
*69: ∆RS [r]← ∆RS [r] + (rmist[r]− rmistprev[r])/rcount[r]
*70: else
*71: ∆RS [r]←Max(∆init,∆init + (∆RS [r]−∆init) ∗ 0.95)
*72: end if
*73: rmistprev[r]← rmist[r]
*74: rcount[r]← 0
75: end for
76: End of Task T4

Algorithm 3 Safety margin estimation for remote node q

1: Function ComputeMargin(q)
2: Cv ← stddev(stab)/mean(stab)
3: if stab[q] ≤ Quartile(25, stab) then
4: ∆marg ← 2 ∗ (1 + Cv)
5: else if stab[q] < Quartile(50, stab) then
6: ∆marg ← 1 + Cv

7: else if stab[q] = Quartile(50, stab) then
8: ∆marg ← 0
9: else if stab[q] ≤ Quartile(75, stab) then

10: ∆marg ← −0.25 ∗ (1 + Cv)
11: else
12: ∆marg ← −0.5 ∗ (1 + Cv)
13: end if
14: return marginit ∗ (1 + ∆marg)
15: End of Function

� ∆U : the frequency with which the algorithm updates the stab vector
entries (an input parameter of the algorithm).

� count : a vector where count[q] corresponds to the number of messages
received from q within ∆U ; count values are reset to 0 every ∆U units
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of time.

� EA: a vector where EA[q] is the expected arrival date for the next
heartbeat message from q.

� WA: a vector containing sliding windows of the last received messages.
WA[q] contains the arrival dates of the last n messages received from
q (or expected dates in case of message losses). n is a parameter of the
algorithm.

� marginit : initial value of the margin (an input parameter of the algo-
rithm).

Algorithm 1 uses two procedures, UpdateWindow() and ComputeEA();
we decided against including their pseudo-code for the sake of clarity. Up-
dateWindow(WA, t, number) adds the timestamp number (i.e., the sequence
number) of the message received at time t in the sliding window WA. Upon
detecting a message loss (number is greater than the previous timestamp
plus one), UpdateWindow inserts the missing timestamp in the window with
a ghost arrival time corresponding to a uniform distribution. ComputeEA()
applies Formula (2) to compute the next expected arrival date according to
Chen’s estimation.

Algorithm Stab-FD (1 and 2) consists of four tasks: T1, T2, T3, and T4.
In Task T1, each process sends a heartbeat message to all other processes

every ∆H units of time. In order to allow the detection of message losses, it
associates a sequence number (timestamp) with each heartbeat.

Task T2 adds a node in the suspected set if its respective timer expires.
Upon receiving a heartbeat message from a node q (Task T3), p checks for

the presence of q in its suspected set. If such is the case, it removes q from its
suspected set, and increments the corresponding number of mistakes (lines 33
and 34). p then updates the sliding window of message receptions from q,
and computes both the new arrival time estimation for q’s next heartbeat
and its safety margin value, assigning their sum to the timer associated with
q (lines 39–42).

The ComputeMargin function (Algorithm 3) computes the safety margin
of q. This function uses p’s estimation for the current stability of the input
link from q as input, and returns a safety margin value which may vary from
the initial margin (marginit). If the link has a high stability value, i.e.,
the remote node has a low rate of false suspicions, its safety margin value
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decreases, and consequently its timer too. Conversely, if a link from q has a
low stability value, the algorithm increases q’s link safety margin value. The
function computes ∆marg, the percentage of increase/decrease of the initial
margin, in proportion to the coefficient of variation of stability values (Cv)
which expresses the level of dispersion around the mean (line 2).

ComputeMargin sets ∆marg according to the quartiles of the stability vec-
tor values. We have evaluated several formula for adapting the safety margin
according to the current stability of node, using both linear and arctangent
correlations, and finally the quartiles distribution of Algorithm 3. Our ex-
periments showed that using the quartile distribution gives the best results.
The idea is to quickly increase (resp., decrease) the safety margin such that
the stability of the node is low (resp., high) relatively to the other nodes.

Function Quartile(percent, set) returns the value that splits the sorted
values of set into two subsets according to their percentile (parameter percent).
The value of percent can be set to 25, 50, or 75; corresponding to the Q1, Q2,
and Q3 quartiles respectively. For instance, if q’s stability value is among
the lowest ones, i.e., within the first quartile (stab[q] ≤ Quartile(25, stab)),
and if the coefficient of variation is high (e.g., Cv = 1), ∆marg is set to 4 (see
line 4) and, thus, its margin will be 5 times higher than the initial margin.

Task T4 updates the stability vector every ∆U units of time (lines 58–
67). The new stability value that p assigns to lq→p, its input link from q,
directly depends on the number of mistakes (false suspicions) that p made
on q during the last ∆U . The stability value of lq→p increases by 10 percent
of the initial value Sinit if no mistake occured during this period (line 61),
otherwise it decreases proportionally to the number of mistakes (line 63).

3.2. StabC-FD

Aimed at improving the quality of failure detection even further, StabC-
FD is a cooperative version of Stab-FD where nodes exchange their current
view of the stability values and their list of suspected nodes. The idea is to
opportunistically add stability information in heartbeat messages in order to
reduce to detection time. The relative link stability are then compared: if a
node q has a better vision on a suspected node s than a node p then p also
suspected s. We point out that the cost to add this information is negligible
as long as it can be included in the payload of a single UDP heartbeat
message. We will show in Section 4.6 that a single heartbeat message can
include such an information of more than 1100 nodes.

