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Abstract
The Twelvefold Way represents Rota’s classification, addressing the most fundamental enumeration
problems and their associated combinatorial counting formulas. These distinct problems are
connected to enumerating functions defined from a set of elements denoted by N into another one
K. The counting solutions for the twelve problems are well known. We are interested in unranking
algorithms. Such an algorithm is based on an underlying total order on the set of structures we
aim at constructing. By taking the rank of an object, i.e. its number according to the total order,
the algorithm outputs the structure itself after having built it. One famous total order is the
lexicographic order: it is probably the one that is the most used by people when one wants to
order things. While the counting solutions for Rota’s classification have been known for years it is
interesting to note that three among the problems have yet no lexicographic unranking algorithm.
In this paper we aim at providing algorithms for the last three cases that remain without such
algorithms. After presenting in detail the solution for set partitions associated with the famous
Stirling numbers of the second kind, we explicitly explain how to adapt the algorithm for the two
remaining cases. Additionally, we propose a detailed and fine-grained complexity analysis based on
the number of bitwise arithmetic operations.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Generating random combinatorial structures
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1 Introduction

The Twelvefold Way, a classification from the 1960s by Rota, was introduced to address
the most fundamental enumeration problems associated with their combinatorial counting
formulas. It has been extensively discussed in Stanley’s book [23, Section 1.9]. The distinct
problems are related to the enumeration of functions defined from a set of elements denoted by
N into another set denoted by K. The respective cardinalities of these sets are denoted as n

and k. Each set may consist of either distinguishable or indistinguishable elements, resulting
in consideration of four pairs of sets. Additional constraints pertain to the properties of the
functions, whether they are injective, surjective, or arbitrary. Consequently, we encounter
twelve cases when enumerating these functions. The counting solutions are well-known,
as presented in Stanley’s book [23, Section 1.9]. In Table 1, we illustrate the classical
combinatorial object enumerating each set of functions, in contrast to Stanley, who directly
presents the counting solution.

In this paper, our focus lies in the generation of these classical combinatorial objects.
To initiate our exploration, we arrange each object within a given class in lexicographic
order. Subsequently, given the rank of an object, our goal is to construct it directly. This
process is referred to as a lexicographic unranking algorithm. For instance, among the six
permutations of {1, 2, 3}, the first one (with rank 0 in lexicographic order) is [1, 2, 3], followed
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elts of N elts of K f is arbitrary f is injective f is surjective

1. 2. 3.
dist. dist. n-sequence in K n-permutation of K composition of N

with k subsets
enumeration kn kn k! ·

{
n
k

}
lex. unranking easy [6, Section 5] Section 4.1

4. 5. 6.
indist. dist. n-multisubset of K n-subset of K composition of n

with k terms
enumeration

(
k+n−1

n

) (
k
n

) (
n−1
n−k

)
lex. unranking see survey [6] and references therein

7. 8. 9.
dist. indist. partition of N partition of N partition of N

into ≤ k subsets into ≤ k elements into k subsets
enumeration

∑k
i=0

{
n
i

}
[n ≤ k]

{
n
k

}
lex. unranking Section 4.2 easy Theorem 11

10. 11. 12.
indist. dist. partition of n partition of n partition of n

into ≤ k parts into ≤ k parts {1} into k parts
enumeration pk(n + k) [n ≤ k] pk(n)

lex. unranking [19, Section 4.8] easy [19, Section 4.8]

Table 1 The Twelvefold Way*

*The notation kn corresponds to the product k · (k − 1) · · · (k − n + 1); [n ≤ k] is the Iverson bracket returning
1 when n ≤ k and 0 otherwise;

{
·
·

}
and

(
·
·

)
stand respectively for the Stirling numbers of the second kind and

binomial coefficients; and pk(n) is the number of integer partitions of n into k positive integers.

by the second one (with rank 1), which is [1, 3, 2], and so forth, culminating with the last one
(rank 5) being [3, 2, 1]. Consequently, the lexicographic unranking algorithm for the function
with rank 4 returns [3, 1, 2]. In Table 1, we provide references to such algorithms for 9 out of
the 12 cases. However, for cases 3, 7, and 9, no knowledge about lexicographic unranking
algorithms seems available in the literature. This paper introduces an approach to unranking
in lexicographic order for the set partitions of an n-set into k blocks (case 9). Furthermore,
we present extensions of this approach to address cases 3 and 7.

