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ABSTRACT: 

Background: Quantification of aortic morphology plays an important role in the evaluation 

and follow-up assessment of patients with aortic diseases, but often requires labor-intensive 

and operator-dependent measurements. Automatic solutions would help enhance their quality 

and reproducibility. 

Purpose: To design a deep learning (DL)-based automated approach for aortic landmarks and 

lumen detection derived from three-dimensional (3D) MRI. 

Study Type: Retrospective. 

Population: 391 individuals (female:47%, age=51.9±18.4) from three sites, including healthy 

subjects and patients (hypertension, aortic dilation, Turner syndrome), randomly divided into 

training/validation/test datasets (n=236/77/78). 25 subjects were randomly selected and 

analyzed by 3 operators with different levels of expertise. 

Field Strength/Sequence: 1.5-T and 3-T, 3D spoiled gradient-recalled or steady-state free 

precession sequences. 

Assessment: Reinforcement learning and a two-stage network trained using reference 

landmarks and segmentation from an existing semi-automatic software were used for aortic 

landmark detection and segmentation from sinotubular junction to coeliac trunk. Aortic 

segments were defined using the detected landmarks while the aortic centerline was extracted 

from the segmentation and morphological indices (length, aortic diameter, and volume) were 

computed for both the reference and the proposed segmentations. 

Statistical Tests: Segmentation: Dice similarity coefficient (DSC), Hausdorff distance (HD), 

average symmetrical surface distance (ASSD); landmark detection: Euclidian distance (ED); 

model robustness: Spearman correlation, Bland-Altman analysis, Kruskal-Wallis test for 

comparisons between reference and DL-derived aortic indices; inter-observer study: Williams 
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index (WI). A WI 95% confidence interval (CI) lower bound >1 indicates that the method is 

within the inter-observer variability. A p-value <0.05 was considered statistically significant. 

Results: DSC was 0.90±0.05, HD was 12.11±7.79mm, and ASSD was 1.07±0.63mm. ED 

was 5.0±6.1mm. A good agreement was found between all DL-derived and reference aortic 

indices (r>0.95, mean bias <7%). Our segmentation and landmark detection performances 

were within the inter-observer variability except the sinotubular junction landmark 

(CI=(0.96;1.04)). 

Data Conclusion: A DL-based aortic segmentation and anatomical landmark detection 

approach was developed and applied to 3D MRI data for achieve aortic morphology 

evaluation. 

Keywords: aorta, 3D cardiac MRI, segmentation, deep learning 
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INTRODUCTION 

Aortic morphology plays an important role in the management of aortic diseases (1, 2). 

Several imaging studies have focused on the quantification of aortic morphology and have 

shown strong associations between age and quantitative aortic indices (3–7), including length, 

diameters, cross-sectional areas, and volumes. Other studies investigated changes in such 

aortic parameters in the presence of a pathological condition, including aortic dissection (8, 9) 

and bicuspid aortic valve (10), or further assessed their ability to predict mortality and 

cardiovascular events (11–13).  

In this context, MRI is a non-invasive imaging modality that is able to capture aortic anatomy 

through volumetric acquisitions. In three-dimensional (3D) MRI of the aorta, a crucial step 

for the precise extraction of clinically reliable quantitative indices is the segmentation of the 

aortic lumen and aortic subdivision into standardized anatomical segments (14). Indeed, it is 

recommended to report the diameter at specific locations or its maximal value within a 

segment (15). However, current techniques for 3D MRI segmentation require a high level of 

user interaction (16–18), thus increasing variability and hindering an objective and automated 

use in large cohorts.  

Against this background, this study aimed at developing a deep learning (DL)-based method 

for quantitative 3D MRI data analysis. Furthermore, we aimed to evaluate performances in 

terms of segmentation and landmark localization quality, as well as in terms of correlations 

between aortic indices and reference values. 
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MATERIALS AND METHODS 

Approval of the local ethics committee was obtained (NCT03895541, NCT02701855, 

NCT03474159, NCT02517944), and written informed consent was collected from all 

participants allowing research use of their data. 

Study population 

We studied 391 subjects (183 women, mean age = 51.9 ± 18.4 years), who underwent 3D 

MRI examinations to assess their aortic morphology at 3 different inclusion sites: site 1 (1.5-

T MRI; Aera, Siemens Healthineers, Erlangen, Germany): 232 subjects, site 2 (3-T MRI; 

Prisma, Siemens Healthineers, Erlangen, Germany): 42 subjects, site 3 (3-T/1.5-T MRI; 

Discovery MR750w, GE Healthcare, Chicago, IL, USA): 117 subjects. The dataset included 

119 (30%) healthy subjects, 95 (24%) hypertensive patients, 116 (30%) patients with an 

ascending thoracic aorta dilation and either a tricuspid or a bicuspid valve, and 61 (16%) 

patients with a Turner syndrome. Sites 1 and 2 included hypertensive patients, while sites 1 

or 3 included healthy subjects and patients with aortic diseases. Of note, sites 1 and 3 are 

clinical sites specialized in cardiovascular imaging, while site 2 is a research center 

specialized in brain imaging where one of our study took place.  

Healthy controls were asymptomatic and free of overt cardiovascular disease defined as a 

clinical history of hypertension, diabetes mellitus, dyslipidemia, renal disease, known 

inflammatory conditions, and malignancy. Inclusion criteria for hypertensives were: absence 

of secondary causes of hypertension, absence of personal history of cardiovascular disease, 

and stable regimen of antihypertensive treatment. Patients with diabetes were not included. 

ATAA was defined by a maximal diameter of the ascending aorta ≥ 41 mm or ≥ 22 mm/m2 

when indexed to body surface area (BSA). Exclusion criteria were concomitant presence of 

aortic valve stenosis, regurgitation graded more than moderate, aortic coarctation, Marfan or 

Turner syndrome, history of aortic dissection and previous surgery. Aortic valve function as 
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well as bicuspid aortic valve (BAV) confirmation and fusion pattern were evaluated by using 

conventionally acquired stacks of two-dimensional cine anatomical and velocity images 

perpendicular to the aortic root. 