10



StabC-FD extends Stab-FD in the following way (lines prefixed by ∗ and
underlined variables):

� Each node includes its stability vector and the list of nodes it suspects
in every heartbeat message.

� Upon receiving a heartbeat from q, p checks the list of suspects it just
received from q. If q suspects a node r, and if the detection of r by q
is more reliable than its own, then p starts suspecting r too.

Note that StabC-FD does not need any extra message since additional
information is piggybacked in heartbeat messages. StabC-FD introduces a
minimum gap between the receiver’s and the sender’s stability values to de-
crease the rate of false suspicions, and computes this gap dynamically.

Our cooperative strategy implementation requires the following addi-
tional variables and parameters:

� rmist : a vector where rmist[q] corresponds to the number of mistaken
suspicions sent by node q (i.e., the number of times node q has wrongly
informed p of a failure).

� detnode: a vector where detnode[q] corresponds to the set of remote
nodes which share the latest failure suspicion about node q.

� ∆RS: a vector where ∆RS[q] keeps the minimum gap between stability
values used by p to decide if the information included in q’s heartbeat
should be taken into account or not.

� ∆Init: initial value of ∆RS entries.

� ldet : a matrix containing the timestamp of the node which detects a
remote failure. ldet[q][r] is the timestamp of the last heartbeat received
from q which induced p to include r in its set of suspected nodes.

� ∆msg: an input parameter corresponding to the minimum number of
messages needed for considering new suspected information from a
node.

The following paragraphs explain in which ways StabC-FD extends the
different tasks to make them cooperative.
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In Task T2, p resets its detnote set to ∅ (line 25) every time it suspects a
new node q.

Task T3 allows p to adopt suspicions issued by other nodes, provided these
suspicions are more reliable than the local detection by p. Upon receiving
a heartbeat from q, p looks at the encapsulated list of suspects. For every
node r suspected by q, p performs a double check: the stability value must
be at least ∆RS[q] greater for link lr→q than for link lr→p, and q must have
suspected r for at least the last ∆msg messages q sent. This last condition
avoids bursts of false information to ensure the stability of the algorithm. A
greater stability value on the link lr→q indicates that the detection of r by
q is more reliable. When both conditions hold, p adopts the suspicion. If r
does not belong to the local set of suspects yet, p adds it and resets denote[r]
to q (line 51). Otherwise it simply adds q to the detnode set of r (line 53).
Note that p only saves the timestamp of the first of a continuous sequence of
suspicions of r by q in ldet(line 47).

Upon detecting a false suspicion about a node q (line 35), p “punishes” all
the nodes that issued the suspicion. p increases the remote mistake counter
of every node in the detnode[q] set (line 36). p will reset detnote[q] the next
time it suspects q (lines 25 and 51).

Task T4 updates ∆RS entries periodically. The update is proportional
to the corresponding remote mistake rate (lines 68–74). For a node r that
has made no mistake since the last ∆U (line 71), p decreases ∆RS[r] by
5%. The rationale is that, if p considers that r has a more reliable view,
p relaxes the minimum stability value gap restriction for accepting remote
information received from r. Conversely, as r makes mistakes, p tightens the
gap restriction by increasing ∆RS[r] (line 69).

4. Evaluation

In this section, we present the results of the experiments we conducted
to evaluate the performance of our algorithms. We compare the behaviour
of Stab-FD and StabC-FD with that of Chen’s and Bertier’s. The latter,
introduced in section 2, rely on a constant and on a dynamic safety margin
respectively.

4.1. FD settings

Similarly to [12, 13, 11, 20], which have also evaluated FD in a WAN
context, in our experiments, nodes send a heartbeat message every 100ms.

12



These papers, as well as Chen et al. paper [7], also suggest that the safety
margin α should range from 0 to 1000 ms. We set it to 150 ms in order to
stay close to the frequency of heartbeat emissions (100 ms). Several works
aim to improve the QoS of failure detectors by tuning parameters such as
the window size [21] [20] [22]. Their results show that Chen’s FD performs
better with smaller window sizes. Based both on these studies and on our
experiments, we set the window size to 100. The FDs thus rely on the last
100 received heartbeat messages for computing the estimation of the next
heartbeat arrival time. For Bertier’s algorithm, we follow the suggestions of
the authors for the parameters of Jacobson’s algorithm to dynamically adjust
the safety margin values: we set β = 1, Φ = 2, and γ = 0.1.

In our algorithm, the update frequency ∆U for vectors stab and ∆RS

impacts the performance. Therefore, we carried out a preliminary experiment
to evaluate the impact of different values of ∆U . We concluded that 10
seconds is a good choice which smooths the variation of stability values. We
set the initial stability value of each link to 10 (Sinit = 10).

4.2. Experimental environment

Traces. We performed all of our experiments on real traces we collected from
ten nodes of PlanetLab [16], labeled nodes 0, 1, . . . , 9, and summarized in
Table 1. The trace collection on PlanetLab lasted one week (150 hours), with
every node sending UDP heartbeat messages to every other node at a rate
of one heartbeat every 100 ms (the sending interval ∆H). Each node locally
logged the timestamp of every heartbeat message and its arrival time. Traces
and the monitoring tool are available at https://gitlab.lip6.fr/psens/latency-
trace-planetlab/.