The problem of unranking objects emerges as one of the most fundamental challenge
in combinatorial generation, as seen in [20], and is applicable in various domains such as
software testing [16], optimization [8], or scheduling [24]. In different contexts, it serves
as the core problem for generating complex structures, as observed in phylogenetics [2]
and bioinformatics [1]. As mentioned earlier, to unrank, one must first establish a total
order over the objects in question. The often-utilized order is the lexicographic order due
to its ease of handling, leading to extensive study in the literature. However, Ruskey notes
in [19, p. 59] that lexicographic generation is typically not the most efficient, thus requiring
particular care in lexicographic unranking. Knuth dedicates a section to the lexicographic
generation of combinatorial objects in [10], relating it to the special case of Gray codes.
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Other combinatorial objects are also explored in Ruskey’s and Kreher and Stinson’s books
on combinatorial generation [19, 11]. Skiena focuses on the practical implementation of such
algorithms [21].

Usually, the approach for constructing structures using a recursive decomposition schema
involves leveraging this decomposition to build a larger object from smaller ones. This
method is extensively detailed in the well-known book by Nijenhuis and Wilf [17]. The
approach has been systematically applied to decomposable objects in the context of analytic
combinatorics, initially for recursive generation [5], and later for unranking methods [15].
Related work. Let us first quickly detail the classical unranking methods for the Twelvefold
Way. As indicated in Table 1, cases 1, 8, and 11 are straightforward. In fact, an n-sequence in
K consists of a word of length n over the finite alphabet K, making lexicographic unranking
direct. Cases 8 and 11 are extreme situations, both corresponding to the Iverson bracket
[n ≤ k]. As a result, the enumeration problems contain either one function (only when n ≤ k)
or none. The unranking method is trivial.

Cases 4, 5, and 6 are all associated with the enumeration of subsets and are directly related
to combination enumerations. Various algorithms to solve such lexicographic unranking
problems are relevant in the literature. In [6], we present a survey of the most efficient
methods with a modern algorithm complexity analysis. Moreover, we introduce a new
algorithm based on the factoradics number system, which is at least as efficient as the others.

Case 12 is associated with integer partition enumerations, and [11] presents an efficient
recursive algorithm. This algorithm follows lexicographic order but for the reverse standard
form of printing a partition. In standard form, partitions print the components from the
largest to the smallest, whereas this algorithm is based on the reverse printing (from the
smallest component to the largest one). It appears that, currently, there is no existing
lexicographic unranking method specifically designed for the standard form of printing. case
10 can be considered an extension of case 12, much like case 7 is an extension of case 9.

The last three cases pertain to set partition problems. Various combinatorial objects,
such as permutations with a specific pattern [3], graph coloring [9], walks in graphs [4], or
trees for phylogenetics [2], are enumerated by set partitions. In a recent paper [13] the
uniform random generating for set partitions for given n and k is studied, in the context
of clustering algorithms. However, as far as we know, there is no lexicographic algorithm
that takes arguments n, k and the rank r, returning the r-th partition in lexicographic order.
Instead, there exists another classical object called a restricted growth sequence that is in
bijection with set partitions (see [14, 19]). The unranking approaches presented in these
works return such restricted growth sequences in lexicographic order. However, the natural
bijection from restricted growth sequences to partitions does not preserve the lexicographic
order.
Main results. To develop an efficient unranking generator for set partitions, we first
introduce the lexicographic order over set partitions. Some care must be taken since we are
dealing with sets of integers. Therefore, we use a standard printing of a set partition to
obtain a canonical representation. We then introduce an ad hoc combinatorial algorithm to
unrank set partitions in lexicographic order. Due to the very large integers manipulated in
the algorithms, of order of n ln n bits, our algorithm computes the necessary ones on-the-fly
in a lazy paradigm. The correctness and complexity of the algorithm are managed based
on specific combinatorial properties derived throughout the paper. Finally, we present
some experiments using a Go1 implementation for our algorithm. We leverage the simple

1 The Go language offers routines to manage concurrency.

https://go.dev/tour/concurrency
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and efficient parallelism mechanism provided by this language to significantly reduce space
consumption without degrading time consumption for large values of n.
Organization of the paper. Following the introduction of the paper, Section 2 highlights
the combinatorial aspects of set partitions and presents some preliminary properties. In
Section 3, we introduce our method for unranking set partitions, providing key insights into
proving the correctness and complexity of our approach. Additionally, we present ideas for
running calculations in parallel and share experiments that validate our parallel approach.
Finally, Section 4 presents extensions of our unranking algorithm to address cases 3 and 7
from the Twelvefold Way.

2 Preliminaries

2.1 Context of set partitions
▶ Definition 1. Let S be a set of n distinguishable elements. A partition π of S in k blocks
is a collection B1, B2, . . . , Bk of disjoint non-empty subsets of S such that for every element
from S belongs to exactly one Bi, for i ∈ {1, . . . , k}.