For sites 1 and 3, a gadolinium-based contrast agent (Dotarem, Guerbet, or Multihance, 

Bracco Imaging, Milan, Italy) was typically injected (0.1 to 0.2 mmol/kg) during the MRI 

exam. For all sites, 3D data were acquired in a sagittal oblique volume encompassing the 

thoracic aorta during free breathing with electrocardiographic and respiratory gating and with 

the following scan parameters: site 1: steady-state free precession (SSFP) sequence, voxel 

size = 0.66×0.66×1.13 mm3, echo time = 1.5 ms, repetition time = 283 ms, and flip angle = 

90°; site 2: SSFP sequence, voxel size = 0.98×0.98×1 mm3, echo time = 1.3 ms, repetition 

time = 311 ms, and flip angle = 19°; and site 3: spoiled gradient-recalled (SPGR) sequence, 

voxel size = 0.67×0.67×3.19 mm3, echo time = 1.3 ms, repetition time = 3.1 ms, and flip 

angle = 24°. Controls included on sites 1 and 3 had contrast injection as part of their MRI 

examination, since they were primarily included for myocardial tissue characterization, and 

aortic MRI was performed after injection.  

 

Reference segmentation, landmarks, and quantitative aortic indices  

The ground truth segmentation, positions of the anatomical landmarks, and aortic 

morphological indices (aortic length L, maximal diameters D, and volumes V) were obtained 

for the entire dataset (n = 391) by one operator (Operator 1, T.D. 8 years of experience in 

cardiovascular image processing), using a previously described semi-automated tool (Mimosa, 

Sorbonne Université, (7, 16, 19)). Briefly, seven anatomical landmarks were manually placed 

from the sinotubular junction to the coeliac trunk (sinotubular junction, mid-ascending aorta, 

brachiocephalic artery, left subclavian artery, mid-descending aorta, diaphragm level, and 

coeliac trunk) and used to determine the aortic centerline and to delimit aortic segments. The 
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aortic lumen was then automatically segmented using a 3D active contour and a final 

centerline was calculated at the center of the segmentation. Such segmentations were 

controlled visually by the operator and if judged of high quality, global and segmental aortic 

indices were derived. Otherwise initialization was adjusted to improve final segmentation 

quality. The dataset was randomly divided into training (236), validation (77), and testing 

datasets (78). More specifically, in order to keep the proportion of patients with aortic 

diseases and of magnetic field strengths in each set, the 60/20/20% random split was 

performed separately for each site and pathology.  

To assess DL versus human performance, 25 3D MRI datasets were randomly selected in the 

testing set. In order to preserve the proportion of pathologies for the inter-observer 

reproducibility study, 5 subjects were randomly selected in each of the following subsets:  

vendor 1 + normal aorta, vendor 1 + dilated aorta, vendor 2 + normal aorta, vendor 2 + 

dilated aorta, Turner syndrome. Three observers (T.D.: 8 years of experience, J.G.: few 

months of experience, and M.G.: received instructions from an expert during few sessions), 

segmented the aortic data using the custom in-house software.  

Analysis workflow 

To achieve fully automated analysis of the 3D MRI datasets of the aorta, we designed an 

analysis pipeline that combined a reinforcement learning (RL) algorithm to detect anatomical 

landmarks, with a two-stage network for aortic lumen segmentation, as illustrated in Figure 1. 

By integrating the outputs of these two techniques, the aortic centerline can be estimated and 

then used to initialize the segmentation process in the custom in-house software, to 

subsequently extract the quantitative indices of aortic morphology.  
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Aortic landmark detection 

A double deep Q network (DDQN)-based algorithm (20) was implemented for the detection 

of the six manually positioned aortic landmarks. Since landmarks were positioned within the 

aortic lumen, the input of each agent was defined as three 3D patches centered on the agent 

position of the same size but with different scales (1, 2, and 4), to ensure feeding the network 

with sufficiently rich and discriminating information. These scales allowed modeling of the 

current neighborhood at different distances as achieved with feature points (21) or in multi-

feature pyramid techniques (22). The model’s architecture (Figure 2) consisted of four 3D 

convolutional layers followed by Leaky Relu activation layers (23) and a 3D max pooling 

layer. Two fully connected layers (FCL) sized 128 and 6 were used for the action prediction. 

Furthermore, as the aorta tapers from its proximal to its distal part, the block size used to 

describe the environment depended on the anatomical landmark position, which might result 

in a steep drop between the convolutional layers and the FCL. To tackle this issue, an extra 

FCL of size 512 was added after the last convolutional layer for the sinotubular junction, 

brachiocephalic trunk and ascending (AAo) and descending (DAo) aorta at the level of the 

pulmonary artery bifurcation.  

The training and validation datasets were used to optimize the hyperparameters of the DDQN 

architecture. First, cross-sectional diameters at the level of each individual landmark were 

extracted from the reference segmentations and were used to adjust the patch size in order to 

account for the aortic tapering from its proximal to its distal part (Table 1). Secondly, each 

landmarks’ relative position was modelled using a normal distribution estimated from 

landmark coordinates in the training set. During the agent’s training, the point was randomly 

initialized following the fitted distribution while only the mean position of the estimated 

distribution was used during the test phase. 
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The process convergence was estimated using the point oscillation and the target Q values of 

these positions were compared to identify the landmark. To ensure a correct training, the 

agent was moved toward the landmark if the distance to the target after convergence was 

higher than 1 voxel.  

Segmentation of the aortic lumen 

The pipeline of the two-stage network proposed to segment the aortic lumen is illustrated in 

Figure 1. The first network used an under-sampled volume to obtain a coarse segmentation of 

the aorta, which was then used to crop the original volume around the aorta and resize it into 

an isotropic resolution. The second network was used to segment the aorta and the obtained 

segmentation was resized back to the original volume dimensions. 

The proposed segmentation networks (Figure 3) were based on a 3D U-Net network (24, 25) 

with residual blocks (26), replacing the original convolutional layers in the encoding part of 

the U-Net architecture to smooth the forward and backward propagation of information. 

Attention gates (27) were added to the skip connections to limit the activated part to the 

segmented area and account for class imbalance (background versus aortic lumen). Finally, a 

multi-feature pyramid (22) was used to fuse the feature maps with strong low-resolution 

semantic information and high-resolution feature maps with weak semantic information but 

rich spatial information.  

The input volume size was 256 × 256 × 64 (respectively 320 × 192 × 128) for the first 

(respectively second) network. The model was trained for a maximum of 200 epochs with the 

Adam optimizer, a batch size of 2 (respectively 1) for the first (respectively second) network, 

an initial learning rate of 1e-3, and a decay factor of 0.1 with a patience of 10 epochs. The 

chosen loss function was the Dice loss. 