The logs are used later to replay the execution of each FD algorithm. We
wish to point out that our PlanetLab traces cover a large amount of heart-
beat emissions and receptions, including unstable periods of link failures and
message losses which induce false suspicions. Thus, such traces character-
ize a distributed system that uses heartbeat-based FDs. Furthermore, our
experimental scenarios and results are reproducible.

Trace analysis. Tables 2, and 3 give some information about the heartbeat
messages received by each node. During the experiment, node 2 crashed
and stopped sending messages after approximately 48 hours; overall, it sent
1,759,990 messages.
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Table 1: Trace Collection Sites

ID Node Location

0 planetlab1.jhu.edu USA East Coast

1 ple4.ipv6.lip6.fr France

2 planetlab2.csuohio.edu USA, Ohio

3 75-130-96-12.static.oxfr.ma.charter.com USA, Mass.

4 planetlab1.cnis.nyit.edu USA, New York

5 saturn.planetlab.carleton.ca Canada, Ontario

6 PlanetLab-03.cs.princeton.edu USA, New Jersey

7 prata.mimuw.edu.pl Poland

8 planetlab3.upc.es Spain

9 pl1.eng.monash.edu.au Australia

Table 2: Standard deviation of heartbeat inter-arrival times (ms)

Sender 0 1 2 3 4 5 6 7 8 9
Receiver

0 6.3324 7.3067 6.5049 18.3887 6.6487 6.7250 16.0537 12.9870 6.4075
1 5.7801 6.6084 1.3246 16.8997 2.3359 2.2455 14.9136 11.3943 1.4797
3 5.9409 1.8698 6.6315 16.8307 2.7328 2.6436 14.8574 11.4066 2.0271
4 6.6272 3.3661 6.9757 3.4057 3.9096 3.8582 15.2150 11.8177 3.4732
5 6.4178 3.1791 6.7477 3.1786 16.9933 3.6801 15.0355 11.6597 3.2648
6 6.2730 2.7241 5.9071 2.7902 16.8667 3.4013 15.0761 11.6422 2.8571
7 16.3485 15.2939 9.2876 15.2943 22.6782 15.4887 15.4483 19.1355 15.3382
8 54.3717 54.1041 55.1194 54.0932 56.6306 54.1768 54.0585 56.1172 54.0673
9 5.9683 1.4544 5.6874 1.5402 16.8579 2.4972 2.4203 15.0134 11.4800

We observe that the mean inter-arrival times of received heartbeats are
very close to 100 ms on all links. However, we note some differences in
standard deviation values in Table 2. We observe two phenomena. First:
for some nodes such as node 8 and to a small extent node 7, the standard
deviation is very high. These high values reflect an instability of the input
links. Second: links are not symmetrical. Whereas the standard deviation
values associated with the input links of node 8 sit around 54ms (row 8 in
Table 2), the values associated with output links from 8 to the other nodes
remain close to 11 ms and never reach above 20 ms (column 8 in Table 2).

Table 3 records the number of message losses detected by each node at
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Table 3: Heartbeat losses

Sender 0 1 2 3 4 5 6 7 8 9
Receiver

0 1964 7599 3169 12484 15903 3195 4690 2087 6956
1 2607 7298 632 13356 13747 739 1732 667 5440
3 1854 28 8060 14298 12431 96 1292 219 1161
4 1724 93 8993 239 12032 331 1323 531 526
5 12541 9566 20186 13302 27725 9600 10677 11843 10129
6 2564 104 10434 108 14950 13098 1479 2139 4899
7 3052 1159 12092 1103 15823 14775 1168 1256 1923
8 10724 8882 15953 9815 22632 23114 9795 9867 13621
9 3372 1063 11877 364 14622 12612 1094 2179 1139

Stddev 4277 3990 4298 5098 5331 3632 4087 3939 3844 4570
Mean 4805 2857 11388 3592 16986 14714 3252 4155 2485 5582
Total 38438 22859 102492 28732 135890 117712 26018 33239 19881 44655

Percent 0.078% 0.046% 0.208% 0.058% 0.275% 0.238% 0.053% 0.067% 0.040% 0.090%

the end of the execution. The results in this table confirm the instability
of network links previously observed in Table 2. They also show that the
distribution of heartbeat losses is not even. For instance, node 4 incurs 6.8
times more losses on its heartbeat emissions than node 8. Even if the global
percentage of losses remains low (less than 0.28%), each loss can lead to
an inaccurate estimation for the next heartbeat arrival date. We can also
observe that links are highly asymmetrical. For instance, there are only 28
losses of heartbeats on link l1→3 from node 1 to node 3, whereas there are
3169 the other way round on link l3→1.

Figure 1 shows the high variation of heartbeat arrival times over link l0→5.
The right axis gives the cumulative number of message losses. We observe
several unstable periods for the inter-arrival times around the 20th, 50th,
120th, and 140th hour. During these periods (except for the last one at the
140th hour), the number of message losses also increases.