As an example let S be {1, α, 2, 3, 4, β, 6, 12}. The collection {2, 3}, {4, 6, 12}, {β, 1, α} is
a partition of S in 3 blocks. In the rest of for paper, the set of positive integers from 1 to n

is denoted by JnK. We can identify a set S of n elements with JnK, thus from now we will
only be interested in partitions for JnK.

▶ Definition 2. Let 1 ≤ k ≤ n be two positive integers and S be JnK. The set of k-partitions
of S is denoted by Pn

k . The sequential form of a partition of Pn
k (i.e. a k-partitions of S) is

such that for all i ∈ JkK, the block Bi contains the smallest integer from JnK not present in
∪j<iBj. Furthermore for each block, it is represented in the increasing order of its elements.

For example {1}, {2, 3, 5}, {4, 6} is a 3-partition of J6K represented in its sequential form.
The sequential form is a canonical representation of the partition. As a shortcut, we will
from now represent a partition simply as 1/235/46. In the paper we have chosen to use the
terminology and the notations from Mansour [14].

▶ Fact. Let 1 ≤ k ≤ n be two positive integers. The number of partitions in Pn
k is the

Stirling number of the second kind denoted by
{

n
k

}
. It satisfies the following recurrence:

{
n

k

}
=

{{
n−1
k−1

}
+ k ·

{
n−1

k

}
if 1 < k < n;

1 otherwise, i.e. when k = 1 or k = n.
(1)

This sequence is stored in OEIS A0082772. We now introduce a natural order over k-partitions.

▶ Fact. Let A and B two subsets of positive integers. We say that A ≤ B iff either

A = B, or
A ⊂ B and max(A) < min(B \ A), or
B ⊂ A and min(A \ B) < max(B), or
min(A \ B) < min(B \ A).

2 OEIS stands for the On-line Encyclopedia of Integer Sequences.

https://oeis.org/A008277
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The relation ≤ is a total order over subsets of JnK.

For example {1, 3} ≤ {1, 3, 4} and {1, 3} ≤ {1, 4}. But we also have {1, 3, 4} ≤ {1, 4}.

▶ Fact. Let 1 ≤ k ≤ n be two positive integers. The lexicographic order3 over partitions
from Pn

k , in sequential form, is well defined using the latter order to compare two blocks: in
fact a partition in k blocks is a Cartesian product of k subsets of positive integers.

There is another classical representation for partitions called canonical form in [14]. A
partition in k blocks is represented as a word over a k-letters alphabet. For example the
partition 1/235/46 is represented by the word 122323. The ith letter is the index of the
block containing the integer i. Using this representation we can also define a lexicographic
order over partitions, but here we compare partitions that do not necessarily contain the
same numbers of blocks. The lexicographic order over the sequential form is not compatible
with the lexicographic order used for the sequentical form we are interested in. This can be
noted in the Table 2.

▶ Definition 3. Using the lexicographic order over the sequential form for partitions in Pn
k ,

we define a ranking function assigning to each partition its rank corresponding to the number
of k-partitions smaller than it in the lexicographic order.

Rank Partition Canonical form [14] Rank Partition Canonical form [14]
0 1/2/345 12333 13 13/2/45 12133
1 1/23/45 12233 14 13/24/5 12123
2 1/234/5 12223 15 13/25/4 12132
3 1/235/4 12232 16 134/2/5 12113
4 1/24/35 12323 17 135/2/4 12131
5 1/245/3 12322 18 14/2/35 12313
6 1/25/34 12332 19 14/23/5 12213
7 12/3/45 11233 20 14/25/3 12312
8 12/34/5 11223 21 145/2/3 12311
9 12/35/4 11232 22 15/2/34 12331
10 123/4/5 11123 23 15/23/4 12231
11 124/3/5 11213 24 15/24/3 12321
12 125/3/4 11231
Table 2 Ranking of the 3-partitions of J5K

▶ Definition 4. Let 1 ≤ k ≤ n be two positive integers. Let P be a partition from Pn
k ,

represented in the sequential form as B1/B2/ . . . /Bk. An integer subset p is called prefix of
P if p ⊂ B1 and p ≤ B1.

For the partition 12/35/4, there are three possible prefixes ∅, 1 and 12. We can further
extend the definition of prefixes of a partition by letting S being any subset of JnK. Thus
removing the first block of the latter partition gives 35/4, we define prefixes of the 2-partition
(of {3, 4, 5}) to be ∅, 3 and 35. Here we formalize this extension.

▶ Definition 5. The definition of a prefix p of a partition is extended to any set S partitioned
in a sequence of blocks (with the first one being denoted by B1) such that p ≤ B1.