The model was developed in Python (v3.8.11; Python Software Foundation, Wilmington, DE, 

USA) using Keras (v2.4.3; https://keras.io) and TensorFlow (v2.4.1; Google, Moutain View, 
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CA, USA) and trained on a Nvidia Quadro GV100 GPU (Nvidia, Santa Clara, CA, USA). 

The training of the DDQN-based agent took approximately 37 hours on average per landmark, 

the training of the first segmentation network took 25 epochs of 3 hours, and the training of 

the second segmentation network took 24 epochs of 5 hours.  

Quantitative aortic indices 

The active contour used in our custom software required a binary volume that roughly 

corresponded to the aorta to act as a balloon force guiding the lumen segmentation towards 

the aortic wall. This binary volume was replaced by our network segmentation output while 

the detected landmarks allowed for a computation of the aortic centerline leading to a fully 

automated segmentation of the aorta and its further subdivision into anatomical segments: 

AAo, arch and DAo. Morphological quantitative indices including length, AAo and DAo 

maximal diameters, and volumes as well as the aortic arch length computed between mid-

AAo and mid-DAo were then extracted, as shown in Figure 4.  

Statistical analysis 

All statistical evaluations were performed using MATLAB (R2021b; Mathworks, Natick, 

MA, USA). To evaluate the performances of the RL agents, 3D Euclidean distances (ED) 

were computed between the detected and the reference landmarks. The Dice similarity 

coefficient (DSC), Hausdorff distance (HD), and average symmetrical surface distance 

(ASSD) were used to evaluate the segmentation performances on a global or local scale. The 

robustness of the segmentation was also evaluated by comparing the algorithm’s 

performances between subgroups (for comparisons per vendor, per field strength, and per 

aortic dilation status). 

The segmentation results provided by our method were also compared with those of the 

segmentation network proposed by Berhane et al. (28). Note that, since this network was 

originally proposed for the 3D segmentation of 4D flow MRI angiographic images with a 
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network’s input corresponding to a volume cropped around the aorta, we modified the size of 

the input layer of the network to accept volumes of the same size than our second network 

and retrained the network on our training dataset. These comparisons were performed using a 

Student t-test. 

Indices of aortic morphology obtained by the proposed method were compared to the 

reference indices using Spearman correlation coefficient r, Bland-Altman mean bias and 

limits of agreement (LoA), and a non-parametric Kruskal Wallis test was used to evaluate 

statistical differences between the 2 measurements. Bland-Altman biases were further 

expressed in percentage of the reference measures to account for differences in aortic 

morphology between subgroups (for comparisons per vendor, per field strength, and per 

aortic dilation status).  

The human interobserver variability was quantified using ED for the landmarks detection and 

using DSC, HD, and ASSD for the segmentation, and it was subsequently compared to the 

corresponding proposed DL method. The mean differences between DL and human observers 

(COD) and the mean interobserver difference (IOD) were also computed. The statistical 

comparison of these differences was performed using the Williams index (WI) along with its 

confidence interval (CI) (29). If the upper bound of the CI was higher than 1, then there was a 

statistical evidence that the variability between the DL-based method and the human 

observers was within the interobserver variability. More details on the WI computation are 

given in the Supplementary Material. A p-value <0.05 was considered statistically significant. 
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RESULTS 

Basic model characteristics and indices  

Basic characteristics and reference morphological aortic indices are summarized in Table 2 

for the entire population and per acquisition site. Participants from site 2 were on average 

older as compared to participants from sites 1 and 3, and had a longer aortic arch and larger 

DAo on average. Standard deviations of maximal diameters and volumes were high, 

highlighting the heterogeneity of our database, which included extreme cases in terms of 

aortic size (small sized aortas: Turner syndrome, normal sized aortas: healthy controls, 

dilated aortas: patients with hypertension to a small extent and patients with dilated AAo to a 

larger extent).  

 

Evaluation of landmark detection  

Figure 5 shows the performances of the automated detection of aortic landmarks in terms of 

distances in relation to the expert reference targets and the WI with its 95% CI. On the entire 

testing dataset, our network detected the aortic landmarks with a distance to the reference 

below 9 mm on average. The highest mean distances between detected reference landmarks 

were found for the sinotubular junction (8.7 mm on average) and the coeliac trunk (11.8 mm 

on average), while the detection errors for the remaining landmarks were all below 5 mm on 

average. The COD was on average lower than the IOD for all landmarks resulting in WI and 

its 95% CI being higher than 1, except for the sinotubular junction and coeliac trunk 

revealing that the DL-based landmark detection was in the same variability range as 

compared to the human observers with variable levels of experience.  
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Evaluation of aortic lumen segmentation  

Metrics corresponding to the comparison between the DL-based and the reference aortic 

segmentations on the entire testing dataset are summarized in Table 3 for the whole aorta and 

for each of the main segments (AAo, Arch, DAo). An overall DSC of 0.90 ± 0.05, HD of 

12.11 ± 7.79 mm, and ASSD of 1.07 ± 0.63 mm was obtained for the whole aorta. Of note, 

89.7% (70/78) of the testing dataset subjects had a DSC score > 0.85 and two patients with a 

low DSC value were excluded from the morphological analyses due poor image quality. An 

example of two segmentations with a DSC < 0.85 is given in Figure 6. Figure 7 summarizes 

the DSC between the DL-based and the reference segmentations, revealing that the DL-based 

method had similar numbers of segmentations with DSC less than 0.85 on the 1.5-T data and 

3-T data, with slightly lower DSC values for the poorly segmented 3-T data.  

Table 4 shows the results of the variability study in terms of DSC, HD, and ASSD on the 

whole aorta. The COD was slightly lower on average or similar to the IOD for all 

segmentation similarity metrics, resulting in the upper bound of the WI 95% CI being slightly 

higher than 1, thus demonstrating that both on a global and local scale the agreement between 

the DL-based method and human observers, with variable level of expertise, was in the same 

range as compared to the agreement between the human operators.  

Table 3 shows the results of the comparison between the segmentation results of Berhane et 

al. (28) network against our method. No statistical differences could be found between both 

methods (DSC: p = 0.069, HD: p = 0.526, ASSD: = 0.939). 