Figure 2 gives the evolution of message losses of the input links of node 5.
The variation of losses highly differs from one input link to the other. A peak
of message losses occurs on all links around the 17th hour. But afterwards,
the input links l3→5 and l6→5 incur very few losses, whereas l2→5 and l4→5

incur a steadily high rate of message losses. We also observe sporadic sudden
increases of losses on l0→5, l7→5, and l9→5.
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Figure 1: Inter-arrival times of heartbeats sent by node 0 (left axis). Cumulative number
of message losses from node 0 (right axis)

Figure 2: Message losses observed at node 5
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Table 4: Stability vectors of nodes after 150 hours

Vector 0 1 2 3 4 5 6 7 8 9

Nodes

0 0 1738 1778 1738 1736 1736 1738 1730 1592 1736

1 1738 0 1788 1750 1748 1750 1750 1744 1598 1750

3 1730 1758 1786 0 1756 1750 1758 1744 1590 1758

4 1746 1770 1794 1772 0 1764 1772 1756 1608 1772

5 1693 1717 1763 1717 1715 0 1717 1709 1549 1717

6 1728 1746 1790 1746 1744 1746 0 1738 1586 1746

7 1710 1732 1776 1736 1730 1728 1736 0 1570 1736

8 899 909 1489 909 909 909 909 909 0 909

9 1736 1754 1788 1754 1750 1752 1754 1742 1596 0

Stddev 293 317 105 317 338 318 317 309 68 341

4.3. Evaluation of the stability of links

Every Stab-FD node maintains a set of values to characterize the stability
of its input links. Each row in Table 4 shows the stability vector of a node at
the end of the experiments (after 150 hours). We observe a small variation of
the stability values for node 8; and compared with all the other nodes, it is
clearly the most unstable. Conversely, the low quality of all of its input links
pushes node 8 to make many mistakes in its observations. As a consequence,
node 8 considers all the other nodes (input links) as unstable; node 2 is an
exception, since it fails around the 48th hour. Note that after that time,
nodes do not generate new false suspicions about node 2 and its stability
increases for all nodes, including node 8.

Figure 3 shows the evaluation over time of the stability value that node
8 associates with node 4. The right axis gives the cumulative number of
mistakes by Stab-FD. Stability values follow the evolution of mistakes during
the last ∆U seconds. As follows from lines 63 and 65 of Algorithm 2, the
stability value cannot decrease by more than ten (the value of Sinit) upon
every update. This prevents an undue inflation of stability values in case
of a punctual burst of mistakes, as the figure shows at the 50th, 115th, and
130th hour.
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Figure 3: Evolution of the stability factor node 8 associates with node 4 (left axis). Cu-
mulative number of mistakes (right axis)

4.4. Accuracy

We measure and compare the accuracy of the failure detectors by con-
sidering the number of false positives (mistakes). A mistake occurs when a
node is falsely put into the suspected node list of one node. Table 5 gives
the number of mistakes made by each node after the 150th hour. Compared
to Chen’s FD, both Stab FDs produce around 6.5 times fewer mistakes. We
observe that Bertier’s FD generates a huge number of false positives. We also
note a small difference between Stab FD and its cooperative version StabC

FD. The latter generates only 0.7% more mistakes than the former because
it includes false suspicion information in the heartbeats it sends. This small
difference is a direct consequence of two mechanisms that prevent the propa-
gation of false information: (1) the dynamic adaptation of ∆RS retains only
information issued from remote nodes with high stability values; (2) the algo-
rithm discards ∆msg consecutive mistakes issued from the same remote node.
Without both of these mechanisms, the number of false positives is around
4.5 times higher.

A short estimation of the next heartbeat message arrival time causes a
false positive: the estimated time elapses before the actual arrival time of
the heartbeat. As an example, Figures 4a and 4b compare the evolution
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Table 5: Number of mistakes

Chen Bertier Stab-FD StabC-FD

Node Number Stddev Number Stddev Number Stddev Number Stddev

0 7980 2261 1163052 37027 878 47 864 47

1 8169 2441 1334539 56776 566 37 552 35

3 8811 2661 1434526 52200 1117 152 1160 164

4 781 2717 1588784 55725 574 39 576 36

5 9312 2717 1444727 55725 698 39 767 36

6 9340 2788 1797544 73405 982 49 982 49

7 9725 2816 1168183 46473 890 53 884 47

8 18191 2810 1531003 58906 6155 164 6155 164

9 9113 2742 1325668 47590 645 52 658 53

Total 81,422 1,2788,026 12,505 12,598

over time of the timers set by each FD between nodes 0 and 9. We do not
plot Stab, because the timer values of Stab and StabC FDs are the same.
The figures show the difference between the real arrival times of heartbeats
and the timer values upon their reception. The right axis corresponds to the
number of mistakes generated by Chen and by StabC . We also do not plot the
number of mistakes produced by Bertier because it is too high. We observe
that Chen’s FD timer value is relatively stable over time: around 250 ms.
This corresponds to the heartbeat interval (100 ms) added to the constant
safety margin (150 ms). Bertier’s FD is more aggressive with a short timer
around 100 ms, whereas StabC timer values vary with the number of earlier
mistakes. We observe high instabilities on both nodes. Particularly, all three
FDs incur a high increase of their timer value on node 0 at the 48th hour,
thus inducing a significant increase in the number of mistakes. Since Bertier’s
FD algorithm is very sensitive to the variation of the last received heartbeat
time, its timer quickly increases and decreases during an unstable period. On
the other hand, the StabC FD timer maintains a high value during the entire
unstable period and, consequently, does not produce such an increase of false
positives. We should point out that, besides the exception at the 130th hour,
there is no correlation between the instabilities observed on links l0→9 and
l9→0.