3 The lexicographic order of partitions from Pn
k in sequential form is a total order.
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2.2 Combinatorial properties
We are now interested in counting results for partitions sharing the same prefix. These are
the core results for our unranking algorithm.

▶ Proposition 6. Let 1 ≤ k ≤ n be two positive integers. Let ℓ and d be two integers such
that either ℓ = d = 1 or 1 < ℓ ≤ d. Let Sn

k (ℓ, d) be the number of partitions in Pn
k accepting

as prefix of length ℓ: 1 α2 α3 . . . αℓ−1 d. We have

Sn
k (ℓ, d) =

min(n−k−ℓ+1,n−d)∑
u=0

{
n − ℓ − u

k − 1

}(
n − d

u

)
.

Proof. First if ℓ = d = 1, then in the sequential form the first block necessarily contains 1.
Thus Sn

k (1, 1) = |Pn
k | =

{
n
k

}
=

∑n−k
u=0

{
n−1−u

k−1
}(

n−1
u

)
. The latter equality is given e.g. in [7,

p. 251, Table 251].
In the second case when 1 < ℓ ≤ d, we aim at counting the number of partitions in Pn

k

accepting 1 α2 α3 . . . αℓ−1 d as a prefix. In order to exhibit a combinatorial interpretation,
we rewrite Sn

k (ℓ, d) as

Sn
k (ℓ, d) =

min((n−ℓ)−(k−1),n−d)∑
u=0

{
n − (ℓ + u)

k − 1

}(
n − d

u

)
.

Once the prefix is given, it remains to complete the first block B1 from the partition, and
then to calculate how we can further partition the other elements in the next blocks. The
variable u in the sum corresponds to the number of elements that are appended to the prefix
to complete B1. Its value ranges from 0 up to the maximal number of elements that we can
append i.e. (n − ℓ) − (k − 1) because at least k − 1 among the remaining n − ℓ elements
must be assigned to the other k − 1 blocks. Obviously the number of possible elements u

is also upper bounded by the number of remaining elements, i.e. n − d. Once the number
u of elements for the completion of B1 is given, we choose u elements greater than d: the
number of possibilities is given by the binomial coefficient. Finally it remains to build the
other blocks of the partition: we partition n − (ℓ + u) elements into k − 1 blocks. Hence the
formula is proved. ◀

We introduce an example using Table 2 for P5
3 . If we are interested in the prefix 13, then

there are 3 partitions without completing block B1, in the sum, when u = 0 we get
{3

2
}

= 3.
The other possible value is u = 1 with the general term being

{2
2
}(2

1
)

= 2 as it appears in
the table.

In order to get a formula that is more efficient to calculate, we observe that the latter
numbers Sn

k (ℓ, d) depend essentially in three variables instead of four. The proof is direct
with some variable renaming.

▶ Proposition 7. Let n, k, d be integers with 0 ≤ k ≤ n and 0 ≤ d ≤ n. By defining

S̃n
k (d) =

min(n−k,n−d)∑
u=0

{
n − u

k

}(
n − d

u

)
, we get Sn

k (ℓ, d) = S̃n−ℓ
k−1(d − ℓ).

We note that Sn
k (1, 1) = S̃n−1

k−1 (0) =
{

n
k

}
. Note that the 3-dimension sequence S̃ seems not to

be stored in OEIS. There exits several generalizations of Stirling numbers, but none of them
apparently corresponds to our sequence S̃.
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▶ Corollary 8. The numbers S̃n
k (d) satisfy the following recurrence:

S̃n
k (d) =


S̃n−1

k−1 (d − 1) + k · S̃n−1
k (d − 1) if 1 ≤ k ≤ n and 1 ≤ d ≤ n;{

n+1
k+1

}
if d = 0 and 0 ≤ k ≤ n;

0 otherwise.
(2)

Note the later recurrence is similar to the one satisfied by Stirling numbers of the second
kind (but with here a third variable d giving some kind of level of numbers). The proof is
provided in Appendix A.

▶ Proposition 9. Let n, k, d be integers with 0 ≤ k ≤ n and 0 ≤ d ≤ n. The function S̃n
k (d)

can be represented as a binomial transform:

S̃n
k (d) =

min(n−k,d)∑
u=0

(−1)u

{
n + 1 − u

k + 1

}(
d

u

)
.

The main idea of the proof consists in proving that the two expressions given in Propositions 7
and 9 are satisfying the same recurrence and thus are equal.

Proof. In order to prove this new expression for S̃, we just have to prove that this expression
satisfy the recurrence stated in Corollary 8. Substituting d by 0 we get the base case. We
now consider the case where the three integers n, k, d satisfy 0 ≤ k ≤ n and 1 ≤ d ