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Abstract
Objective To investigate the optimal method of adding motor features to a clinical rating scale for frontotemporal dementia 
(FTD).
Methods Eight hundred and thirty-two participants from the international multicentre Genetic FTD Initiative (GENFI) study 
were recruited: 522 mutation carriers (with C9orf72, GRN and MAPT mutations) and 310 mutation-negative controls. A 
standardised clinical questionnaire was used to assess eight motor symptoms (dysarthria, dysphagia, tremor, slowness, weak-
ness, gait disorder, falls and functional difficulties using hands). Frequency and severity of each motor symptom was assessed, 
and a principal component analysis (PCA) was performed to identify how the different motor symptoms loaded together. 
Finally, addition of a motor component to the  CDR® plus NACC FTLD was investigated  (CDR® plus NACC FTLD-M).
Results 24.3% of mutation carriers had motor symptoms (31.7% C9orf72, 18.8% GRN, 19.3% MAPT) compared to 6.8% of 
controls. Slowness and gait disorder were the commonest in all genetic groups while tremor and falls were the least frequent. 
Symptom severity scores were similar to equivalent physical motor examination scores. PCA revealed that all motor symp-
toms loaded together so a single additional motor component was added to the  CDR® plus NACC FTLD to form the  CDR® 
plus NACC FTLD-M. Individual global scores were more severe with the  CDR® plus NACC FTLD-M, and no patients with 
a clinically diagnosed motor disorder (ALS/FTD-ALS or parkinsonism) were classified anymore as asymptomatic (unlike 
the  CDR® plus NACC FTLD alone).
Conclusions Motor features are present in mutation carriers at all disease stages across all three genetic groups. Inclusion 
of motor symptoms in a rating scale that can be used in future clinical trials will not only ensure a more accurate severity 
measure is recorded but that a wider spectrum of FTD phenotypes can be included in the same trial.

Keywords Frontotemporal dementia · Genetics · Motor · Tau · Progranulin · C9orf72

Introduction

Frontotemporal dementia (FTD) is a neurodegenerative dis-
order that can present with a wide spectrum of phenotypes 
including behavioural, language and motor symptoms. It is 
often a sporadic condition but in around a third of individu-
als it is inherited, with the main autosomal dominant genetic 
mutations being found in progranulin (GRN), microtubule-
associated protein tau (MAPT) and chromosome 9 open 
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reading frame 72 (C9orf72) [1, 2]. Whilst there are cur-
rently no disease-modifying therapies for FTD, trials are 
now underway, and efforts are being made to develop robust 
outcome measures. However, clinical rating scales have so 
far focused only on changes in behaviour and language, with 
the exclusion of motor features.

Importantly, and highlighting the need to include such 
symptoms in outcome measures, motor features can develop 
not only as the disease progresses in people whose present-
ing phenotype is behavioural (behavioural variant FTD, 
bvFTD) or linguistic (primary progressive aphasia, PPA), 
but also as part of a primary phenotype. The main motor 
syndromes in FTD are atypical parkinsonian disorders, 
including progressive supranuclear palsy (PSP) and cor-
ticobasal syndrome (CBS) [3, 4], and motor neurone dis-
ease (MND), also known as amyotrophic lateral sclerosis, 
ALS [5]. Classical PSP (Richardson’s syndrome) involves 
an early vertical supranuclear gaze palsy with an akinetic-
rigid syndrome and subsequent falls [6], although it is now 
well-recognised that PSP can overlap with other syndromes 
including bvFTD and PPA [7, 8], [9]. CBS is characterised 
by progressive asymmetric rigidity and apraxia with addi-
tional features including alien limb syndrome, cortical sen-
sory loss and myoclonus [10, 11], and has also been shown 
to overlap with both bvFTD and PPA [12, 13]. ALS causes 
progressive weakness, muscle atrophy and fasciculations 
[14], with around 15–20% of people developing FTD (usu-
ally bvFTD rather than PPA, and referred to as FTD-MND 
or FTD-ALS) and a further 30–40% developing cognitive 
impairment not meeting criteria for FTD [15–19].