A high number of false positives can overload the application if some

19



(a) Heartbeats from node 0 at node 9

(b) Heartbeats from node 9 at node 0

Figure 4: Comparing FD accuracies: timers and heartbeat inter-arrival times (left axis),
cumulative number of mistakes (right axis)
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callback mechanism directly reports mistakes to the upper layer. However, a
local FD oracle invoked via queries can mitigate the effect of false positives
if the mistake duration is very short. Introduced in [7], the query accu-
racy probability (noted PA) reflects the probability that a failure detector’s
output is correct at any random time.

Table 6 summarizes the computed PA. As expected, Stab and StabC

FDs have the highest PA values, which are almost the same for both FDs
(due to rounding, the values are the same in Table 6). The average difference
between the two is less than 3.4× 10−7. We can also observe that the PA of
Bertier’s FD is quite high in regard with its large number of mistakes, which
means that mistake durations are very short and Bertier’s FD algorithm
corrects its mistakes very fast.

Table 6: Query accuracy probability (PA)

Chen Bertier Stab-FD StabC-FD

Node Mean Mean Mean Mean

0 0.99918 0.99638 0.99923 0.99923

1 0.99956 0.99673 0.99961 0.99961

3 0.99958 0.99664 0.99963 0.99963

4 0.99960 0.99795 0.99962 0.99962

5 0.99736 0.99461 0.99733 0.99733

6 0.99948 0.99650 0.99953 0.99953

7 0.99919 0.99643 0.99926 0.99926

8 0.99499 0.99177 0.99549 0.99549

9 0.99950 0.99658 0.99955 0.99955

Mean 0.99872 0.99596 0.99880 0.99880

4.5. Detection time

Failure injection. For our comparative assessment of detection times, we in-
ject transient failures on a node pf . We do so by assigning several failure
intervals to every simulation run: all monitoring nodes discard heartbeats
sent by pf from the moment the heartbeat sequence number reaches the
start value of a failure interval. Monitoring nodes start taking the heart-
beats back into account when the heartbeat sequence number reaches the
end value. In each simulation run, a single node pf periodically fails every
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20 hours and recovers after 5 hours. Thus pf fails 7 times during each ex-
periment: at the 20th, 40th, 60th, 80th, 100th, 120th, and 140th hour. We
compute an estimation for the detection time by measuring the time elapsed
on a node from the last heartbeat reception up until the failure detector
reports its failure suspicion.

Table 7: Detection times (ms)

Fail Chen Bertier Stab-FD StabC-FD

node Mean Stddev Mean Stddev Mean Stddev Mean Stddev

0 251.0 7.0 114.1 88.0 463.7 143.3 449.5 145.0

1 249.7 2.6 102.2 3.1 361.1 158.4 341.2 146.3

3 250.2 0.8 112.4 76.9 364.3 171.5 293.2 128.6

4 292.3 38.2 172.2 107.2 557.1 91.8 533.6 92.1

5 246.7 26.7 104.4 18.3 511.4 101.3 495.2 104.5

6 250.3 1.0 113.4 79.9 387.8 161.3 355.4 135.3

7 250.4 3.7 101.8 4.1 506.4 122.2 468.1 127.9

8 250.2 0.5 101.4 1.3 556.3 1.3 556.0 1.3

9 251.5 9.3 103.8 9.7 432.0 161.3 416.6 156.2

Mean 254.70 113.95 460.03 434.32

Table 7 gives the detection times exhibited by each FD upon simulating
periodic failure/recovery on each node except node 2. We observe a relatively
small variation of the detection times for Chen’s FD, with the exception of
node 4. Chen’s estimation is less sensitive to punctual variations in heartbeat
arrival dates because it uses a constant safety margin: the mean detection
time tends to converge towards the sum of the heartbeat interval with the
constant safety margin. The variation in heartbeat arrival times directly
impacts the safety margin of Bertier’s FD, thereby decreasing its value. As
mentioned earlier, Bertier speeds up detection time at the cost of a huge
number of false positives.

Our strategy, implemented into the Stab and StabC FDs, is more con-
servative about reducing timer values. On the one hand it improves the
avoidance of false positives, on the other hand it impacts detection times
negatively. The mean detection times of Stab exceed that of Chen’s by 17%
in the best case (detection of the failure of node 3), and by 122% in the worst
case (node 8).
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The cooperative approach of StabC mitigates the above impact: nodes
with stable links compute shorter detection times, propagate their suspicion,
speeding up detection on other nodes. Tables 8 and 9 show the detection
times computed on node 3 by Stab FD and StabC respectively. In Table 9,
the shaded cells highlight the detection times improved by the cooperative
approach. In Table 8, we observe several values around 175, 250, and 550ms.
The detection time depends on the average inter-arrival time of the last
100 received heartbeats, usualy around 100ms, plus the safety margin. The
initial value of this margin is set to 150 ms and is updated by ComputeMargin
function (Algorithm 3) each time a heartbeat is received. The margin evolves
proportionally to the coefficient of variation (Cv) of stability values and to
the relative stability of the observed link. A detection time around 175ms, is
mainly due to a division by two of the safety margin. Such a result indicates
that the observed link has a significantly higher stability than the others
(i.e., those included in the upper 2 quartiles). For example, for a coefficient
of variation of 1, if the link is in the highest third quartile, the margin will
be equal to 150 ∗ (1− 0.25(1 + 1)) = 75ms. A detection time around 250ms
mainly means that the stability of the observed link is equal to the median
value whereas a value around 550ms could result from a strong variation
of stability values in the stability vector (Cv = 1) and a stability value of
the link in the second quartile. In this case, the safety margin is equal to
150 ∗ (1 + 2) = 450ms.

