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Quantifying cerebral contributions to pain
beyond nociception
Choong-Wan Woo1,2,w, Liane Schmidt3,4,*, Anjali Krishnan5,*, Marieke Jepma6,7, Mathieu Roy8,

Martin A. Lindquist9, Lauren Y. Atlas10,11 & Tor D. Wager1,2

Cerebral processes contribute to pain beyond the level of nociceptive input and mediate

psychological and behavioural influences. However, cerebral contributions beyond nocicep-

tion are not yet well characterized, leading to a predominant focus on nociception when

studying pain and developing interventions. Here we use functional magnetic resonance

imaging combined with machine learning to develop a multivariate pattern signature—termed

the stimulus intensity independent pain signature-1 (SIIPS1)—that predicts pain above and

beyond nociceptive input in four training data sets (Studies 1–4, N¼ 137). The SIIPS1 includes

patterns of activity in nucleus accumbens, lateral prefrontal and parahippocampal cortices,

and other regions. In cross-validated analyses of Studies 1–4 and in two independent test data

sets (Studies 5–6, N¼46), SIIPS1 responses explain variation in trial-by-trial pain ratings not

captured by a previous fMRI-based marker for nociceptive pain. In addition, SIIPS1 responses

mediate the pain-modulating effects of three psychological manipulations of expectations and

perceived control. The SIIPS1 provides an extensible characterization of cerebral contributions

to pain and specific brain targets for interventions.
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P
ain is widely thought to emerge from distributed
brain networks whose inputs include sensory, affective
and evaluative processes1. Although Melzack’s1 influential

‘body-self neuromatrix’ framework for pain emphasized
many processes beyond nociception—including expectancy,
attention, anxiety, and personality—the ‘neuromatrix’ came to
be increasingly identified with a set of regions that encode the
intensity of nociceptive input2. However, there has been sustained
interest in the roles of other brain regions that have been
commonly considered to be non-nociceptive, including the
dorsolateral prefrontal cortex (dlPFC)3,4, hippocampus5,6,
ventromedial prefrontal cortex (vmPFC)7–9, nucleus accumbens
(NAc)10–12. These regions are often thought to play support roles,
influencing pain by modulating activity in nociceptive
circuits10,13, but they may also play a central role in pain
construction independent of nociceptive circuits. Several recent
studies of chronic pain in animal models suggest that this is the
case14–16 and implicate the vmPFC, NAc and other regions in
mediating pain-related behaviours independent of classic probes
of nociceptive pain17,18. Chronic pain appears to involve a shift
away from classic nociceptive regions and towards a type of pain
directly maintained in frontal-limbic networks8,18–20, and new
theories describe pain as an emergent phenomenon related to
activity in large-scale networks that include non-nociceptive
regions21,22. It is therefore vital to gain an increasingly precise
understanding of the roles of non-nociceptive brain regions
in human pain.

Human neuroimaging approaches to understanding pain
have been hampered by two important, but addressable,
limitations. First, they have typically not specified hypotheses
with sufficient precision, limiting direct replications. For example,
although the dlPFC has been implicated in pain, findings vary
widely in their location and topography from study to study.
Results are aggregated in meta-analyses23,24, but there is no
consensus on how close findings should be to be considered
‘replications’. Regions of interest used in a priori analyses are
typically large, encompassing heterogeneous groups of neurons
with different functions without specifying any particular
topography, which dilutes signal and reduces their functional
specificity. By contrast, multivariate pattern signatures can specify
a precise set of voxels and the topography of the relative expected
activity levels across voxels, providing a basis for exact replication.
Analysing pattern information is analogous to analysing neural
population codes25 and a number of studies show convincingly
that they can capture fine-grained functional organization
(for example, ocular dominance columns26) and can more
accurately predict perceptions and behaviours than standard
brain maps27,28. Second, it is now clear that functional magnetic
resonance imaging (fMRI) responses in imprecisely defined gross
anatomical regions (for example, the anterior cingulate) are not
specific to pain, but that precisely defined multivariate patterns
can have much greater sensitivity and specificity28,29.

For these reasons, a number of groups have turned to
multivariate pattern analysis to identify precisely defined patterns
that predict pain intensity30–33. One recent example is the
Neurologic Pain Signature (NPS)32, a multivariate pattern whose
weights, which specify relative activity levels, are optimized to be
maximally predictive of pain based on fMRI signal. The NPS is
precisely specified so that it can be applied to new data from 7new
individuals by taking a weighted average over a test brain image
(the NPS supplies the weights), yielding a single predicted pain
value. This feature permits detailed characterization of its
measurement properties. The NPS accurately predicts pain
experience in response to noxious thermal32,34, mechanical35

and electrical stimuli35,36, but does not respond to non-noxious
warm stimuli32, threat cues32,35,36, social rejection-related

stimuli32, observed pain35, or aversive images37. However,
similar to other pain-predictive patterns, the NPS was
developed to predict pain experience driven largely, although
not entirely, by noxious stimuli based on fMRI activity mostly
within noxious stimulus intensity-encoding regions. It reflects
only a subset of the various brain processes that contribute to
pain and does not explain much of the variation in pain
experience that is found even when the stimulus intensity is
held constant (for an example case, see Fig. 1a). In addition,
recent studies have shown that the NPS does not explain the
pain-modulating effects of several psychological interventions,
including placebo treatment32, cognitive self-regulation17 and
perceived control34.

Combining the precision of multivariate pattern approaches
with the study of regions outside classic nociceptive pain-related
brain regions could help provide a more precise understanding of
the roles of the vmPFC, NAc, dlPFC, hippocampus and others in
pain processing in humans. In addition, if it is possible to identify
pain-predictive patterns that are independent of noxious stimulus
intensity and nociceptive brain targets, this could point to a direct
role for these regions in constructing pain rather than simply
modulating ongoing pain. Thus, in this study, we asked: (1) can
we identify a multivariate pattern of fMRI activity that predicts
pain experience after removing the effects of noxious stimulus
intensity and the NPS (Fig. 1b)? (2) If so, which brain regions are
involved? (3) Does a model that includes independent contribu-
tions from non-nociceptive brain regions predict pain better than
using classic noxious stimulus-encoding regions alone? Further-
more, (4) does a model that includes stimulus-independent brain
regions better explain the effects of psychological interventions on
pain, including expectancy and perceived control?

To address these questions in a way that is replicable and
generalizable beyond a single study, we combined a mega-analytic
approach with machine learning techniques. Our data set
included B11,000 single-trial images of fMRI activity associated
with multiple levels of noxious heat and pain ratings, across 183
participants from 6 independent studies. We first developed
a new multivariate fMRI signature, termed the stimulus intensity
independent pain signature-1 (SIIPS1), which is predictive of
variation in pain above and beyond noxious stimulus intensity
(for example, heat temperature) and nociceptive brain processes
estimated by the NPS, using Studies 1–4 (N¼ 137; Supplementary
Table 1) as training data. We named this signature because our
approach relies on precisely specifying patterns and testing them
across studies, and having a name is essential to communicate
that it is this precise pattern that can be used in future studies
(for example, see ref. 38). We evaluated the performance of the
SIIPS1 in cross-validated analyses of Studies 1–4 and in two
independent test data sets (Studies 5–6, N¼ 46) using it to answer
the four questions above. Results show that the SIIPS1 explains
a substantial amount of the variation in trial-by-trial pain ratings
not captured by the NPS. The SIIPS1 was a significant and
consistent mediator of the effects of psychological interventions,
including manipulations of expectancy and perceived control,
whereas the NPS was not. Overall, the current study provides
a viable new signature that can quantify cerebral contributions to
pain beyond nociception.

Results
Signature development. To develop the SIIPS1 pattern, we
employed a multi-level approach (for details, see Supplementary
Fig. 1). We began with single-trial estimates of brain responses
during individual epochs of noxious heat from 137 participants in
Studies 1–4 (6,740 images total,B50 trial-level images per person
on average). First, we removed the effects of stimulus intensity
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and the NPS response (a proxy for already modelled nociceptive
neural processes) from each participant’s single trial-level brain
images using a set of regressors modeling all possible differences
among intensities (for details, see Methods). Second, we used
principal component regression (PCR) to estimate a multivariate
fMRI pattern that predicted residual pain ratings for each indi-
vidual; this method works well with high-dimensional, multi-
collinear predictors39. Ten-fold cross-validation was used to
estimate each individual’s prediction–outcome correlation. Third,
we constructed a population-level pattern map using a weighted
average of the predictive maps for the 137 participants using
prediction–outcome correlations as a weight (all prediction–
outcome correlations were positive). Weighted t-tests identified
which brain areas made consistent contributions to prediction
across participants and studies, treating participant as a random
effect.

As shown in Fig. 1c and Supplementary Fig. 2, the resulting
signature pattern was consistent in many brain areas across
participants and studies, indicating that there are brain systems
for cerebral contributions to pain beyond nociception that are
conserved across individuals. These regions fell into three classes,
based on their relationships with pain and noxious stimulus
intensity.

The first class of regions included established targets
of nociceptive afferents, such as the insula, cingulate cortex

and thalamus, and overlapped spatially with regions included
in the NPS. These regions showed positive weights in the
SIIPS1, indicating that their activation predicted increased pain
even when the noxious stimulus intensity is constant and
NPS responses are controlled for. Further analyses showed that
brain activity in these regions was indeed correlated with noxious
input intensity (Fig. 2a,b and Supplementary Table 4); thus, these
regions are not truly ‘nociception independent’, even though we
regressed out stimulus intensity and the NPS response from the
training data. This finding is sensible if endogenous variation in
these nociceptive regions contributes to pain experience beyond
simply encoding input intensity40,41 or the NPS is an imperfect
proxy for nociception-induced pain. We note that local pattern
similarity analyses showed that the SIIPS1 and NPS weight
patterns within these regions are not correlated (Supplementary
Fig. 3), indicating that the SIIPS1 is capturing pain-related brain
activity that the NPS does not capture, even within the
overlapping brain regions.

The second class of regions also showed positive pain-
predictive weights, but are not known to be targets of spinal
nociceptive afferents, suggesting that they are likely to make
extra-nociceptive contributions to pain. These included dorsome-
dial prefrontal cortex (dmPFC), middle temporal gyrus, caudate
and ventrolateral PFC. These regions showed minimal correla-
tions with noxious stimulus intensity (Fig. 2 and Supplementary
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Figure 1 | Identifying cerebral contributions to pain beyond nociception. (a) The left panel provides an example of pain ratings for different levels of

noxious stimuli and the right panel shows that there still remain large variation in pain ratings even after controlling for noxious stimulus intensity and the

neurologic pain signature (NPS) response32. (b) The main goal of the current study is to develop a multivariate model of endogenous cerebral contributions

to pain beyond nociception. Some of the cerebral contributions may interact with nociceptive brain systems (red nodes), whereas others contribute to pain

independent of nociceptive processing (green nodes). (c) The multivariate pattern of fMRI activity predictive of residual pain ratings after removing the

effects of the stimulus intensity and NPS response, termed the stimulus intensity independent pain signature-1 (SIIPS1). The map shows thresholded voxel

weights (at qo0.05 false discovery rate (FDR), equivalent to uncorrected voxel-wise Po0.0025) based on weighted t-tests across maps for 137 subjects

in the training data sets (Studies 1–4). Thresholding was performed for display only; all weights were used in the subsequent analyses. Some examples of

unthresholded patterns are presented in the insets; small squares indicate individual voxel weight. aINS, anterior insula; CB, cerebellum; dmPFC,

dorsomedial PFC; dpINS, dorsal posterior insula; HC, hippocampus; MCC, mid-cingulate cortex; midINS, middle insula; NAc, nucleus accumbens; SMA,

supplementary motor area; TP, temporal pole; vmPFC, ventromedial PFC; vlPFC, ventrolateral PFC. (d) Z-scored quartile residual pain ratings versus cross-

validated (leave-one-participant-out) prediction (also z-scored and quartile binned) with the SIIPS1. Each coloured line represents a fitted line for each

individual. The violin plot in the right panel shows the distribution of the slopes from regression analyses for the prediction–outcome relationship. All

participants except for two individuals (98.5%) showed positive prediction–outcome relationships. Each coloured dot represents an individual’s slope.
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Table 4): the caudate and ventrolateral PFC showed significant,
but low, correlations with stimulus intensity (r¼ 0.08, Po0.001
and r¼ 0.13, Po0.001, respectively, one sample t-test on within-
subject correlations after Fisher’s r-to-z transformation, N¼ 183).
Other regions including dmPFC and middle temporal gyrus
showed no relationship with noxious input intensity (r¼ 0.003,
P¼ 0.77 and r¼ � 0.017, P¼ 0.18, respectively, one sample t-
test, N¼ 183). Such regions could be involved in constructing
value and motivation related to pain or in mediating internal
thought processes that increase pain independent of nociception.

The third class of regions had negative predictive weights,
indicating that increased brain activity was associated with
decreased pain. Such regions included vmPFC, NAc, parahippo-
campal cortex, posterior dlPFC and others. Most of these regions
were uncorrelated with noxious input intensity (Fig. 2a,c and
Supplementary Table 4), suggesting that these regions make
extra-nociceptive contributions to pain. Growing evidence
suggests that these regions contribute to cognitive, evaluative or
motivational aspects of pain instead of sensory ones14,15,42 and
that they play critical roles in chronic pain4,43.

The signature pattern we identified here can be prospectively
applied to individual trial images or other images (for example,
condition averages) to make quantitative predictions about pain
in out-of-sample individual participants. In the current training
data, the cross-validated SIIPS1 response (deriving pattern maps
from training data, except for one out-of-sample participant,
and calculating the signature response for the out-of-sample
participant) predicted residual pain ratings with mean r¼ 0.68
when grouping trials into quartiles based on residual pain ratings
(Fig. 1d).

Characterization of local pattern topography. The SIIPS1 also
revealed finer-grained structure captured in local pattern weights
within anatomical regions (Fig. 3). The relatively large sample size
combined with multivariate methods here affords increased
reliability of these pattern weights, which can reveal structure not
often apparent in smaller samples or univariate approaches. In
particular, the SIIPS1 includes a region possibly corresponding to
the NAc shell that predicted increased pain, whereas a region that

a
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may correspond to the NAc core negatively predicted pain, cor-
roborating similar earlier human44,45 and animal studies15,46. In
addition, an area covering the superficial and central subdivisions
of the amygdala47, in particular the right one48, predicted
increased pain, whereas activity in the basolateral subdivision47

predicted reduced pain, paralleling animal literature7,48. Likewise,
a part corresponding to the caudate tail associated with stable,
learned values in animals49 and sensorimotor associations in
meta-analysis50 show positive weights for pain, whereas a more
anterior part of the caudate (that is, caudate head) associated with
more context-dependent, flexible stimulus values49,50 show
mixed, but largely negative, weights. The SIIPS1 also showed
fine-grained patterns of differential contributions in the
parahippocampal gyrus (PHG) and hippocampus (Fig. 3b–d).