In genetic FTD, motor features are seen in all three of the 
major genetic causes. C9orf72 expansions are the common-
est cause of genetic ALS, with the motor syndrome occur-
ring alone or in combination with FTD (Devenney et al., 
2015). However, some studies have also shown that C9orf72 
mutation carriers can develop atypical parkinsonism [20, 
21], although it is uncommon for this to be the initial pres-
entation [22]. ALS is extremely rare in those with GRN or 
MAPT mutations [22] but a substantial minority can present 
with parkinsonism. In ~ 5% of GRN mutation carriers CBS 
is the presenting syndrome, although it can also develop 
subsequently in other patients whose initial syndrome is 
bvFTD or PPA [22–25]. Similarly, MAPT mutation carri-
ers can also present with CBS (in 2% in one study, Moore 
et al., 2020) as well with PSP (4%) or with a parkinsonian 
syndrome that resembles idiopathic Parkinson’s disease (PD, 
up to 5%) [26–30].

Whilst motor features exist in individuals with FTD with 
and without a primary motor diagnosis they are not yet 
included in any of the main rating scales currently used for 
FTD, e.g. the  CDR® plus NACC FTLD [31] or FTD Rat-
ing Scale [32]. Inclusion of this domain will be important 
in any comprehensive scale of the FTD spectrum, as motor 

deficits and functional impairment are closely aligned and 
may impact quality of life [33–35].

This study aims to understand the frequency and sever-
ity of motor features in genetic FTD using data from the 
international multicentre Genetic FTD Initiative (GENFI). 
Through this analysis, the study aims to investigate how 
best to incorporate motor symptoms into any FTD scale. 
This will be important for future clinical trials, allowing 
more accurate measurement of progression and treatment 
response, as well as offering insight into the impact of motor 
features on the lives of patients living with FTD and their 
caregivers.

Methods

Participants

Participants were recruited from the fifth data freeze of the 
GENFI study between 20 January 2012 and 30 May 2019, 
including sites in the UK, Canada, Belgium, Germany, Italy, 
Netherlands, Portugal, Spain, and Sweden. All aspects of the 
study were approved by local ethics committees, and written 
informed consent obtained from all participants.

The standardised GENFI clinical assessment includes a 
history, examination, cognitive assessment, and the  CDR® 
plus NACC FTLD rating scale [31]. Mutation carriers were 
classified into asymptomatic, prodromal, or symptomatic if 
they scored 0, 0.5 or ≥ 1, respectively, on the  CDR® plus 
NACC FTLD global score.

All mutation carriers with baseline clinical data were 
included: 522 in total, consisting of 221 C9orf72, 213 GRN, 
and 88 MAPT mutation carriers. Within this group 291 
(56%) were asymptomatic, 82 (16%) were prodromal, and 
149 (29%) were fully symptomatic according to  CDR® plus 
NACC FTLD global score (Table 1). Symptomatic status 
was also assessed separately by a clinician, judging people 
to have a clinical diagnosis based on consensus criteria: from 
this assessment 110 had bvFTD [36], 26 had PPA (of whom 
16 had nonfluent variant, one had semantic variant and nine 
had PPA not meeting criteria for any of the core syndromes) 
[37], 17 had ALS or FTD-ALS [19] and five had a parkin-
sonian syndrome [9, 38]. The control group consisted of 
at-risk family members who were mutation negative (and 
had a  CDR® plus NACC FTLD global score of 0 or 0.5): 310 
in total. Demographics of the groups are shown in Table 1.