Evaluation in terms of aortic morphological measures  

Table 5 summarizes the comparison between the aortic quantitative measures (aortic arch 

length L, AAo and DAo maximal diameters, and volumes) extracted by the proposed method 

against those extracted from the reference segmentation in the AAo, aortic arch, and DAo. 
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The two measurements were highly correlated and were not statistically significantly 

different (aortic arch L: r = 0.95, p = 0.72; AAo D: r = 0.95, p = 0.42; AAo V: r = 0.95, p = 

0.91; DAo D: r = 0.96, p = 0.07; DAo V: r = 0.97, p = 0.29). Furthermore, good agreement 

was found between the two methods, as revealed by low Bland-Altman biases and LoA. 

Indeed, when such biases were expressed as the percentage of the reference measure, they did 

not exceed 9% for all the aortic indices: aortic arch length: 1.7%; AAo maximal diameter: 

3.9%; DAo maximal diameter: 5.8%; AAo volume: 1.56%; DAo volume: 8.6%.  

Table 6 summarizes Bland-Altman analyses for comparisons between the DL-based and the 

reference approaches in terms of aortic morphological measures per vendor, field strength, 

(1.5-T versus 3-T), and aortic dilation status (qualified as dilated versus small to normal sized 

aorta) while Figure 8 shows this analysis for the AAo and DAo V. Table 6 also shows Bland-

Altman biases expressed as the percentage of the reference measures, revealing that the DL-

based approach was stable among the different subgroups (aortic arch L: aortic dilation status: 

p = 0.23; AAo maximal D: vendor: p = 0.07, magnetic field: p = 0.78, aortic dilation status: p 

=0.75; DAo maximal D: vendor: p = 0.43, magnetic field: p = 0.26, aortic dilation status: p 

=0.13; AAo V: vendor: p = 0.10, magnetic field: p = 0.63, aortic dilation status: p =0.27; 

AAo maximal D: vendor: p = 0.10, aortic dilation status: p =0.27). One might note however 

that quite large biases (12.6%) were obtained for the DAo volume from the 1.5-T data.  
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DISCUSSION 

We proposed an automated method based on DL for aortic anatomical landmark detection 

and segmentation of the aortic lumen from 3D MRI images, which may result in reliable 

segmental aortic morphological indices. This study proposed a fully automated and 

comprehensive method, including landmark detection, aortic segmentation, and estimation of 

aortic morphological indices from 3D MRI datasets originating from different vendors, 

centers, MRI field strengths, and from a large cohort of patients with variable aortic sizes and 

disease conditions. Although studies describing the aortic morphology in CT exist (8, 9), 

there is currently a lack of software and studies providing such indices in 3D MRI (3). Such 

an automatic software allowing measuring objectively the aortic morphology in a segmental 

and global way in 3D MRI could ultimately help for a more comprehensive and systematic 

management of patients with aortic diseases. 

The consistency of the proposed DL-based method was demonstrated through: 1) low ED 

between the detected and the reference aortic anatomical landmarks as well as high DSC, low 

HD and low ASSD for the 3D aortic lumen segmentation, 2) variability against human 

annotations, which was comprised within the human interobserver variability, in terms of 

landmark detection and aortic segmentation, 3) high correlations and low biases for 

comparisons against references in terms of aortic morphological indices, and 4) equal 

performances against state-of-the-art segmentation method as well as in terms of aortic 

morphological indices between vendors, magnetic field strengths, and aortic dilation status, 

thus potentially revealing the generalizability of our approach.  

An important feature of this study may be the database used for training. Specifically, it 

included 1) healthy subjects as well as patients with a wide spectrum of age, and 2) images 

acquired at different sites with variable levels of expertise (sites 1 and 3: experts in 

cardiovascular imaging, site 2: expert in brain imaging) as well as on MRI scanners from 
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different vendors and with different magnetic field strengths. This heterogeneity may have 

increased the variability and the representativeness of our data, reducing the selection bias 

and improving the model generalization. The value of such heterogeneity has been 

highlighted in various other DL-based studies focused on the aorta (28, 30). 

Landmark detection performances were better for the AAo than for the DAo. This might be 

explained by lower contrast around the diaphragm as well as the increased tortuosity of the 

distal DAo segment with aging or pathology, thus hampering the landmark detection. 

Furthermore, the AAo is surrounded by enhancing structures (valve, heart, and pulmonary 

artery) and has a specific shape that may feed the model by specific features rather than the 

DAo, which has a more tubular and straight shape, surrounded by moderately enhancing or 

small structures. One might also highlight that our database included patients with 

subclinically dilated aorta or with pathological dilatation of its proximal segment, thus 

highlighting the ability of our detection network to capture information at different scales 

thanks to the pyramidal input. 

The DL-based method exhibited lower performance in terms of DSC in the AAo and aortic 

arch when comparing with the performance for the whole aorta. This disparity could be 

attributed to the much smaller size of these segments compared to the whole aorta as similar 

HD and ASSD were obtained in these segments compared to the whole aorta, as well as to 

small biases when comparing aortic indices extracted from our segmentation with the 

reference indices. The DL-based method also provided aortic morphological indices that were 

robust regarding heterogeneity of our data except for the DAo volume where a difference was 

found depending on the magnetic field strengths. As the DAo ends at the diaphragm, this 

landmark detection is challenging as revealed by higher detection errors. This incorrect point 

detection then can lead to an erroneous definition of the segments and higher variability in 
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the extracted aortic volumes. However, no difference was found for the diameter since 

maximal diameters did not necessarily occur in end portions of segmentation. 

Recent studies also proposed automated segmentation approaches of the aorta in four-

dimensional (4D) flow MRI or CT usually based on U-Net architectures(28, 30–36). The 

comparison between our proposed method and the segmentation network proposed by 

Berhane et al. (28) revealed that the performances of both methods were similar on a global 

level as assessed by the DSC and ASSD as well as on a local level assessed by the HD. Hepp 

et al. (32) used a 3D U-Net to segment the aorta in non-contrast-enhanced MRI data 

obtaining a mean DSC of 0.85 ± 0.15 on 30 subjects from the general population in a multi-

centric study. On 4D flow MRI, 3D U-Net (28, 33) or nnUNet (30, 31) were used for aortic 

segmentation of the peak systolic angiogram or magnitude data with good performances ((33): 

N = 36 with bicuspid/tricuspid aortic valve using leave-one-patient-out: DSC = 0.92 ± 0.05, 

HD = 21.02 ± 24.20 mm, and for AAo+arch: DSC = 0.93 ± 0.02, HD = 9.41 ± 3.45mm, for 

DAo: DSC = 0.93 ± 0.02, HD = 5.86 ± 6.23mm; (31): N = 81, DSC = 0.95, ASSD = 

0.84mm). Similarly, on CT data, 3D U-Net (36) and its variants using residual (34) or dense 

(35) blocks were used with similar performances ((36): N = 191 healthy subjects and patients 

with an aortic aneurysm, DSC = 0.95 [0.94; 0.95], HD = 8 [4.47; 10]mm; (34): N = 162, DSC 

= 0.95 ± 0.02, ASSD = 0.53 ± 0.26mm, HD = 2.13 ± 0.91mm, (35): N = 30, DSC = 0.887). 