With StabC FD, a stable node that quickly detects a failure (for instance
node 4 detects the failures injected at the 20th, 40th, 80th, and 100th hour
in less than 174 ms) spreads this information over the network. Note that
the receiver node does not take a remote detection into account unless it
considers the issuer as stable enough. For instance, since node 7 maintains a
high stability value on the other nodes, it only adopts suspected information
sent by node 4 once (20th hour). This mechanism contribute significantly to
the prevention of false positive rate increasing.

In our experiments, Stab produces 12,237 false positives; this number
marginally rises to 12,557 for StabC , an increase of only 2.7%. In comparison,
Chen generates 81,095 false positives. The cooperative strategy of StabC

converges towards an average detection time that is 19.5% lower than that
of Stab. Our cooperative approach reduces the detection time of 18 failure
detections out of the 56 that took place. If we focus on these 18 failure
detections, the decrease of the average detection time sharply improves. The
lowest improvement is faster by 40.2%, while the highest reaches up to 60.6%.
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Table 8: Stab FD: Detection times (ms) of node 3

nodes 0 1 4 5 6 7 8 9

Times(h)

20 251.0 250.1 172.9 174.0 250.1 250.1 556.1 250.0

40 250.1 555.3 173.6 557.4 556.2 173.4 557.1 557.1

60 250.7 557.7 249.3 557.2 559.1 577.3 558.7 558.7

80 173.7 558.5 173.0 250.4 250.3 600.1 250.2 250.2

100 250.0 249.9 173.5 558.5 172.9 604.3 559.4 559.4

120 559.3 250.1 250.3 558.8 249.9 606.0 559.0 559.0

140 253.4 172.8 173.3 251.1 172.7 250.5 250.0 250.0

Table 9: StabC FD: Detection times (ms) of node 3 (shaded cells highlight improvement
on the non cooperative approach)

nodes 0 1 4 5 6 7 8 9

Times(h)

20 251.0 236.0 173.2 174.4 239.3 240.3 219.0 250.0

40 250.1 232.2 173.8 322.1 236.0 173.4 244.3 244.3

60 250.7 332.1 249.3 556.9 333.8 577.3 343.4 343.4

80 173.7 230.0 173.1 250.4 250.3 600.1 250.2 250.2

100 250.0 236.5 173.5 248.5 172.9 604.3 275.1 275.1

120 559.3 250.1 250.3 558.6 249.9 606.0 558.9 558.9

140 253.4 172.8 173.3 251.1 172.7 250.5 250.0 250.0
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Figure 5: Stability of links from node 3 around the 40th hour

We should point out that our cooperative approach is effective when the
outgoing links from a monitored node exhibit large variations in terms of
stability and at least one of the links is stable. For instance, column 3 of
Table 2 shows that the stability of the input links of node 3 is strongly
heterogeneous. Conversely, in terms of standard variation, the quality of the
outgoing links from node 8 is quite stable. As a result, the stability values
associated with these links are close, and hence so are the safety margin
values. In this case, the cooperative approach is much less likely to improve
the detection time.

The variations of heartbeat arrival dates from node 3 at times of failure,
observed around the 40th hour in Figure 5 and around the 120th hour in Fig-
ure 6, show the influence of stable links on cooperative detection. Heartbeat
arrival dates are very heterogeneous around the 40th hour and, in particular,
the link connectivity from node 3 to node 4 is much better than to other
nodes. In such a configuration, cooperation is quite efficient, as observed
in row 2 (40th hour) of Table 9. Conversely, the homogeneity of heartbeat
arrival dates around the 120th hour inhibits the efficiency of the cooperation
approach.
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Figure 6: Stability of links from node 3 around the 120th hour

4.6. Scalability issues

In order to study the scalability of our approach, we compute the size of
the messages for different network configurations. Figure 7 shows the size of
data carried on by heartbeat messages when the number of nodes increases.
Heartbeat messages include the suspected set and the set of impacts of all
nodes. We overestimated the size of the suspected set assuming 5 percent
of suspected nodes. The impact set is an array of integers with one entry
per node of the system. We have generated impact values using a normal
distribution considering two configurations: (1) ’low var.’ curve which cor-
responds to a homogeneous network with a low standard deviation of the
impact values (stddev = 5%); (2) ’high var.’ curve which corresponds to a
more heterogeneous network with a higher standard deviation of the impact
values (stddev = 30%). We have applied a lzma compression to reduce the
size of the two sets. The horizontal line represents the size of the MTU for a
UDP packet, above this size the heartbeat message is split by the IP layer.
We observe a single UDP heartbeat packet is sufficient to carry on informa-
tion of more than 1100 nodes even in a heterogeneous configuration where
the compression algorithm is less effective.
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Figure 7: Heartbeat size (5% of suspected nodes and mean impact = 1700)

4.7. Experiments conclusion

We can draw the following conclusions from the results of our experi-
ments:

� Unstable periods are very common in WAN traces such as the one we
have collected.

� The value of the safety margin is a key point for the performance of
FDs that rely on sliding windows. A constant safety margin (eg. Chen)
prevents an accurate adaptation of the timer value when the network
becomes unstable.

� An adaptation of the safety margin that relies only on the last variations
of heartbeat arrival time (eg. Bertier), shortens detection times at the
expense of a higher number of false positives.

� Monitoring link stability to calibrate the safety margin improves FD
accuracy. When a link becomes unstable, its safety margin value in-
creases, thus reducing the number of false positives.

� A cooperative approach can improve detection time when the quality
of the links is heterogeneous: nodes with a good connection to faulty
nodes can quickly detect failures and spread the information to other
nodes.

� Assessing the quality of the source of information prevents the dissem-
ination of wrong information. In our case, information is more reliable
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when it comes from nodes with a better view of the system in terms of
stability.

5. Related work

Tomsic et al. [20] propose a Two Windows Failure Detector (2W-FD)
to extend the single sliding window estimation. 2W-FD uses two sliding
windows of different sizes to store information about recent heartbeat history.
The goal of the two windows is to react to sudden network changes using the
best of the two estimations provided by each window. However, the algorithm
assumes a constant safety margin.

The authors of [14] propose two variable safety margin strategies: a pre-
diction error-based margin (peb), and a confidence interval based margin
(cib). Similarly to Bertier’s FD and StabC-FD, peb adapts the safety margin
value whenever the FD receives a heartbeat and detects variations in the
network load. cib applies probability on the heartbeat arrival estimation dis-
tribution in order to adapt the safety margin. Contrarily to our cooperative
approach, both peb and cib rely on information that remains local to every
FD in order to adapt the safety margin.

Some authors [15, 23] have proposed adaptive failure detectors also based
on local observations.The autonomic failure detector (AFD) [15] defines a
new metric, the Failure Detector Availability (AV ), that combines both feed-
back control theory and traditional FD metrics such as Mistake Duration
(TM) and Mistake Recurrence Time (TMR). AFD computes the Failure De-
tector Availability with AV = (TMR − TM)/TMR, and uses it to suggest
safety margin values that decrease the rate of false detections and converge
towards the desired detection availability. AFD increases the safety margin
to improve detection accuracy when the detection service is inaccurate (i.e.,
AV is low); decreases the safety margin value to improve the detection speed
when AV is high. The authors of [23] propose Adaptare-FD that uses both
Jacobson RTT and cib estimators and rely on a coverage parameter to con-
figure the FDs. In [24], the authors analyze the QoS of a given pull-based
(pinging) FD which uses multiple probing messages strategy to increase accu-
racy. It proposes a model to dynamically compute the delay before starting
the resend of probing message and the number of messages to resend.

Another approach to adapt failure detection is to use prediction algo-
rithms. In [25], the authors propose a method that uses a back propagation
neural network based on particle swarm optimization (PSO) to predict the
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arrival time of heartbeat information, focusing on remote disaster recovery.
In order to improve the accuracy of FD detection, they propose a Pull check-
ing when heartbeat messages are not receive in time which slow down the
detection time. On the other hand, such an approach needs to tune many
parameters to configure both the neural network and the PSO algorithm.

Several works have proposed collaborative failure detector [26, 27, 28,
29].Veron et al. propose RepFD [26], a collaborative failure detector which
exploits information about the behavior of nodes to increase its detection
quality. RepFD relies on a reputation service where nodes periodically ex-
change heartbeat messages to classify the behavior of nodes. The reputation
of a node dynamically increases if it sends its heartbeats on time, and de-
creases if some heartbeats get lost or arrive after the expected dates. The
detector considers a node as correct if its reputation value exceeds a given
threshold T. The principle of this approach is close to our proposal, however
the main limitation of RepFD lies in the static nature of the threshold T and
how to compute its initial value. In [28], the authors reuse Bertier safety
margin estimation approach to build a FD service shared by several appli-
cations running on the same nodes. Therefore, only FDs located on these
nodes and associated to different applications cooperate by sharing heartbeat
messages.

Swim FD [27] and Medley [29], its recent extension to IoT networks,
both relying on a collaborative pinging. These FDs exchange information
remotely to increase the accuracy of the detection. Each node p periodically
pings another node q at random (direct pinging phase). If q does not reply in
time according to a predefined timeout, p suspects this node of being faulty
and asks k other nodes to check the potentially faulty node (indirect pinging
phase). The two phases, direct and indirect pinging, reduce the mistake
rate but can slowdown the detection time in case of failure. Furthermore,
the randomization used by these protocols makes the definition of timeout
values difficult, since the monitoring sets may frequently change over time.

All the above failure detectors, as well as StabC-FD, output a set of
processes suspected of being either correct or faulty. The Accrual failure
detector [30] follows another approach: it outputs a suspicion level on a con-
tinuous scale, which represents the risk that the process is indeed faulty. It
uses this suspicion level to adapt to dynamic network conditions. Similarly
to many failure detector arrival estimations, including Stab-FD, the estima-
tion protocol samples the arrival time of heartbeats and maintains a sliding
window of the most recent samples. The distribution of past samples is then
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used as an approximation for the probabilistic distribution of future heart-
beat messages. In [31], the authors extend the Accrual FD by exploiting the
histogram density estimation. Taking into account a sampled inter-arrival
time and the time of the last heartbeat reception, the algorithm estimates
the probability that no further heartbeat messages will arrive from a given
process. Exponential Distribution FD [32] also extends the accrual failure
detector, but considers an exponential distribution of the message delays. In
[22], an automatic self-tuning failure detector (SFD) optimizes accrual FDs.

Synthesis. Table 10 summarizes the main characteristics of FDs presented
in this section. The main originality of StabC-FD is to combine both dy-
namic adaptation of timers and an opportunistic cooperation by piggyback-
ing global information inside heartbeats.
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Table 10: Failure detectors comparison

Protocol Output Polling
strategy

Detection Safety margin Cooperation

[20] node periodic
push

distribution
of HB in 2
windows

constant -

[14] node periodic
push

sample of HB prediction
error-based
(peb), confi-
dence interval
based (cib)

-

[15] node dynamic
pull

feedback control
theory

dynamic -

[23] node periodic
push

distribution of n
last HB: mean,
low pass filter

Jacobson, cib -

[24] node periodic
pull +
push

last pull round - -

[25] node periodic
push +
pull

neural networks - -

[28] node periodic
push

mean of n last
HB

- local sharing of
HB

[26] node periodic
push

reputation
based

- periodic ex-
change of
reputations

[27, 29] node periodic
pull

Fix timeout
+ indirect
detection

- multicast of fail-
ure information

[30, 32,
31]

susp.
level

periodic
push

distribution of n
last HB: mean
+ variance [30],
exponential [32],
histogram den-
sity [31]

- -

StabC node periodic
push

mean of n last
HB

impact based
quartile distri-
bution

periodic ex-
change of
impact
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6. Conclusion

Links in wide area networks (WANs) are much more likely to incur un-
stable periods, with higher network delays and number of message losses,
than local area networks (LANs). Therefore, link quality variations repre-
sent crucial information for timer-based FDs in large scale systems. In this
article, we propose Stab-FD, a detector that assesses the stability of its input
links. We show that an adaptive calibration of safety margin values based
on input link stability can improve the quality of service of failure detectors.
We extend this strategy with a cooperative approach: nodes exchange their
local assessment of the stability they associate with input links, filter reliable
information, and re-calibrate their safety margins dynamically.

By conducting extensive experiments on Planetlab traces, we characterize
the variations of link stability over time, and compare Stab-FD with Bertier’s
FD and Chen’s FD. Our results show that our FD captures better network
variations: it produces fewer failure suspicions and a higher accuracy, without
degrading the failure detection time significantly.

References

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst.
Rev., vol. 41, no. 6, p. 205–220, oct 2007. [Online]. Available:
https://doi.org/10.1145/1323293.1294281

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans.
Comput. Syst., vol. 26, no. 2, jun 2008. [Online]. Available:
https://doi.org/10.1145/1365815.1365816

[3] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, p. 35–40, apr
2010.

[4] X. Yan, L. Yang, and B. Wong, “Domino: Using network measurements
to reduce state machine replication latency in wans,” in Proceedings of
the 16th International Conference on Emerging Networking EXperiments

32

https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1365815.1365816


and Technologies, ser. CoNEXT ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 351–363. [Online]. Available:
https://doi.org/10.1145/3386367.3431291

[5] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pp.
51–58, December 2001.

[6] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996.
[Online]. Available: http://doi.acm.org/10.1145/226643.226647

[7] W. Chen, S. Toueg, and M. Aguilera, “On the quality of service of
failure detectors,” IEEE Transactions on Computers, vol. 51, no. 5, pp.
561–580, 2002.

[8] M. Bertier, O. Marin, and P. Sens, “Implementation and performance
evaluation of an adaptable failure detector,” in Proceedings of the 2002
International Conference on Dependable Systems and Networks, ser.
DSN ’02, 2002, pp. 354–363.

[9] ——, “Performance analysis of a hierarchical failure detector,” in In
Proceedings of the International Conference on Dependable Systems and
Networks, 2003, pp. 635–644.

[10] B. Deianov and S. Toueg, “Failure detector service for dependable com-
puting,” Proc, 2000 Int’l Conf. Dependable Systems and Neteworks, pp.
B14–B15, June 2000.

[11] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The ϕ accrual
failure detector,” in Reliable Distributed Systems, 2004. Proceedings of
the 23rd IEEE International Symposium on, 2004, pp. 66–78.

[12] N. Xiong, A. V. Vasilakos, L. T. Yang, L. Song, Y. Pan, R. Kannan,
and Y. Li, “Comparative analysis of quality of service and memory
usage for adaptive failure detectors in healthcare systems,” IEEE J.Sel.
A. Commun., vol. 27, no. 4, pp. 495–509, May 2009. [Online]. Available:
http://dx.doi.org/10.1109/JSAC.2009.090512

33

https://doi.org/10.1145/3386367.3431291
http://doi.acm.org/10.1145/226643.226647
http://dx.doi.org/10.1109/JSAC.2009.090512


[13] N. Xiong, A. V. Vasilakos, Y. R. Yang, S. Wei, C. Qiao, and J. Wu,
“General traffic-feature analysis for an effective failure detector in fault-
tolerant wired and wireless networks,” Tech. Rep., 2011.
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