Motor features

Motor symptoms were investigated within the history assess-
ment using a standardised questionnaire developed for the 
GENFI study, and consisting of eight motor symptoms, dys-
arthria, dysphagia, tremor, slowness, weakness, gait disor-
der, falls and functional difficulties using hands, each scored 
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using a symptom severity scale along the lines of that used 
in the CDR i.e. 0 (absent), 0.5 (very mild/questionable), 1 
(mild), 2 (moderate), and 3 (severe) (see Supplementary 
Table 1 for details).

Motor features are also captured in GENFI within the 
structured neurological examination assessment and 
include face weakness, bulbar palsy, pseudobulbar palsy, 
neck weakness, rest tremor, postural tremor, bradykinesia, 
upper and lower limb weakness, upper limb apraxia, alien 
limb syndrome, cortical sensory loss, ataxia, abnormal gait 
and postural instability. In order to compare whether motor 
symptoms recorded in the history are compatible with motor 
examination deficits found on examination, we explored the 
relationship of each motor symptom with an approximately 
equivalent composite of motor examination features. This 
composite was given a single score of 0, 0.5, 1, 2 or 3 cal-
culated using the same algorithm as that used to generate 
a  CDR® plus NACC FTLD global score [31]. The equiva-
lent examination features for each symptom are shown in 
parentheses as follows: dysarthria (face weakness, bulbar 
palsy, pseudobulbar palsy), dysphagia (face weakness, 
bulbar palsy, pseudobulbar palsy, neck weakness), tremor 
(rest tremor, postural tremor); slowness (bradykinesia), 
weakness (face weakness, neck weakness, upper and lower 
limb weakness), gait disorder (ataxia, abnormal gait), falls 
(ataxia, abnormal gait, postural instability), and functional 
difficulties using hands (upper limb apraxia, alien limb syn-
drome, cortical sensory loss, bradykinesia and upper limb 
weakness).

Statistical analysis

All statistical analyses were performed using Stata/MP 16.1 
unless otherwise stated. All graphs were produced using 
GraphPad Prism 9 apart from the Sankey diagrams which 
were made using SankeyMATIC.

Statistical tests of normality were performed using the 
Shapiro–Wilk test. Demographics were compared between 
groups using either linear regression (age and education) 
or a chi-squared test (sex). Linear regressions adjusting 
for age and sex were used to compare the MMSE and the 
 CDR® plus NACC FTLD. Individual motor symptoms were 
compared in each disease group versus controls using linear 
regressions adjusting for age and sex, and 95% bias-cor-
rected bootstrapped confidence intervals with 2000 repeti-
tions (as there was minimal variation from zero in severity 
scores for the control group), and between genetic groups 
using an ordinal logistic regression adjusting for age and sex.

Principal component analysis (PCA) using R version 
4.1.2 [39] was performed in all mutation carriers together 
to identify how different motor symptoms loaded together. 
Components with an eigenvalue greater than one were 
selected and the varimax rotation was used. Similar PCA 

were also performed in the C9orf72 and GRN mutation 
carriers, but insufficient nonzero scores precluded a sepa-
rate PCA within the MAPT group.

Rating scale analysis

Finally, we investigated adding a motor component to the 
 CDR® plus NACC FTLD rating scale. Firstly, we used 
a single global score that was part of the GENFI clini-
cal assessment where the clinician was asked to give an 
overall judgement of the severity of motor symptoms 
(called here the Global Motor Score—see Supplementary 
Table 1). We compared the addition of this score to the 
 CDR® plus NACC FTLD (which we call the  CDR® plus 
NACC FTLD-M) with the original  CDR® plus NACC 
FTLD. Secondly, we investigated using a different type 
of motor score that combines the individual motor symp-
toms recorded within the GENFI symptom scales (using 
the methodology described in Supplementary Table 2) 
rather than the global score. We then compared the addi-
tion of this Algorithm-based Motor Score to the  CDR® 
plus NACC FTLD (which we call the  CDR® plus NACC 
FTLD-MI, for individual symptoms) with the  CDR® plus 
NACC FTLD-M.

Results

Demographics

No significant differences were seen between the mutation 
groups in years of education, but the overall mutation carrier 
group and C9orf72 mutation carriers had, on average, sig-
nificantly fewer education years than controls (p = 0.024 and 
p = 0.048, respectively). C9orf72 and GRN mutation carriers 
were significantly older than controls (both p < 0.001) and 
MAPT mutation carriers (p < 0.001 and p = 0.001, respec-
tively), whilst the C9orf72 mutation group contained more 
males than the GRN mutation group  (Chi2 = 3.91, p = 0.048) 
(Table 1).

Disease severity

The MMSE and  CDR® plus NACC FTLD Sum of Boxes 
scores were significantly different to controls in each genetic 
group (Table  1). There were no significant differences 
between the mutation groups apart from for the  CDR® plus 
NACC FTLD which was higher in the overall C9orf72 and 
MAPT groups compared with the GRN group (p = 0.016 and 
p = 0.043, respectively).
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Motor diagnoses in the GENFI cohort

In total, 4.2% of mutation carriers had a primary motor 
diagnosis: 3.3% with ALS or FTD-ALS and 1.0% with par-
kinsonism. Stratifying by individual genetic group, 7.7% of 
C9orf72 mutation carriers had a motor diagnosis, all with 
ALS/FTD-ALS, in comparison with 1.4% of GRN muta-
tion carriers, 0.5% with PSP, 0.5% with CBS and 0.5% with 
a diagnosis of PD, and 2.3% of MAPT mutation carriers, 
1.1% with PSP and 1.1% with CBS. Stratifying by  CDR® 
plus NACC FTLD, 1.4% of mutation carriers with a global 

score of 0 (2.7% C9orf72, 0.0% GRN, 2.0% MAPT), 6.1% of 
mutation carriers with a global score of 0.5 (13.5% C9orf72, 
0.0% GRN, 0.0% MAPT), and 8.7% of mutation carriers with 
a  CDR® plus NACC FTLD global score ≥ 1 (12.5% C9orf72, 
5.8% GRN, 4.0% MAPT) had a motor diagnosis (Table 1, 
Fig. 1).

Frequency and severity of motor symptoms 
in the GENFI cohort

Motor symptoms were reported in 24.3% of all mutation car-
riers: 31.7% of the C9orf72 group, 18.8% of the GRN group, 
and 19.3% of the MAPT group. In comparison, only 6.8% of 
controls showed any symptoms. Stratifying by  CDR® plus 
NACC FTLD, motor symptoms occurred in 5.5% of muta-
tion carriers with a global score of 0 (7.1% C9orf72, 4.6% 
GRN, 4.1% MAPT), 20.7% of mutation carriers with a global 
score of 0.5 (32.4% C9orf72, 9.7% GRN, 14.3% MAPT), and 
63.1% of mutation carriers with a global score ≥ 1 (69.4% 
C9orf72, 59.6% GRN, 52.0% MAPT) (Table 1, Fig. 1).

In the combined mutation carrier group, slowness was the 
most frequent and severe motor symptom, followed by gait 
disorder (Table 2, Supplementary Table 3). Stratifying this 
group by  CDR® plus NACC FTLD, all of the motor symp-
toms were significantly more impaired than controls when 
the global score was ≥ 1: slowness (frequency 48.3%, mean 
(standard deviation) severity 0.65 (0.83)) and gait impair-
ment (40.9%, 0.55 (0.84)) again being the most significantly 
impaired, but with all other symptoms being present with a 
frequency between 22.1 and 28.9% (Table 2) and a mean 
severity between 0.27 and 0.40 (Supplementary Table 3). 
At the prodromal stage  (CDR® plus NACC FTLD global 
score of 0.5) weakness (12.2%, 0.15 (0.51)), gait disorder 
(8.5%, 0.11 (0.44)) and functional difficulties using hands 
(8.5%, 0.12 (0.50)) were significantly impaired compared 
with controls. At a  CDR® plus NACC FTLD global score 
of 0 none of the symptoms were significantly impaired com-
pared with controls.
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Fig. 1  Frequency of participants with a motor diagnosis compared 
to those with motor symptoms, in asymptomatic  (CDR® plus NACC 
FTLD 0), prodromal (0.5) and symptomatic (≥ 1) mutation carriers. 
Specific motor diagnoses in the mutation carrier groups are shown 
below: ALS—amyotrophic lateral sclerosis, PD—Parkinson’s dis-
ease, PSP—progressive supranuclear palsy, CBS—corticobasal syn-
drome

Table 2  Frequency of individual motor symptoms in controls and mutation carriers. Shown as percentage of all mutation carriers in that group

Controls All mutation carriers C9orf72 GRN MAPT

CDR® plus NACC FTLD 0 0.5 1 + 0 0.5 1 + 0 0.5 1 + 0 0.5 1 +

Dysarthria 1.3 0.3 7.3 26.2 0.9 13.5 31.9 0.0 3.2 26.9 0.0 0.0 8.0
Dysphagia 1.0 0.3 7.3 24.2 0.9 13.5 36.1 0.0 3.2 15.4 0.0 0.0 8.0
Tremor 4.5 3.1 4.9 26.2 3.6 2.7 33.3 3.1 6.5 25.0 2.0 7.1 8.0
Slowness 1.3 1.0 6.1 48.3 1.8 10.8 54.2 0.0 3.2 40.4 2.0 0.0 48.0
Weakness 1.3 2.4 12.2 22.1 4.5 18.9 34.7 0.8 6.5 15.4 2.0 7.1 0.0
Gait disorder 1.9 1.4 8.5 40.9 2.7 13.5 51.4 0.8 6.5 32.7 0.0 0.0 28.0
Falls 1.0 1.0 4.9 27.5 1.8 10.8 37.5 0.0 0.0 19.2 2.0 0.0 16.0
Functional difficulties using hands 0.3 2.1 8.5 28.9 2.7 16.2 37.5 1.5 3.2 23.1 2.0 0.0 16.0
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Stratifying by genetic group, all symptoms were sig-
nificantly impaired in the symptomatic  (CDR® plus NACC 
FTLD ≥ 1) C9orf72 mutation carriers, with slowness 
and gait disorder being the most frequent (54.2%, 51.4%, 
respectively) and severe (0.77 (0.86), 0.71 (0.91)). Weak-
ness (18.9%, 0.26 (0.71)) and functional difficulties using 
hands (16.2%, 0.26 (0.72)) were significantly impaired 
when  CDR® plus NACC FTLD was 0.5 while tremor was 
the least frequent and severe symptom in C9orf72 mutation 
carriers (Table 2, Supplementary Table 3). In symptomatic 
GRN mutation carriers all symptoms apart from dysphagia, 
were significantly impaired compared with controls, with 
slowness and gait disorder again being the most frequent 
(40.4%, 32.7%) and severe (0.60 (0.88), 0.47 (0.84)). No 
symptoms were impaired compared with controls at a  CDR® 
plus NACC FTLD of 0 or 0.5. As with the other two groups, 
slowness and gait disorder were the most frequent (48.0%, 
28.0%) and severe (0.40 (0.52), 0.24 (0.48)) symptoms in 
symptomatic MAPT mutation carriers (although only slow-
ness was significantly impaired compared with controls). 
Other symptoms were in general less frequent, and no symp-
toms were significantly impaired at a  CDR® plus NACC 
FTLD of 0 or 0.5.

Comparing motor symptoms and examination 
scores

In general the two different methods of measuring motor 
features were not substantially different: for all the muta-
tion carriers, mean severity score was 0.12 (0.47) for motor 
symptom and 0.03 (0.15) for motor examination for dysar-
thria, 0.09 (0.36) and 0.03 (0.18) for dysphagia, 0.11 (0.37) 
and 0.10 (0.32) for tremor, 0.20 (0.54) and 0.13 (0.41) for 
slowness, 0.12 (0.44) and 0.06 (0.29) for weakness, 0.19 
(0.55) and 0.08 (0.22) for gait disorder, 0.11 (0.40) and 0.12 
(0.39) for falls, and 0.15 (0.49) and 0.22 (0.56) for functional 
difficulties using hands. On an individual basis, the symptom 
severity score tended to be more severe compared with the 
equivalent examination score for all of the motor symptoms 
except for falls and functional difficulties using hands where 
the opposite was the case (Supplementary Fig. 1).

Principal component analysis

All motor symptoms were highly correlated with one 
another. Consistent with this, the motor symptoms PCA in 
the combined mutation carriers group loaded onto a sin-
gle component, with a proportion of variance explained 
of 79% (Table 3). A single component was also found for 
the C9orf72 and GRN mutation carriers. This supports the 
hypothesis that motor symptoms have a common underly-
ing cause of variance, and so may be measured by a single 
numerical summary score.

Rating scale analysis

The  CDR® plus NACC FTLD and  CDR® plus NACC FTLD-
M global scores were significantly positively correlated 
(ρ = 0.980, p < 0.001). However, individual global scores 
tended to be more severe for  CDR® plus NACC FTLD-M: 
more mutation carriers were prodromal (0.5), mild (1) and 
moderately (2) affected with  CDR® plus NACC FTLD-M 
compared with  CDR® plus NACC FTLD: 16.5 versus 16.2% 
prodromal; 6.6% versus 5.9% mild; 6.6% versus 6.3% mod-
erate (Fig. 2). Furthermore, no patients with ALS/FTD-ALS 
were classified anymore as asymptomatic (compared with 
17.7% for the original  CDR® plus NACC FTLD), and more of 
this group were now classified as mildly (41.2% vs 23.5%) and 
moderately (17.7% vs 5.9%) affected. Similarly, no patients 
with parkinsonism were classified as asymptomatic anymore 
(compared with 20.0% for the original  CDR® plus NACC 
FTLD) (Fig. 2). No significant changes were seen in the dis-
tributions of the bvFTD and PPA groups.

The Global Motor Score was significantly positively cor-
related with the Algorithm-based Motor Score (ρ = 0.902, 
p < 0.001). However, slightly fewer people tended to be scored 
as asymptomatic (82.2% vs 85.6%) and more people scored as 
very mild (8.9% vs 5.8%) using the Algorithm-based Motor 
Score (Supplementary Fig.  2). Comparing each of them 
together as part of an addition to the  CDR® plus NACC FTLD, 
this translated into a slightly greater percentage being scored 
as prodromal (0.5: 16.5% for  CDR® plus NACC FTLD-M vs 
18.2% for  CDR® plus NACC FTLD-MI) rather than asympto-
matic (0: 64.5% vs 63.0%) for the  CDR® plus NACC FTLD-
MI (Supplementary Fig. 3).

Table 3  Principal component analysis of motor symptoms in all 
mutation carriers and in the individual genetic mutation groups

All muta-
tion carriers

C9orf72 GRN

Component 1 1 1
Dysarthria 0.86 0.84 0.86
Dysphagia 0.86 0.82 0.90
Tremor 0.75 0.72 0.81
Slowness 0.92 0.91 0.95
Weakness 0.89 0.89 0.88
Gait disorder 0.96 0.96 0.95
Falls 0.90 0.94 0.78
Functional difficulties using hands 0.94 0.93 0.95
Proportion of variance explained by 

component
0.79 0.77 0.78



1472 Journal of Neurology (2023) 270:1466–1477

1 3

Discussion

This study has shown that motor symptoms are common 
in genetic FTD, occurring more frequently than primary 
motor diagnoses, and affecting C9orf72 more than MAPT 
or GRN mutation carriers. Slowness and gait impairment 
were the most common motor symptoms in the cohort but 
PCA revealed that all motor symptoms were strongly cor-
related and loaded together in a single component. Addition 
of a Global Motor Score to the  CDR® plus NACC FTLD 
scale produced a new  CDR® plus NACC FTLD-M scale 
which led to a more accurate measure of disease severity 
than the original scale, e.g. no patients clinically judged to 

be symptomatic and diagnosed with a primary motor disor-
der now had a global score of 0 i.e. considered asymptomatic 
on the  CDR® plus NACC FTLD scale.