These studies included healthy and pathological subjects (28, 31) or patients with a dilated 

aorta (33). However, as acknowledged by the authors in their studies (28, 31, 33), a main 

limitation of their respective work lies in the monocentric design. Regarding aortic landmarks, 

previous studies (31, 37, 38) usually focused on the detection of only 3 landmarks, namely 

the sinotubular junction, brachiocephalic artery, and left subclavian artery. The detection 

error on a single-center cohort of 81 healthy subjects or patients ranged between 6.1 mm and 

9.3 mm (38), which is in the same range as the distances obtained in the present study. Our 
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results were thus in-line with those obtained in the literature ((31, 37, 38) although a direct 

comparison was not possible due to the differences in MRI data and/or study populations.  

Limitations 

Two subjects out of the 78 in the testing dataset had to be excluded from the morphological 

analysis due to low segmentation quality. These 2 subjects were both BAV patients acquired 

on site 3 with a very low image quality and signal loss in the AAo. A review of the whole 

dataset revealed that although some other subjects had low image quality, none presented a 

low contrast or signal loss in the AAo similar to these two subjects. This absence of subjects 

with similar image quality in the training dataset as well as the fact that one of the two 

patients came from a very small subset (site 3, 1.5-T, BAV: n = 4 in the whole dataset) might 

explain the difficulty our network had in generalizing the learned features to this particular 

type of data. Since the complete processing took only an average of 50 s compared to the 5 

min for semi-automated analysis, this spared time could also be used, when required, to 

correct the segmentation on these complex datasets. Deep Learning network performances 

are directly linked to the number of training data and their variability and our number of 

investigated subjects can be seen as small in this regard. However, our database has the 

advantage of including multiple sources of variability and the different evaluations performed 

on our dataset showed that our proposed method was robust to those variabilities. Despite the 

high diversity of our database, we can acknowledge that the absence of patients with very 

complex aortic morphological changes (e.g., abdominal aneurysms, aortic coarctation) is 

another limitation of our study. Finally, the human observer variability estimation comprised 

operators of various levels of expertise rendering the variability evaluation of the DL-based 

method less challenging. However, one might highlight that such variability might reflect 

real-life conditions in medical image processing where the different operators may be at 

various levels of the learning curve when they are asked to perform quantitative assessment.  
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Conclusion 

In this study, an end-to-end automated method for aortic landmark detection and lumen 

segmentation on 3D MRI data was developed, which may provide aortic morphological 

indices such as aortic arch length, cross-sectional diameters, and volumes. The method 

combined RL for aortic landmark detection and a two-stage network for aortic lumen 

segmentation and was evaluated on data from multiple sites and including various 

pathologies.   

 



21 

 

REFERENCES 

1. Brady AR, Fowkes FG, Thompson SG, Powell JT: Aortic aneurysm diameter and risk of 

cardiovascular mortality. Arterioscler Thromb Vasc Biol 2001; 21:1203–1207. 

2. Lo RC, Lu B, Conrad MF, et al.: Relative Importance of Aneurysm Diameter and Body 

Size for Predicting AAA Rupture in Men and Women. Journal of Vascular Surgery 2013; 

57:287–288. 

3. Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, et al.: Reference ranges (“normal 

values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J 

Cardiovasc Magn Reson 2020; 22:87. 

4. Turkbey EB, Jain A, Johnson C, et al.: Determinants and normal values of ascending aortic 

diameter by age, gender, and race/ethnicity in the Multi-Ethnic Study of Atherosclerosis 

(MESA). J Magn Reson Imaging 2014; 39:360–368. 

5. Houriez-Gombaud-Saintonge S, Mousseaux E, Bargiotas I, et al.: Comparison of different 

methods for the estimation of aortic pulse wave velocity from 4D flow cardiovascular 

magnetic resonance. J Cardiovasc Magn Reson 2019; 21:75. 

6. Bouaou K, Bargiotas I, Dietenbeck T, et al.: Analysis of aortic pressure fields from 4D 

flow MRI in healthy volunteers: Associations with age and left ventricular remodeling. J 

Magn Reson Imaging 2019; 50:982–993. 

7. Dietenbeck T, Houriez-Gombaud-Saintonge S, Charpentier E, et al.: Quantitative magnetic 

resonance imaging measures of three-dimensional aortic morphology in healthy aging and 

hypertension. J Magn Reson Imaging 2021; 53:1471–1483. 

8. Heuts S, Adriaans BP, Rylski B, et al.: Evaluating the diagnostic accuracy of maximal 

aortic diameter, length and volume for prediction of aortic dissection. Heart 2020; 106:892–

897. 



22 

 

9. Krüger T, Conzelmann LO, Bonser RS, et al.: Acute aortic dissection type A. Br J Surg 

2012; 99:1331–1344. 

10. Bollache E, Guzzardi DG, Sattari S, et al.: Aortic valve-mediated wall shear stress is 

heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve-

associated aortopathy. J Thorac Cardiovasc Surg 2018; 156:2112-2120.e2. 

11. van Ooij P, Markl M, Collins JD, et al.: Aortic Valve Stenosis Alters Expression of 

Regional Aortic Wall Shear Stress: New Insights From a 4-Dimensional Flow Magnetic 

Resonance Imaging Study of 571 Subjects. J Am Heart Assoc 2017; 6:e005959. 

12. Ambale-Venkatesh B, Yang X, Wu CO, et al.: Cardiovascular Event Prediction by 

Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res 2017; 121:1092–

1101. 

13. Redheuil A, Wu CO, Kachenoura N, et al.: Proximal aortic distensibility is an 

independent predictor of all-cause mortality and incident CV events: the MESA study. J Am 

Coll Cardiol 2014; 64:2619–2629. 

14. Erbel R, Aboyans V, Boileau C, et al.: 2014 ESC Guidelines on the diagnosis and 

treatment of aortic diseases: Document covering acute and chronic aortic diseases of the 

thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of 

Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014; 35:2873–

2926. 

15. van Hout MJ, Scholte AJ, Juffermans JF, et al.: How to Measure the Aorta Using MRI: A 

Practical Guide. J Magn Reson Imaging 2020; 52:971–977. 

16. Dietenbeck T, Craiem D, Rosenbaum D, et al.: 3D aortic morphology and stiffness in 

MRI using semi-automated cylindrical active surface provides optimized description of the 

vascular effects of aging and hypertension. Comput Biol Med 2018; 103:101–108. 



23 

 

17. Volonghi P, Tresoldi D, Cadioli M, et al.: Automatic extraction of three-dimensional 

thoracic aorta geometric model from phase contrast MRI for morphometric and 

hemodynamic characterization. Magn Reson Med 2016; 75:873–882. 

18. van Pelt R, Nguyen H, ter Haar Romeny B, Vilanova A: Automated segmentation of 

blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements. Int J 

CARS 2012; 7:217–224. 

19. Dietenbeck T, Bouaou K, Houriez-Gombaud-Saintonge S, et al.: Value of aortic volumes 

assessed by automated segmentation of 3D MRI data in patients with thoracic aortic 

dilatation: A case-control study. Diagn Interv Imaging 2023:S2211-5684(23)00076–1. 

20. Hasselt H van, Guez A, Silver D: Deep Reinforcement Learning with Double Q-Learning. 

Proceedings of the AAAI Conference on Artificial Intelligence 2016; 30. 

21. Lowe DG: Distinctive Image Features from Scale-Invariant Keypoints. International 

Journal of Computer Vision 2004; 60:91–110. 

22. Moradi S, Oghli MG, Alizadehasl A, et al.: MFP-Unet: A novel deep learning based 

approach for left ventricle segmentation in echocardiography. Physica Medica 2019; 67:58–

69. 

23. Maas AL, Hannun AY, Ng AY: Rectifier nonlinearities improve neural network acoustic 

models. In in ICML Workshop on Deep Learning for Audio, Speech and Language 

Processing; 2013. 

24. Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks for Biomedical 

Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – 

MICCAI 2015. Edited by Navab N, Hornegger J, Wells WM, Frangi AF. Cham: Springer 

International Publishing; 2015:234–241. 

25. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O: 3D U-Net: Learning 

Dense Volumetric Segmentation from Sparse Annotation. 2016. 



24 

 

26. He K, Zhang X, Ren S, Sun J: Identity Mappings in Deep Residual Networks. 

arXiv:160305027 [cs] 2016. 

27. Schlemper J, Oktay O, Schaap M, et al.: Attention gated networks: Learning to leverage 

salient regions in medical images. Medical Image Analysis 2019; 53:197–207. 

28. Berhane H, Scott M, Elbaz M, et al.: Fully automated 3D aortic segmentation of 4D flow 

MRI for hemodynamic analysis using deep learning. Magnetic Resonance in Medicine 2020; 

84:2204–2218. 

29. Chalana V, Kim Y: A methodology for evaluation of boundary detection algorithms on 

medical images. IEEE Transactions on Medical Imaging 1997; 16:642–652. 

30. Aviles J, Talou GDM, Camara O, et al.: Domain Adaptation for Automatic Aorta 

Segmentation of 4D Flow Magnetic Resonance Imaging Data from Multiple Vendor 

Scanners. In Functional Imaging and Modeling of the Heart. Volume 12738. Edited by Ennis 

DB, Perotti LE, Wang VY. Cham: Springer International Publishing; 2021:112–121. [Lecture 

Notes in Computer Science] 

31. Garrido-Oliver J, Aviles J, Córdova MM, et al.: Machine learning for the automatic 

assessment of aortic rotational flow and wall shear stress from 4D flow cardiac magnetic 

resonance imaging. Eur Radiol 2022; 32:7117–7127. 

32. Hepp T, Fischer M, Winkelmann MT, et al.: Fully Automated Segmentation and Shape 

Analysis of the Thoracic Aorta in Non–contrast-enhanced Magnetic Resonance Images of the 

German National Cohort Study. Journal of Thoracic Imaging 2020; 35:389–398. 

33. Marin-Castrillon DM, Geronzi L, Boucher A, et al.: Segmentation of the aorta in systolic 

phase from 4D flow MRI: multi-atlas vs. deep learning. MAGMA 2023. 

34. Yang J, Li X, Cheng J-Z, et al.: Segment aorta and localize landmarks simultaneously on 

noncontrast CT using a multitask learning framework for patients without severe vascular 

disease. Computers in Biology and Medicine 2023; 160:107002. 



25 

 

35. Ma Q, Lucas A, Hammami H, Shu H, Kaladji A, Haigron P: Deep-learning approach to 

automate the segmentation of aorta in non-contrast CTs. J Med Imaging (Bellingham) 2023; 

10:024001. 

36. Sieren MM, Widmann C, Weiss N, et al.: Automated segmentation and quantification of 

the healthy and diseased aorta in CT angiographies using a dedicated deep learning approach. 

Eur Radiol 2022; 32:690–701. 

37. Guala A, Mejia Cordova M, Morales X, et al.: Machine learning to automatically detect 

anatomical landmarks on phase-contrast enhanced magnetic resonance angiography. 

European Heart Journal - Cardiovascular Imaging 2021; 22(Supplement_2):jeab090.122. 

38. Mejia Cordova M, Guala A, Morales X, et al.: Reinforcement machine learning-based 

aortic anatomical landmarks detection from phase-contrast enhanced magnetic resonance 

angiography. European Heart Journal - Cardiovascular Imaging 2021; 

22(Supplement_1):jeaa356.286. 

 

 



26 

 

TABLES 

Table 1: Block size used by the Reinforcement Learning agent for each landmark. 

 Block size (pixels) 

Sinotubular junction (48, 68, 52) 

Ascending aorta at the level of the bifurcation of the pulmonary artery (40, 70, 56) 

Brachiocephalic arterial trunk (58, 80, 40) 

Left subclavian artery (40, 48, 40) 

Descending aorta at the bifurcation of the pulmonary artery (40, 16, 40) 

Hepatic dome / diaphragm (38, 42, 38) 

Coeliac trunk (38, 40, 38) 
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Table 2: Subject characteristics for the whole population and for each recruitment site. 

 Overall Site 1 Site 2 Site 3, 1.5T Site 3, 3T 

N (M / F) 391 (205/186) 232 (107/125) 42 (27/15) 10 (6/4) 107 (65/42) 

Age (years) 51.9 ± 18.4 46.2 ± 17.3 73.9 ± 5.42 57.9 ± 13.7 53.8 ± 17.6 

BMI (kg.m-2) 24.5 ± 4.4 24.6 ± 4.1 25.3 ± 3.4 23.6 ± 3.7 24.6 ± 4.0 

BSA (m²) 1.76 ± 0.27 1.75 ± 0.25 1.81 ± 0.19 1.81 ± 0.17 1.81 ± 0.22 

cSBP (mmHg) 119 ± 16 120 ± 16 123 ± 12 117 ± 14 115 ± 15 

cDBP (mmHg) 81 ± 10 82 ± 11 76 ± 8 84 ± 11 80 ± 10 

cPP (mmHg) 38 ± 11 38 ± 11 47 ± 10 34 ± 7 34 ± 11 

Number of subjects      

Healthy controls  119 58 0 0 61 

Hypertensives 96 53 43 0 0 

BAV 49 23 0 4 22 

TAV-ATAA 67 37 0 6 24 

Reference aortic morphological measures  

Arch length (mm) 129.80 ± 

28.00 

123.92 ± 

27.24 

144.31 ± 

19.42 

154.94 ± 

29.23 

134.49 ± 28.44 

AAo maximal 

diameter (mm) 

32.58 ± 7.86 31.27 ± 8.34 34.62 ± 4.00 41.10 ± 3.85 33.91 ± 7.37 

DAo maximal 

diameter (mm) 

24.40 ± 4.87 22.79 ± 4.60 29.17 ± 2.68 28.09 ± 5.34 25.75 ± 4.28 

AAo volume (mL) 49.89 ± 33.91 46.50 ± 36.16 49.97 ± 15.51 87.43 ± 30.45 53.84 ± 34.44 

DAo volume (mL) 64.57 ± 32.85 53.75 ± 28.55 86.97 ± 18.43 97.45 ± 36.81 76.49 ± 35.38 

Abbreviations: BMI: body mass index, BSA: body surface area, cSBP: central systolic blood 

pressure, cDBP: central diastolic blood pressure, cPP: central pulse pressure, BAV: bicuspid 

aortic valve, TAV-ATAA: ascending thoracic aorta aneurysm and tricuspid aortic valve, AAo: 

ascending aorta, DAo: descending aorta. 
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Table 3: Average performances of deep learning-based aortic segmentation and comparison 

with a state-of-the-art method. 

 AAo Arch DAo Overall Berhane et al. (28) 

DSC 0.85 ± 0.10 0.84 ± 0.06 0.91 ±0.04 0.90 ± 0.05 0.91 ± 0.04 

p = 0.069 

HD (mm) 8.13 ± 3.35 5.10 ± 3.50 5.33 ± 4.50 12.11 ± 7.79 11.3 ± 9.1 

p = 0.526 

ASSD (mm) 1.75 ± 2.67 4.99 ± 1.88 0.93 ± 0.86 1.07 ± 0.63 1.12 ± 1.01 

p = 0.939 

Abbreviations: AAo: ascending aorta, DAo: descending aorta, DSC: Dice similarity 

coefficient, HD: Hausdorff distance, ASSD: average symmetrical surface distance. P-value 

for a Student t-test computed between our method and Berhane et al. (28). 
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Table 4: Comparison between the proposed method segmentation results and the inter-

observer’s variability. 

 Inter-observer study (n = 25) 

 COD IOD WI (95% CI) 

DSC 0.87 ± 0.03 0.87 ± 0.04 1.02 (1.01, 1.04) 
HD 19.36 ± 12.18 mm 21.95±14.15 mm 1.04 (1.01, 1.08) 
ASSD 0.15 ± 0.057 mm 0.16 ± 0.061 mm 1.03 (1.01, 1.05) 

Abbreviations: DSC: Dice similarity coefficient, HD: Hausdorff distance, ASSD: average 

symmetrical surface distance, COD: mean Deep Learning to human observers difference, 

IOD: mean difference between human observers, WI: William index, CI: confidence interval.  
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Table 5: Comparison of deep learning-based aortic morphological measures against 

reference measurements within the testing dataset (n = 76). 

 Ground truth Results R p-values μ [LoA] 

Aortic arch length (mm) 129.46±29.36 129.69±27.99 0.95 0.72 1.71 [-16.32; 19.74] 

AAo maximal Diameter (mm) 32.18±7.79 33.20±8.10 0.95 0.42 1.15 [-3.54; 5.83] 

DAo maximal Diameter (mm) 24.24±5.06 25.32±4.62 0.96 0.07 1.28 [-1.27; 3.83] 

AAo Volume (mL) 47.52±31.62 46.43±32.10 0.95 0.91 -0.27 [-22.43; 23.00] 

DAo Volume (mL) 63.59±33.04 65.77±29.54 0.97 0.29 4.39 [-8.47; 17.26] 

Abbreviations: AAo: ascending aorta, DAo: descending aorta, LoA: limits of agreement.  

P-values are computed for comparison between methods using a Kruskall-Wallis test, r is the 

Spearman correlation coefficient and mean bias [limits of agreement] are given for the Bland-

Altman analysis.  

 

 



31 

 

Table 6: Bland-Altman analyses for comparisons between DL-based and reference aortic 

morphological measures, per vendors, field strength, aortic dilation status within the testing 

dataset (n=76). 

 Vendor Field strength Aortic dilation status 

Vendor 1 (53) Vendor 2 (23) 1.5 T (46) 3T (30) Dilated aorta 

(28) 

Small to normal 

aorta (48) 

Arch 

length 

(mm) 

p-values < 0.0001 <0.0001 0.23 

µ(µ %) 4.62(4.0%) -4.99(-3.5%) 5.63(4.7%) -4.30(-2.9%) 0.03(-0.2%) 2.69(2.8%) 

LoA [-11.54:20.77] [-20.27:10.27] [-7.04:18.29] [-23.13:14.53] [-20.96:21.01] [-13.30:18.67] 

AAo 
maximal 

Diameter 

(mm) 

p-values 0.07 0.78 0.75 

µ(µ%) 0.71(2.8%) 2.15(6.3%) 0.97(3.5%) 1.42(4.3%) 1.17(3.0%) 1.34(4.4%) 

LoA [-3.50:4.92] [-3.07:7.36] [-2.87:4.81] [-4.35:7.20] [-5.28:7.62] [-2.20:4.67] 

DAo 

maximal 

Diameter 

(mm) 

p-values 0.43 0.26 0.13 

µ(µ%) 1.18(5.6%) 1.51(6.3%) 1.42(6.5%) 1.08(4.7%) 0.93(3.8%) 1.49(7.0%) 

LoA [-1.42:3.79] [-0.90:3.92] [-0.70:3.53] [-2.01:4.17] [-2.18:4.04] [-0.60:3.57] 

AAo 

Volume 

(mL) 

p-values 0.10 0.63 0.27 

µ(µ%) -0.75(-0.2%) 2.65(5.7%) 0.67(3.0%) -0.32(-0.7%) -1.26(-3.2%) 1.18(4.3%) 

LoA [-24.07:22.58] [-18.33:23.62] [-22.24:23.59] [-23.04:22.41] [-37.99:35.48] [-5.07:7.42] 

DAo 

Volume 

(mL) 

p-values 0.10 0.0018 0.27 

µ(µ%) 5.15(10.9%) 2.65(3.5%) 6.12(12.6%) 1.75(2.6%) 3.51(4.5%) 4.91(11.1%) 

LoA [-4.69:14.99] [-15.19:20.50] [--3.66:15.90] [-13.55:17.05] [-11.10:18.11] [-6.87:16.69] 

Abbreviations: AAo: ascending aorta, DAo: descending aorta, LoA: limits of agreement 

P-values are computed for comparison between two subgroups. µ and LoA mean Bland and 

Altman Bias and limits of agreement, µ% mean Bland and Altman bias expressed in 

percentage of the reference measures. 
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FIGURE LEGENDS 

Figure 1: Overview of the DL-based method for 4D aorta quantitative analysis. 

 

 

 

 

Figure 2: Architecture of the network used for anatomical landmark detection. 
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Figure 3: Architecture of the proposed 2-stage network. Top row: U-net producing the ROI 

around the aorta, bottom row: U-net for aortic lumen segmentation. 
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Figure 4: Illustration of the aortic morphological indices. 

 

 

 

Figure 5: Landmarks detection performances on the test set (n = 78) (left); Comparison 

between the DL-based method and the human observers landmarks in terms of variability 

(right). 
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Figure 6: Examples of the data with low contrast (left) or signal heterogeneity (right). The red 

(yellow) contour correspond to the reference (proposed method) segmentation. 

 

 

 

Figure 7: Box plot representation of the Dice score (DSC) of the proposed segmentation 

results for different vendors (left), magnetic field strengths and for dilated versus small to 

normal sized aortas (right). 
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Figure 8: Box plot representation of ascending aorta (AAo) (left) and the descending aorta 

(DAo) (right) volume of the proposed method (red) and the reference (blue) for different 

vendors, magnetic field strengths and aortic size status.  
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Supplementary information 1 

Table R1: Subject characteristics for the whole population and for each pathology 

 
 Overall Healthy 

subject 
Hypertensives TAV-ATAA BAV TS 

N (M / F) 391 
(203/183) 

119 (61/58) 96 (55/41) 67 (50/17) 49 (40/9) 61 (0/61) 

Age (years) 51.9 ± 18.4 48 ± 14.3 61.9 ± 14.5 64.3 ± 11.9 52.5 ± 
16.8 

29.5 ± 11.8 

BMI (kg.m-2) 24.5 ± 4.4 23.7 ± 2.9 25.7 ± 4.0 25.9 ± 4.3 24.5 ± 4.1 23.9 ± 4.7 
BSA (m²) 1.76 ± 0.27 1.76 ± 0.19 1.83 ± 0.21 1.89 ± 0.20 1.91 ± 

0.18 
1.48 ± 0.16 

cSBP (mmHg) 119 ± 16 113 ± 13 127 ± 12 126 ± 17 119 ± 16 106 ± 12 
cDBP (mmHg) 81 ± 11 79 ± 9 84 ± 11 82 ± 11 82 ± 10 78 ± 12 
cPP (mmHg) 38 ± 11 34 ± 7 43 ± 10 42 ± 17 37 ± 12 27 ± 4 

Reference aortic morphological measures 

Arch length 
(mm) 

129.8 ± 28.0 120.2 ± 19.8 133.8 ± 21.6 156.4 ±24.4 146.7 ± 
25.9 

99.5 ± 15.0 

AAo maximal 
diameter 
(mm) 

32.6 ± 7.9 28.8 ± 4.0 32.0 ± 4.3 41.2 ± 4.9 41.7 ± 6.9 24.2 ± 5.0 

DAo maximal 
diameter 
(mm) 

24.4 ± 4.9 23.0 ± 3.2 25.8 ± 4.1 29.2 ± 3.8 26.0 ± 4.1 18.5 ± 2.9 

AAo volume 
(mL) 

49.9 ± 33.9 32.4 ± 12.4 43.0 ± 15.1 89.3 ± 28.8 90.2 ± 
36.8 

19.2 ± 10.5 

DAo volume 
(mL) 

64.6 ± 32.9 55.0 ± 20.5 68.5 ± 25.0 101.6 ± 
33.0 

76.6 ± 
28.3 

27.2 ± 9.8 

Abbreviations: TAV-ATAA: ascending thoracic aorta aneurysm and tricuspid aortic valve, 

BAV: bicuspid aortic valve, TS: Turner syndrome, BMI: body mass index, BSA: body 

surface area, cSBP: central systolic blood pressure, cDBP: central diastolic blood pressure, 

cPP: central pulse pressure, AAo: ascending aorta, DAo: descending aorta. 
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Supplementary information 2 

The average disagreement between the two observers  and is defined as 

 and The CI for this index is estimated 

using a jackknife non-parametric sampling technique where the standard error of the Willams 

index is given by 

 

where  is the Williams index computed without the i-th measurement.  

 

 