These patterns of predictive weights are consistent with recent
findings in animal literature7,15,46,48,49, suggesting that the
topography we identified here could inform reverse
translational approaches. In addition, the patterns within the
amygdala, caudate and other regions build on recent meta-
analyses that found, for example, superficial amygdala activation
in experimental pain but implicated basolateral amygdala in
chronic pain51. Interestingly, these topographical distinctions
within brain regions are not at all apparent in univariate analyses
(Supplementary Figs 4 and 5), suggesting that the multivariate

approach provides finer-grained and more sensible patterns
related to pro- and anti-pain subregions. This high sensitivity of
the multivariate pattern maps could be particularly useful for
bridging the gap between the study of pain in humans and non-
human animals.

Joint predictive performance of the SIIPS1 and NPS. To
evaluate SIIPS1’s predictive performance, we quantified the
joint contributions of the SIIPS1 and the NPS in predicting
trial-by-trial pain ratings. We used a multilevel general linear
model to assess the unique and shared contributions of the SIIPS1
and the NPS to pain. We first conducted the analyses on the
training data sets (Studies 1–4) using leave-one-participant-out
cross-validation. This cross-validation procedure derives a pattern
map from all training participants, except one out-of-sample
participant, which is used to test the variance in pain explained by
the brain pattern responses. The training and testing process is
iterated until each participant is tested exactly once. We then
conducted the same analyses on testing data sets (Studies 5–6)
that were not included in the SIIPS1 pattern training. These
analyses provide an unbiased test of how well the SIIPS1 captured
fluctuations in pain above and beyond the NPS. In addition, to
provide a preliminary examination of the SIIPS1’s specificity
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to pain, we also tested the SIIPS1 and the NPS on a negative
control data set, a vicarious pain task performed by participants
in Study 2 (ref. 35).

As shown in Fig. 4, both in training (Studies 1–4) and testing
data sets (Studies 5–6), the SIIPS1 and the NPS each made
unique, significant contributions to predicting pain on individual
trials, but no significant contributions to non-painful, aversive
experience (vicarious pain induced by pictures35; for details,
see Methods), demonstrating the SIIPS1’s sensitivity and
specificity for pain. The variance explained was comparable in
magnitude for the SIIPS1 and the NPS. For the training data sets,
the mean cross-validated regression coefficients (standardized)
were b̂SIIPS1 ¼ 0.312±0.040 (mean±s.e.m.) and b̂NPS ¼
0.273±0.037 (for Studies 1–4, t-values ranged from 7.73 to
20.0 for the SIIPS1 and from 5.22 to 9.98 for the NPS, all
Po0.001, multi-level general linear model, N ranged from 26 to
50 depending on the study). The proportion of unique variance
explained in single-trial pain was 9.71%±1.91% for the
SIIPS1 and 9.22%±1.90% for the NPS. For the testing data
sets, the mean standardized regression coefficients were
b̂SIIPS1 ¼ 0.246±0.054 and b̂NPS ¼ 0.233±0.021 (for Studies 5
and 6, t-values were 3.79 and 8.64 for the SIIPS1, and 4.70 and

6.46 for the NPS, all Po0.001, multi-level general linear model,
N¼ 17 and 29). The proportions of unique variance explained
were 6.73%±2.33% for SIIPS1 and 6.34%±0.86% for the NPS.
Permutation test results showed that, controlling for the NPS, the
variance explained by the SIIPS1 was significant across each of
the six studies individually (all Po0.001). The total variance in
single-trial pain ratings explained by the two fMRI signatures
ranged from 22.1% to 29.7% across studies. This yielded B80%
classification accuracy in discriminating high versus low pain for
single trials (top 30% versus bottom 30% of trials) and over 94%
accuracy when 4 or more trials are averaged together
(Supplementary Fig. 6).

Comparison with predictions based on univariate analysis. For
comparison, we also conducted a univariate analysis and used it
as a decoding model. As in studies that use ‘encoding–decoding’
models52, we estimated the regression coefficients for pain
‘encoding’ in each voxel separately based on voxel-wise general
linear model and inverted the model to make predictions in out-
of-sample individuals. To yield a single predicted pain value for
each test image, we averaged the predictions from each individual
voxel in the standard analysis and compared its predictive
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independent variables, and trial-by-trial pain report was the outcome variable. (b) The pie chart and the bar plots show mean explained variance across six
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significance testing of regression coefficients and explained variance, respectively. For more details, see Methods.
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accuracy with the multivariate results. The univariate map, shown
in Supplementary Fig. 5, was similar to the multivariate map in
most brain regions, but was smoother and did not show the fine-
grained distinctions within regions described above. As shown in
Fig. 4b, the univariate map explained significantly less variance
than the multivariate SIIPS1 model in each of the six studies we
tested. Across studies, the average variance in single-trial pain
explained by the SIIPS1 was 17.4%, compared with 6.4% for
the univariate map (mean difference¼ 11.1%, t(5)¼ 15.04,
Po0.0001, paired t-test, N¼ 6 studies). The same pattern was
found when we controlled for NPS responses. The SIIPS1
uniquely explained 8.7% of single-trial variance above and
beyond the NPS, compared with 4.7% for the univariate map
(mean difference¼ 4.1%, t(5)¼ 4.5, Po0.01, paired t-test, N¼ 6
studies).

Mediation of psychological pain manipulations. The NPS tracks
pain accurately, but did not capture placebo effects32, the effects
of cognitive regulation17 and effects of perceived control34 on
pain in previous studies. Given that the SIIPS1 predicts pain likely

to emerge from endogenous cerebral processes, it may be
sensitive to pain modulation induced by psychological
interventions. To examine this possibility, we conducted
mediation analyses in two test data sets (Studies 5–6),
providing an unbiased test of whether the SIIPS1, NPS or both
mediate effects of expectancy and perceived control.

Study 5 (a re-analysis of a published data set53) examined
expectancy effects. In a training phase, participants (N¼ 17) were
told that one auditory cue was predictive of ‘high pain’ and the
other a ‘low pain’ cue. These instructions were reinforced by
conditioning to high- and low-intensity noxious heat,
respectively, with intensities calibrated for each person.
During a test phase on new skin sites, the high-pain cue was
followed by high- or medium-intensity painful heat
(50% probability of each) and the low-pain cue was followed
by low or medium heat (50% each) (Fig. 5a). In an analysis
of medium-intensity trials only, cues strongly biased pain
reports towards the cued values (ratings for low-pain cue¼
3.42±0.24 (mean±s.e.m.) and for high-pain cue¼ 5.08±0.14,
b̂¼ � 1.73, t (16)¼ � 10.2, Po0.0001, paired t-test, N¼ 17).
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Using mediation analyses, we tested whether SIIPS1 and/or NPS
responses mediated cue effects on pain (controlling for the other
signature).

In Study 6 (a novel study), we crossed two psychological
manipulations in a 2� 2 factorial design. First, participants
(N¼ 29) performed an operant ‘symbolic conditioning’ task
found to affect pain and autonomic responses in previous work54.
In the conditioning phase, options (denoted by abstract symbols)
were probabilistically reinforced with visual feedback
(thermometers) symbolizing high or low pain (Fig. 5c). The
high-pain option was reinforced with high-pain feedback (50% of
trials) or low-pain feedback (50%) and the low-pain cue was
associated with high- and low-pain feedback on 20% and 80% of
trials, respectively (Fig. 5c). All participants successfully learned
these associations before scanning. During the in-scanner test,
unbeknownst to participants, low or high temperatures were
delivered with 50% probability for all the cue types (see Methods
for more details). Second, participants did not have control over
the option chosen on all trials. In high control (HC) blocks,
participants chose which option was selected, whereas in low
control (LC) blocks, choices were made by a computer. Thus,
participants experienced noxious stimuli of equivalent intensity
after choosing high- and low-expected pain options in both high
perceived control and low perceived control blocks.

As shown in Fig. 5c, pain ratings for the experimental
conditions were 32.7±1.9 (mean±s.e.m.) for the HC and
low-pain expectancy (HC/LE) condition, 35.1±1.8 for the
HC and high-pain expectancy (HC/HE) condition, 35.4±2.2
for the LC/LE condition and 39.0±2.2 for the LC/HE condition.
Both low (versus high) pain expectancy and high (versus low)
perceived control resulted in strong, additive reductions in
pain (b̂¼ � 2.53, t(28)¼ � 4.94, Po0.0001 for expectancy and
b̂¼ � 3.13, t (28)¼ � 3.08, P¼ 0.005 for perceived control,
multi-level general linear model, N¼ 29). The expectancy�
control interaction was not significant (b̂¼ 1.03, t (28)¼ 1.02,
P¼ 0.32, multi-level general linear model, N¼ 29).

In the multi-level mediation models, psychological manipula-
tions (for example, low versus high-pain cues) were included as
predictors (X), trial-by-trial pain ratings constituted the outcome
variable (Y) and trial-by-trial SIIPS1 and NPS responses during
pain were included as mediators (M). For the perceived control
manipulation in Study 6, we tested a three-path mediation17

involving serial associations between the control manipulation
(X), self-reported perceived control (M1, the first mediator), trial-
by-trial responses of the SIIPS1 and the NPS (M2, second-stage
mediators), and pain ratings (Y). We coded anti-pain conditions
(that is, LE and HC conditions) as 1 and pro-pain conditions as
� 1 (that is, HE and LC conditions) for X’s, so that mediation
effects were expected to be negatively signed.

As shown in Fig. 5b,d, the SIIPS1 partially mediated the
effects of all three psychological manipulations on pain: for
expectancy cues in Study 5, b̂Path a�b ¼ � 0.044, z¼ � 1.79,
Po0.05, one-tailed; for expectancy cues in Study 6,
b̂Path a�b ¼ � 0.063, z¼ � 2.11, Po0.05, two-tailed; and for
perceived control in Study 6, three-path mediation b̂¼ � 0.007,
z¼ � 2.08, Po0.05, two-tailed, multi-level mediation analyses
with bootstrap tests, N¼ 17 for Study 5 and 29 for Study 6. Paths
a and b—the cue effects on signature response and the
relationship between signature response and reported pain,
respectively—were individually significant in many cases, but
did not always show significant effects even when the mediation
effects (Path a� b) were significant (Supplementary Table 5).
This is a common phenomenon in multilevel mediation analyses
when Paths a and b covary53,55, indicating heterogeneity in
the functional relationships involved. By contrast, the
NPS showed more limited evidence for mediation of

psychological effects. It significantly mediated expectancy effects
only in Study 6 (b̂Path a�b ¼ � 0.060, z¼ � 2.16, Po0.05,
two-tailed, multi-level mediation analyses with bootstrap tests,
N¼ 29), but not expectancy in Study 5 or perceived control in
Study 6. However, in Study 5, the NPS did respond more strongly
to the high-pain versus low-pain cues (b̂Path a ¼ � 0.273,
z¼ � 2.81, Po0.01, two-tailed, multi-level mediation analyses
with bootstrap tests, N¼ 17).

These mediation results suggest that the SIIPS1 captures
functionally meaningful variation in pain ratings as modulated by
predictive cues (probably via expectations54) and perceived
control. Thus, the SIIPS1 is likely to be influenced by
psychological, ‘top-down’ influences on pain in ways that are
not well captured by the NPS17,32. To see the full details of the
mediation results, please refer to Fig. 5 and Supplementary
Table 5.

Discussion
In this study, we developed a multivariate fMRI signature, SIIPS1,
predictive of variations in pain ratings after removing effects of
stimulus intensity and nociceptive pain-related brain activity. The
SIIPS1 was predictive of trial-by-trial pain ratings above and
beyond variations in noxious stimulus intensity, suggesting that
SIIPS1 reflects endogenous cerebral contributions to pain
independent of nociceptive input to the brain. The signature
included weight patterns that were consistent across individuals
in a number of brain regions. It includes negative weights
(‘anti-pain’ effects) in several regions related in previous studies
to motivational value (vmPFC and NAc)14,56, context and
memory (for example, hippocampus and para-hippocampus)57,
and cognitive context (dlPFC)58. The SIIPS1 also included
positive weights (‘pro-pain’ effects) in regions that receive
nociceptive input (including the operculum, insula and
cingulate cortex)23 and frontal regions associated with higher-
level cognitive processes (for example, dmPFC).

In addition, the relatively large sample combined with
the multivariate analysis technique revealed fine-grained mapping
of ‘pro-pain’ (positive weights) and ‘anti-pain’ (negative)
sub-regions within pain modulatory regions, providing a more
detailed characterization of pain-associated processes than has
previously been available. For example, the unthresholded pattern
of predictive weights within the SIIPS1 revealed that activity in
a NAc shell-like region predicted increased pain and a core-like
region predicted reduced pain, paralleling findings in human44,45

and animal studies that have associated the shell with increased
pain46 and core with reduced pain15. In the amygdala, the activity
in superficial and the central nuclei of the amygdala showed
positive weights, whereas the basolateral subdivision of the
amygdala showed negative weights, consistent with animal
findings7,48 and human neuroimaging literature51. The SIIPS1
mediated the effects of three psychological manipulations of pain
from two independent studies, including two different expectancy
manipulations and one perceived control manipulation.

An important contribution of the current study is in
characterizing the relationship of nociception-independent
regions in the prefrontal cortex and striatum with pain on one
hand and with psychological interventions on the other. Recent
studies suggest that they may play important roles in both acute
and chronic pain. For example, although the NAc has not often
been reported as being related to pain or regarded as a core pain
system in the brain23, emerging evidence from both human and
animal studies suggests that the NAc plays critical roles in
shaping affective and motivational value of pain10,11,14, pain
relief59, pain-related behaviours14,59 and chronic pain
conditions8,16,46. Similarly, the SIIPS1 includes other brain
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regions such as PHG and vmPFC, which are not often regarded as
core pain processing regions and are not implicated in sensory
aspects of pain, but have been implicated in different aspects of
pain including chronic pain5,6,9,15 and pain modulation60–62.

Unlike previous studies, the current study provides a precise
specification of the joint contributions of these nociception-
independent regions, which can serve as an assay that can be
easily shared and tested across different studies and laboratories.
Although many of the brain regions we identified in this study
have been previously reported, the previous studies are not
consistent in their precise locations and in the direction
of the effects. In addition, studies usually consider one brain
region (or voxel) at a time or, in some cases, consider isolated
pairs. This practice does not tell us what each brain region really
‘does’, because its functional roles may depend on activity in
other regions. For example, some brain regions may play
a secondary role that is indirect and mediated by other regions,
and others may play a role that is masked by opposing effects of
other, correlated regions and emerges only when controlling for
it. In the current study, we provide a predictive map that specifies
a precise set of locations and their relative contributions to pain
controlling for other brain regions. This multivariate model
reveals a fine-grained brain-pain mapping that is not redundant
with previous univariate results (Fig. 3 and Supplementary Fig. 4),
is substantially more predictive (Fig. 4b) and, unlike
most previous neuroimaging findings, can be used prospectively
to test interventions and patient populations in new studies
(Figs 4 and 5).

Interestingly, dlPFC, vmPFC, NAc, amygdala, PHG and
hippocampus were largely associated with less pain on average
in the studies tested here, which may indicate a regulatory role
based on contextualization of pain, as suggested by previous
work3,15,17,60,63. However, these regions may play variable roles
in pain modulation depending on individual differences and the
cognitive context; for example, parahippocampal regions have
been associated with anxiety-related pain increases in some
studies6,60. Likewise, vmPFC activation is often associated with
reduced pain in healthy controls11,41, but it has also been
associated with pain catastrophizing63 and increased pain in
chronic pain patients43. Our analyses also revealed some variation
across studies (Supplementary Fig. 2) and individual differences
in the relationship between increase or reduction in pain and the
SIIPS1 (for example, nonsignificant Paths a and/or b, but
significant Path a� b in the mediation of the expectancy
effects; Supplementary Table 5). In addition, a close
examination of the SIIPS1 pattern revealed differences in the
local pattern of effects across sub-regions (for example, across
NAc shell-like versus core-like regions, superficial and central
versus basolateral amygdala, and differences across portions of
the PHG and hippocampus; Fig. 3), suggesting fine-grained
structure of differential contributions (anti-pain or pro-pain). A
full analysis of how these regions and their sub-regions may
contribute differentially to pain in different experimental
contexts, populations (for examples, patient groups) and
individuals is beyond the scope of this study. The study does,
however, lay a foundation for the future characterization of these
effects.

In this regard, there are several concrete benefits to
the signature pattern (or patterns if constituent local patterns
are considered) we reported here. First, they identify multivariate
patterns that have been optimized to explain pain more strongly
than region-of-interest averages or univariate maps, and do
so while controlling for the influences of other brain regions
(due to the multivariate nature of the analysis). This is important
because all the brain regions discussed contain neurons that
participate in multiple, distinct functional circuits. Therefore,

identifying pain-predictive patterns provides measures of activity
in representations more strongly linked to pain-relevant
circuits than using region-of-interest averages. Second, because
it was constructed to generalize across participants, the SIIPS1
(and its constituent local patterns) can be tested prospectively in
future studies to further characterize its performance across
experimental contexts and populations. Third, in conjunction
with the NPS, SIIPS1 provides quantitative estimates of the
activation intensity of at least two neurophysiological processes
linked to pain, one peripheral stimulus-intensity dependent and
the other endogenous and stimulus-intensity independent.
Finally, both the NPS and SIIPS1 provide quantitative, physio-
logical targets for pain interventions. Identifying neurophysiolo-
gical targets for interventions is a major strategy for both
validating the interventions and providing mechanistic insights
into how they work64. For example, in neurological diseases such
as Alzheimer’s, researchers have developed named, diagnostic
brain signatures that provide indicators of central pathology
(for example, SPARE-AD for Alzheimer’s38). These signatures do
not replace clinicians’ assessments, but inform clinical
assessments by providing objective evidence for pathology and
brain targets for interventions. Importantly, treatment
development efforts have mainly focused on interventions for
peripheral or central nociceptive processes—but the success or
failure of such interventions may also depend on their effects on
the non-nociceptive brain systems we identified here62,65.
Therefore, the brain signature we developed here could help
provide new brain targets for pain evaluation and treatment

There are some issues that could benefit from further
discussion here. First, in addition to different psychological
manipulations having different effects (which remains to be more
fully characterized in future studies), even the same psychological
treatments may have variable effects depending on details of the
manipulation and population studied. For example, expectancy
manipulations in Studies 5 and 6 were mediated by the SIIPS1,
even though the SIIPS1 did not always increase with high-pain
versus low-pain cues. Conversely, expectancy effects were
partially mediated by the NPS in Study 6 but not Study 5, in
spite of significant Paths a and b (cues to pattern responses and
pattern response to pain, respectively). Such differences may be
related to the strength and durability of conditioning or the depth
of expectation, which may affect brain processes differentially
even when they have similar effects on pain reports. This presents
a challenge for future work, but also points to an opportunity to
use these brain signatures to differentiate psychological treat-
ments at a brain level even when they look similar at a
behavioural level. In addition, for the same reason, we do not
expect the SIIPS1 to be the one common mediator of all different
types of top–down pain regulation. Therefore, the SIIPS1 should
be considered as one candidate signature (thus, the ‘1’ in
the name); other brain patterns may mediate other types of
‘top–down’ pain regulation effects.

Second, as shown in Fig. 4, the two fMRI signatures that we
tested (that is, the SIIPS1 and the NPS) together explained around
a quarter (25.7%) of the total variance in single trial-level pain
ratings, which can achieve 80.3% classification accuracy in
discriminating high pain from low pain trials (top 30% versus
bottom 30% of trials; Supplementary Fig. 6). At the single-trial
level, this is a modest proportion of variance explained, but the
single trial-level data are very noisy and contain many sources of
unexplained variance, such as inter-individual, inter-study
variations and measurement errors. As Supplementary Fig. 6
shows, if we average over several trials, the relationships between
average signature responses and average pain increase dramati-
cally; for example, averaging over 25 trials, the signatures explain
89.4% of the variance in reported pain experience, with
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near-perfect classification accuracy for high versus low pain. In
Supplementary Fig. 6, we grouped trials with similar pain ratings,
which still provides an unbiased measure of accuracy, because the
model has no prior information about which groups of trials are
more painful than others. The same principle applies to any
a priori grouping of trials; for example, groups of trials tested
under different treatments or groups of trials administered to
normal versus hypersensitive skin.

Third, even though we trained the signature to be predictive of
variation in pain after removing the effects of nociceptive input
and related brain processes, the SIIPS1 still contains brain regions
that respond to nociceptive input (for example, parts of insula
and cingulate cortex). As explained above, this is sensible if
endogenous variations in these nociceptive regions contribute to
pain beyond encoding noxious input intensity. However, it might
still be interesting to develop a brain signature that is purely non-
nociceptive—that is, shows no response to nociceptive input at
all—but is still predictive of pain experience. Figure 2c provides
promising candidate brain regions, including NAc, dm/vmPFC,
hippocampus, temporal pole and precuneus, which are unre-
sponsive to nociceptive input and predictive of residual pain
ratings. Further examination of their roles in pain and the
development of pain signatures based on those brain regions
could be an interesting future direction.

Fourth, although we aimed to identify a signature that can be
applied to new data from new individuals (that is, population-
level model) in this study, idiographic models could also be useful
for pain prediction66. Idiographic modelling approaches might be
able to model the effects of individual differences on pain (for
example, personal history and memories related to pain),
revealing individualized neural bases for pain perception. In
addition, we modelled the SIIPS1 using only spatial pattern
information, yielding a static template. In the future, dynamic
modelling approaches can also be used to take into account the
temporal dynamics and information flow among brain regions.

Overall, our study and SIIPS1, together with the NPS, provide
new ways of understanding and evaluating the neurobiological
components of pain. These a priori brain signatures can be
prospectively used to assess pain contributions that are
nociceptive and beyond nociceptive in new individuals, and
therefore provide a step towards a quantitative assessment of the
multiple components of pain.

Methods
Participants. The study included a total of 183 healthy participants from
6 independent studies, with sample sizes ranging from N¼ 17 to N¼ 50 per study.
Descriptive statistics on the age, sex and other features of each study sample are
provided in Supplementary Table 1. Participants were recruited from New York
City and Boulder/Denver Metro Areas. The institutional review board of Columbia
University and the University of Colorado Boulder approved all the studies, and all
participants provided written informed consent. Preliminary eligibility of partici-
pants was determined through an online questionnaire, a pain safety screening
form and an MRI safety screening form. Participants with psychiatric, physiological
or pain disorders, neurological conditions and MRI contraindications were
excluded before enrolment.

Procedures. In all studies, participants received a series of contact-heat stimuli
and rated their experienced pain following each stimulus. Data from Studies 1–6
have been used in previous publications (see Supplementary Table 1 and ref. 66);
however, the analyses and findings reported here are novel and have not been
published elsewhere, and the analyses on psychological pain modulation effects in
Study 6 have not appeared in any prior publications. The number of trials,
stimulation sites, rating scales and stimulus intensities and durations varied across
studies, but were comparable; these variables are summarized in Supplementary
Table 2. Each study also comprises a specific psychological manipulation, such as
cue-induced expectation and placebo treatment. In the studies included in
the training data sets (Studies 1–4), we focused only on residual pain ratings
(ratings after removing noxious stimulus intensity and the NPS response)
irrespective of the study-specific psychological manipulations. In the studies in
the testing data sets (Studies 5–6), we carried out mediation analyses using the

study-specific psychological manipulations, including expectancy induced by cues
paired with verbal instructions and conditioning (Study 5) or cues associated
with different probabilities of receiving low pain (Study 6), and perceived control
(Study 6).

Cognitive self-regulation in Study 1. On some runs (third and seventh runs
among nine runs) of Study 1, participants implemented a cognitive self-regulation
strategy directed at either increasing (‘Regulate-up’) or decreasing (‘Regulate-
down’) pain. The strategy was similar to reappraisal procedures commonly used to
‘rethink’ responses to images and events, which also involve a mix of mental
imagery and subvocalized narrative. This intervention was designed to target both
sensory and affective components of pain based on effective self-regulation stra-
tegies used in prior pain studies. For the full instructions, see ref. 17.

Cue-induced expectancy in Study 2. Study 2 included three levels of predictive
visual cues that corresponded to three levels of stimulation and each thermal
stimulation was preceded by one of the three cues. The cues and stimulation were
crossed with each other; these predictive cues were orthogonal to the intensity of
stimulation. Before the main experiment, participants completed a short training
session with an explicit learning task where they learned the levels of the three cues
that were later presented in the scanner. They also underwent two runs of a
conditioning task in the scanner where the participants learned the association
between the cues and the level of stimulation. During the main experiment (total
nine runs and each run had nine trials), participants received fully crossed pairs of
cues and stimulus intensity.

Masked emotional faces in Study 3. At the start of each trial, a square appeared
in the center of the screen for 50ms, followed by a pair of faces from the Ekman
set67. An emotional expression (Happy or Fearful) was presented for 33ms,
masked by a neutral face presented for 1,467ms. Face cues were evenly crossed
with temperature. For more details, see ref. 41.

Cue- and placebo-induced expectancy in Study 4. Study 4 used two levels of
predictive visual cues that were associated with two levels (high and low) of
heat intensity. One cue was always followed by a low pain (46 �C) or a medium
pain (47 �C) stimulus (with 50% chance) and the other cue was always followed by
a medium pain (47 �C) or a high pain (48 �C) stimulus (with 50% chance).
Participants were not informed about these associations before the experiment and
therefore needed to learn the associations during the experiment. The
participants chose the cue that they thought was associated with less pain.
Combined with this cue manipulation, Study 4 administered the heat stimuli on
two different types of skin sites: skin sites that had been treated with a placebo
analgesic cream (placebo condition) or had not been pretreated (control
condition). With these two types of skin sites, the cue-learning task alternated
between placebo and control runs in counterbalanced order across participants. For
more details, see ref. 61.

Cue-induced expectancy in Study 5. Study 5 included two auditory cues that
were associated with two levels (high and low) of heat intensity. First, a calibration
procedure established ‘low pain’ (Level 2 on a 10-point visual analogue scale (VAS)
anchored at ‘no pain’ and ‘extreme pain’) and ‘high pain’ (Level 8) intensities for
each participant. Then, participants were instructed that one tone would be fol-
lowed by low pain and the other would be followed by high pain. During fMRI
scanning, each thermal stimulation was preceded by one of the two auditory cues.
In the first two runs, the low-pain cue was always followed by a low-pain stimu-
lation and the high-pain cue was always followed by a high-pain stimulation. These
two conditioning runs served participants to reinforce verbal instructions. Next,
there were six runs where low pain cue was followed by a low (LL) or medium pain
(LM) with 50% chance and the high pain cue was followed by a medium (HM) or
high pain (HH) with 50% chance (Fig. 5a). To maximize the expectancy effects for
the medium pain stimuli, participants were not told that medium pain stimuli
would be applied. In the mediation analyses of psychological modulation effects
(Fig. 5b), we included only medium pain trials (LM and HM) to see the expectancy
effects on the same intensity stimuli. For more details, see ref. 53. Cue assignment
for high versus low pain was counterbalanced across participants.

Perceived control and expectancy in Study 6. Study 6 aimed to disentangle the
relative contributions of perceived control and expectancy induced by certainty
manipulations to pain experience in a 2-by-2 design (Fig. 5c). First, a calibration
procedure established ‘low pain’ (Level 4 on a 10-point VAS anchored at ‘no pain’
and ‘worst pain imaginable’) and ‘high pain’ (Level 6) intensities for each parti-
cipant. Then, in the main experiment, two levels of perceived control were induced
by (1) allowing participants to choose between two visual cues (HC) versus (2)
having them observe a cue choice made by a computer (LC). Second, two levels of
expectancy were manipulated with two different types of cue pairs (80/20 cue pair
versus 50/50 cue pair) associated with different probabilities of receiving high or
low pain. In the 80/20 cue pair (LE), one cue was associated predominantly with
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low pain (80% low-pain and 20% high-pain) and the other cue was associated with
high pain (20% low-pain and 80% high pain). In the 50/50 cue pair (HE), both cues
were associated with a 50% chance of receiving high and low pain. Cues were
counterbalanced across participants.

The paradigm consisted of two phases. During the first phase, participants
completed the instrumental learning task where they learned the associations
between cues and particular painful heat outcomes using visual feedback in the
form of a thermometer. We have referred to this as ‘symbolic conditioning’,
because the reinforcers are symbolic indicators of pain, but there is no primary
reinforcement (for example, no actually painful reinforcers)54. This learning phase
consists of 2 runs and each run had 60 trials (1 run for the HC condition and the
other for the LC condition). After the learning phase, we conducted the forced
cue-choice task (six trials for each experimental condition across two runs) to see if
the participants successfully learned the cue–outcome association. All participants
correctly chose the cue associated with low pain in 84% of trials and the cue
associated with high pain in 46% of trials, demonstrating probability matching to
the frequencies of outcomes and indicating that participants successfully learned
the cue–pain associations.

During the second phase, participants underwent the pain task with the actual
painful heat stimuli in the MRI scanner. In this pain task, participants chose
a cue or observed the cue choice and then received painful heat as feedback. This
test phase consists of eight runs and each run included eight trials. Therefore, there
were total 64 trials and 16 trials for each experimental condition of the 2-by-2
design. Unbeknownst to participants, low or high temperatures were delivered with
50% probability in all conditions, to avoid confounds between experimental
manipulations and pain history68. Participants provided ratings for perceived
control, expected (before pain stimulation) and actual pain ratings (after pain
stimulation) on a 100-point VAS.

Thermal stimulation. In each study we delivered thermal stimulation to multiple
skin sites using a TSA-II Neurosensory Analyzer or Pathways system (Medoc Ltd,
Chapel Hill, NC) with a 16mm Peltier thermode endplate. On every trial, after the
offset of stimulation, participants rated the magnitude of the warmth or pain they
had felt during the trial on a VAS or labelled magnitude scale. Other thermal
stimulation parameters varied across studies, with stimulation temperatures
ranging from 40.8 to 49.3 �C and stimulation durations from 10 to 12.5 s. All
studies applied thermal stimulation to the glabrous skin of the left forearm and
Study 2 additionally applied the stimulation to the dorsum of the left foot. See
Supplementary Table 2 for location of stimulation sites, stimulation intensity levels,
stimulation duration and the number of trials per subject.

Vicarious pain task. Study 2 (ref. 35) included two different ‘pain’ tasks, tested
within-participants in separate sessions on different days to reduce any carry-over
effects. The somatic pain task described above involved experiencing three levels
(low, medium and high) of noxious heat and the vicarious pain task involved
viewing images that contained painful events in others. Participants were asked to
imagine that the injury occurring in the picture was happening to them and rate
how much pain they might feel in that situation. We grouped pictures into three
intensity levels based on prior norms69 that were approximately matched on the
intensity of negative affect ratings. The structure and timing of the vicarious pain
task matched that of the somatic pain task. In a training session, three predictive
cues were associated with three levels of vicarious pain stimuli. In the fMRI session,
these three cues were fully crossed with the three levels of vicarious pain pictures
and we analysed the relationships between brain activity and actual reported ‘pain’
experience (using the normative intensity levels as an instrument to induce
appropriate variance and ensure balance in the stimulus intensities presented
across time). Here we report relationships between the pain signatures
(NPS, SIIPS1 and both combined) and reported vicarious pain intensity (Fig. 4e).
A previous publication on the vicarious pain task showed no responses to the
NPS35; thus, we expected this to serve as a negative control here, testing whether
the SIIPS1 differentiated somatic from vicarious pain.

Preprocessing of fMRI data. Structural T1-weighted images were co-registered to
the mean functional image for each subject using the iterative mutual information-
based algorithm implemented in SPM and were then normalized to MNI space
using SPM. SPM versions varied across studies (Studies 3 and 5 used SPM5; all
other studies used SPM8; http://www.fil.ion.ucl.ac.uk/spm/). Following SPM
normalization, Studies 3 and 5 included an additional step of normalization to the
group mean using a genetic algorithm-based normalization41,53,70. In each
functional data set, we removed initial volumes to allow for image intensity
stabilization (see Supplementary Table 3 for number of initial volumes removed in
each study). We also identified image-intensity outliers (that is, ‘spikes’) by
computing the mean and s.d. (across voxels) of intensity values for each image for
all slices to remove intermittent gradient and severe motion-related artefacts
present to some degree in all fMRI data. To identify outliers, we first computed
both the mean and the s.d. of intensity values across each slice, for each image.
Mahalanobis distances for the matrix of (concatenated) slice-wise mean and
s.d. values by functional volumes (over time) were computed. Any values with
a significant w2-value (corrected for multiple comparisons based on the more

stringent of either false discovery rate or Bonferroni methods) were considered
outliers. In practice, o1% of images were deemed outliers. Each time point
identified as outliers was later included as nuisance covariates in the first-level
models.

Next, functional images were corrected for differences in the acquisition timing
of each slice and were motion corrected (realigned) using SPM. The functional
images were warped to SPM’s normative atlas (warping parameters estimated from
co-registered, high-resolution structural images), interpolated to 2� 2� 2mm3

voxels and smoothed with an 8mm full width at half maximum Gaussian kernel.
This smoothing level has been shown to improve inter-subject functional
alignment, while retaining sensitivity to mesoscopic activity patterns that are
consistent across individuals71.

Single trial analysis except for Study 2 and 5. For each study, except for Study 2
and 5, we employed the single trial or ‘single-epoch’ design and analysis
approach72. We estimated single-trial response magnitudes for each brain voxel
using a general linear model design matrix with separate regressors for each trial, as
in the ‘beta series’ approach73. First, boxcar regressors, convolved with the
canonical haemodynamic response function (HRF), were constructed to model cue
(if any), pain stimulations (somatic or vicarious) and rating periods in each study.
Then, we included a regressor for each trial, as well as nuisance covariates (for
example, linear drift across time within each run; the six estimated head motion
parameters (x, y, z, roll, pitch and yaw); indicator vectors for outlier time points
identified based on their multivariate distance from the other images in the
sample).

One important consideration in the single trial analysis is that trial estimates
could be strongly affected by acquisition artifacts that occur during that trial
(for example, sudden motion, scanner pulse artifacts and so on). For this reason,
trial-by-trial variance inflation factors (VIFs, a measure of design-induced
uncertainty due, in this case, to colinearity with nuisance regressors) were
calculated and any trials with VIFs that exceeded 2.5 were excluded from the
following analyses. For Study 3, we also excluded global outliers (trials that
exceeded three standard deviations above the mean) and employed a denoising step
based on principal component analysis during preprocessing to minimize artefacts.

Single trial analysis for Study 2 and 5. For Study 2 and 5, single trial analyses
were based on fitting a set of three basis functions rather than the standard
HRF used in the other studies. This flexible strategy allowed the shape of the
modeled HRF to vary across trials and voxels. This procedure differed from that
used in other studies included in the current study, mainly because it maintains
consistency with the procedures used in the original publication53. For both
Study 2 and Study 5, the pain period basis set consisted of three curves shifted in
time and was customized for thermal pain responses based on previous studies53.
To estimate cue-evoked responses for Study 5, the pain anticipation period was
modelled using a boxcar epoch convolved with a canonical HRF. This epoch was
truncated at 8 s, to ensure that fitted anticipatory responses were not affected by
noxious stimulus-evoked activity. As with the other studies, we included nuisance
covariates and excluded trials with VIFs42.5. In Study 5, we also excluded trials
that were global outliers (those that exceeded 3 s.d. above the mean). We
reconstructed the fitted basis functions from the flexible single trial approach to
compute the area under the curve for each trial and in each voxel. We used these
trial-by-trial area under the curve values as estimates of trial-level pain-period
activity.

Developing SIIPS1. We developed the SIIPS1 using single-trial estimates of brain
responses during individual epochs of noxious heat from 137 participants in
Studies 1–4 (8,224 images total; we removed non-painful trials in the signature
development step, resulting in 6,740 images total and 50 trial images per person on
average). We used two-step approach that consisted of individual- and group-level
analyses.

For each individual, we first regressed out stimulus intensity and NPS response
from single-trial estimates of brain activity and pain ratings. The NPS response was
calculated using the dot product of a vectorized single-trial activation map with the
NPS weights. We removed the effects of stimulus intensity (temperature) using a
non-parametric method by creating indicator regressors for different levels of
stimulus intensity (that is, temperature). This model effectively matches on
stimulus intensity, as it removes the mean pain ratings and mean brain activity
within each voxel for each stimulus intensity level. We also included the
NPS response as an additional regressor to account for remaining variations in
peripheral nociceptive input within-temperature to the degree possible. Thus, the
residuals that we used to predict pain are orthogonalized with respect to the
subspace that spans stimulus intensity effects (linear and nonlinear) and the NPS.
Then, we used PCR39 to predict residualized pain rating from the residualized
single-trial whole brain activity to obtain stable predictive models with high-
dimensional, collinear predictors.

After we obtained predictive maps for all individuals using PCR, we constructed
a group map using precision-weighted average. For precision estimates, we
calculated prediction–outcome correlation with tenfold cross-validation for each
subject. Before calculating weighted averages, we normalized each participant’s
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PCR weights using s.d. of the weights to minimize differences in scales across
studies. To examine which brain regions made reliable contributions to prediction
across participants, we conducted weighted t-test (Fig. 1c). To capture common
neural components across different types of top–down and endogenous cerebral
influences on pain, studies in the training data included a heterogeneous set of
psychological modulation tasks (or no psychological modulation) in the training
data sets (Supplementary Table 2). For the graphical overview of the SIIPS1
development, see Supplementary Fig. 1.

Testing the SIIPS1 on new data sets. To test the SIIPS1’s performance in
independent testing data sets, we calculated the strength of pattern expression
of the SIIPS1 (that is, signature response) using the dot product of a vectorized
single-trial activation map with the SIIPS1 pattern weights, yielding a scalar value.
In the multi-level general linear model and mediation analyses, we used the SIIPS1
response calculated from the single-trial beta images. For training data sets, we
used a leave-one-participant-out test, which iteratively derives pattern maps from
training data, except for one out-of-sample participant, and calculated the signature
response for the out-of-sample participant.

Correlation analyses with stimulus intensity. We first obtained contiguous
regions from the SIIPS1 that survived false discovery rate correction (qo0.05) and
were larger than 15 voxels (except for the right NAc, which has 7 voxels), resulting
in 44 contiguous sub-regions. With these regions, we calculated correlations
between brain regions’ local pattern expression (using absolute pattern weights)
and trial-by-trial noxious stimulus intensity for each participant. The reason we
used absolute weight values in this analysis is to make correlation values easy to
interpret; positive correlations mean positive relationships between the region’s
activation and stimulus intensity, and negative correlations indicate negative
relationships between the region’s activation and stimulus intensity. We then
obtained mean correlations across six independent studies combining training and
testing data sets (N¼ 183). For significance testing, the correlations were converted
to z-values using Fisher’s z-transformation and t-test was conducted on the Fisher’s
z-values across participants. Then, we corrected P-values for multiple comparisons
using the Bonferroni procedure (a¼ 0.05/44¼ 0.0011).

Univariate analyses. To test the relative performance of the multivariate model to
a univariate voxel-wise model in explaining variations in trial-by-trial pain ratings,
we constructed a univariate map using an encoding–decoding approach. As in the
multivariate analyses, the univariate analysis consisted of individual- and group-
level analysis steps. For the individual-level analysis, we estimated b-coefficients
(regression slopes) for each voxel based on the regression models that predicted
each voxel’s residualized brain activity from residualized pain ratings in training
data sets, (Studies 1–4). We then constructed a group map by averaging the uni-
variate maps for all individuals and thresholded the map (only for display) by
performing a one-sample t-test with false discovery rate qo0.05 (equivalent to
voxel-wise Po0.0085; Supplementary Fig. 5a). To decode pain in out-of-sample
test participants, we inverted the model to make predictions for each test individual
by treating the averaged b-coefficients as predictive weights and averaging the
univariate predictions from each voxel across the brain into a single predicted pain
value for each test trial. For the training data, we used a leave-one-participant-out
cross-validation, which iteratively derives maps from training data excluding one
out-of-sample participant and calculated predicted pain for each trial in the
out-of-sample participant. We then summarized the predictive accuracy across all
test individuals (that is, across folds in Studies 1–4 and across new individuals in
Studies 5–6).

Multilevel general linear model. First, to quantify joint contributions of the
SIIPS1 and NPS to pain (Fig. 4), we used multilevel general linear model, imple-
mented with custom code written in Matlab (glmfit_multilevel.m; available at
https://github.com/canlab/CanlabCore). The outcome variable was trial-by-trial
pain ratings and the dependent variables included trial-by-trial pattern expression
of the SIIPS1 and the NPS. To compare the two b-coefficients, the standardized
values (z-scored pattern expression values across trials) were used for the
dependent variables. We calculated the SIIPS1 response for the training data sets
using a leave-one-participant-out cross-validation procedure. For significance
testing, we used bootstrap tests, where two-tailed P-values were calculated based on
the distributions of group-level regression coefficients estimated by randomly
sampling (with replacement) the observations 10,000 times. In addition, the
Empirical Bayes weighting procedure based on first-level variance estimates of
b-coefficients was used in second-level analyses including bootstrap tests74. The
variance explained (R2) by the full and reduced models was calculated for each
participant and then averaged for group-level estimates. For significance testing of
R2, we used permutation tests, where trial labels for the variable tested were
randomly shuffled for each participant, and the group-level R2 with the permuted
data was estimated for each iteration. Then, two-tailed P-values were calculated
based on the distributions of the group-level estimate of R2 for the models of
interest.

Second, the multilevel general linear model was also used to examine the effects
of psychological interventions on pain ratings in Studies 5 and 6 (Fig. 5). In these
analyses, the outcome variable was trial-by-trial pain ratings and the dependent

variables were experimental conditions. For more details about the coding scheme
of the dependent variables, please refer to the next section (Multilevel mediation
analysis) or Fig. 5b,d.

Multilevel mediation analysis. To examine which combination of the SIIPS1 and
the NPS mediates the effects of psychological intervention, multilevel mediation
analyses were performed using the Mediation Toolbox written in Matlab
(mediation.m for two-path mediation and mediation_threepath.m for three-path
mediation17; available at https://github.com/canlab/MediationToolbox). The
mediation analysis tests whether a covariance between two variables (X and Y)
can be explained by one (M) or two intermediate variables (M1 and M2).
More technical details on the two-path and three-path mediation analyses
implemented in the Mediation Toolbox can be found in refs 17,75.

In the current study, a psychological manipulation for each study was entered as
a predictor (X), trial-by-trial pain ratings were entered as an outcome variable (Y)
and the trial-by-trial SIIPS1 and NPS responses were entered as mediators (M).
For Study 5, low-pain cue followed by medium pain (LM) was coded as 1 and
high-pain cue followed by medium pain (HM) was coded as � 1. For Study 6’s
expectancy manipulation, cues associated with a 20% probability of receiving
high-pain (80/20 cue pair) were coded as 1 (LE) and cues associated with
a 50% probability of receiving high pain (50/50 cue pair) were coded as � 1 (HE).
For the perceived control manipulation in Study 6, high perceived control trials
(making cue choices) were coded as 1 and low perceived control trials (observing
cue choices) were coded as � 1. For Study 6, stimulus intensity (temperature) was
entered as a covariate. In addition, in the analysis for the perceived control, we
included the self-reported perceived control as the first mediator (M1), and the
SIIPS1 and the NPS were tested for the second mediators (M2) using three-path
mediation. Bootstrap tests (10,000 iterations) were used for significance testing of
mediation effects.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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