Motor symptoms were present in a quarter of the cohort, 
much higher than the 4% of participants with a primary 
motor diagnosis. However, there was an increase in the 
number of people with motor symptoms as disease sever-
ity increased, from 6% asymptomatically to 21% in the 
prodromal period, to 63% at the symptomatic stage. The 
steep increase in frequency of motor symptoms noted when 
mutation carriers become symptomatic suggests that their 
development occurs at a later stage of genetic FTD for many 
people [3–5]. Nonetheless, around a third of symptomatic 

Fig. 2  Comparison of the standard  CDR® plus NACC FTLD with 
a new  CDR® plus NACC FTLD plus Global Motor Score  (CDR® 
plus NACC FTLD-M). Top figure shows the change in global score 
in individual participants and bottom figure shows the percentage of 
symptomatic participants with a particular CDR score (left shows 

standard  CDR® plus NACC FTLD, right shows new  CDR® plus 
NACC FTLD-M). Diagnoses: bvFTD, behavioural variant frontotem-
poral dementia; PPA, Primary Progressive Aphasia; ALS/FTD-ALS, 
Amyotrophic Lateral Sclerosis; Parkinsonism (Progressive Supranu-
clear Palsy, Corticobasal Syndrome or Parkinson’s Disease)
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patients remain without any motor impairment within the 
GENFI cohort at time of assessment.

Overall, slowness and gait disorder were the most com-
mon of the motor symptoms, when all mutation carriers 
were considered together and also in each individual genetic 
group. This may well be because these two features both 
encompass a number of different neurological features. 
Slowness could be due to the presence of bradykinesia in 
a parkinsonian disorder, but also due to the presence of 
weakness or rigidity in a motor neuron disease. Similarly, a 
person’s gait can be abnormal in genetic FTD due to many 
reasons including both an akinetic-rigid syndrome or ALS, 
as well as ataxia in some cases.

Within the genetic mutation groups C9orf72 mutation 
carriers had the most symptoms at every CDR stage with 
features mostly suggestive of ALS (including both limb and 
bulbar features). In contrast, GRN and MAPT mutation car-
riers had fewer individuals with symptoms, although in those 
who did have motor impairment, features were suggestive 
of parkinsonism (with fewer bulbar symptoms). These find-
ings are consistent with the distribution of motor diagnoses 
across the genetic groups, with ALS/FTD-ALS occurring 
exclusively in C9orf72 mutation carriers, and parkinsonian 
disorders occurring more commonly in GRN and MAPT 
mutation carriers. In turn, this fits in with the known litera-
ture on motor diagnoses in genetic FTD [20, 23–25, 40–43].

The focus of this study was on patient and caregiver-
reported symptoms in order to be able to design a mod-
ule for a clinical rating scale that was patient-focused and 
relevant to quality of life. However, in day-to-day clinical 
practice (and in the GENFI study) a physical neurological 
examination is performed to reinforce and extend the find-
ings from the clinical history. Whilst these may correspond 
relatively well, signs can be present on examination without 
causing symptoms and, vice versa, some symptoms can be 
reported despite little to find on examination. Although it is 
difficult to exactly match symptoms described from the his-
tory to motor signs found on neurological examination, we 
performed a comparison of symptoms and signs to ensure 
there were no major inconsistencies between these two 
assessment methods. Overall, the matched motor symptom 
and examination scores were similar, albeit with a tendency 
for the symptom severity to be more severe in most of the 
domains. We felt this was supportive of using the GENFI 
symptom questionnaire as the main input to a new clinical 
rating scale motor module.

In the PCA all motor symptoms loaded together in muta-
tion carriers as a whole and within both the C9orf72 and 
GRN genetic groups (with not enough data currently to fit a 
separate PCA for MAPT mutations). This is distinct from a 
previous study focused on motor signs rather than symptoms 
in the GENFI study which found five components described 
as bulbar ALS-like, spinal ALS-like, PSP-like, CBS-like, 

and PD-like (Schonecker et al., in press). As per the discus-
sion above, this difference is likely to be related to the lack 
of one-to-one correspondence between symptoms and signs, 
and the fact that many symptoms may encompass a number 
of different physical signs across ALS and parkinsonism. 
The finding of one component only in this study within the 
PCA provides support for a single motor module to be added 
to any clinical rating scale as long as symptoms rather than 
signs are considered.

The addition of a Global Motor Score to the  CDR® plus 
NACC FTLD to form the  CDR® plus NACC FTLD-M leads 
to a more accurate measure of disease severity within genetic 
FTD by accounting for symptoms not previously included. 
This is reflected in generally higher global scores in partici-
pants, i.e. increased disease severity. In particular, individu-
als with ALS/FTD-ALS and parkinsonism (PD, PSP, CBS) 
are no longer scored artificially low in their disease severity 
(and in some cases at a score of 0 i.e. ‘asymptomatic’ on the 
 CDR® plus NACC FTLD). However, the increase in score 
was not just in those with a primary motor diagnosis as the 
bvFTD group had higher  CDR® plus NACC FTLD-M scores 
than  CDR® plus NACC FTLD, consistent with the addi-
tional presence of motor features in bvFTD, as reported in 
multiple prior studies. In contrast, there was little change in 
the PPA group where motor symptoms may occur but are 
less frequent [44–46]. Overall, the increased accuracy of this 
new scale is particularly important for forthcoming clinical 
trials which require scales that are able to detect mutation 
carriers at the earliest disease stages and are able to account 
for the whole spectrum of phenotypes within genetic FTD.

Global Motor and Algorithm-based Motor Scores were 
strongly correlated but interestingly people tended to have 
a higher score when individual symptoms were measured 
and combined in the Algorithm-based Motor Score, rather 
than when a Global Motor Score was recorded. It may be 
that by focusing on individual symptoms more deficits are 
noted than when just asking clinicians to record an overall 
global score of motor dysfunction, which can be difficult to 
assess (and may sometimes be more of a subjective ‘feel’) 
given the diversity of the different features. This perhaps 
adds increased objectivity to the motor module in the CDR 
plus NACC FTLD-MI than the CDR plus NACC FTLD-M, 
which is important when thinking about running multicentre 
trials with multiple different raters, with an aim of reducing 
inter-rater variability.

There remain some limitations of the study. Whilst over-
all numbers are large for a study of genetic FTD, individual 
group numbers are less once stratified, and a PCA was not 
possible within the MAPT mutation group. Furthermore, 
the study focused on cross-sectional data and future studies 
should investigate change in motor features over time, and 
particularly how the  CDR® plus NACC FTLD-M performs 
longitudinally. Lastly, although each rater received training 
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in use of the scales, it will be important in future studies to 
formally assess both intra- and inter-rater variability.

In summary, motor symptoms are a key feature of 
genetic FTD, with differences in the type and extent of 
motor impairment noted between the main genetic mutation 
groups. Importantly, motor symptoms occur commonly in 
people without a primary motor diagnosis. Hence, incorpo-
rating a motor domain into a clinical rating scale for genetic 
FTD is essential for future trials. This will improve disease 
staging which in turn should optimise not only the stratifica-
tion of individuals into trials but also the accuracy of clinical 
outcome measures.
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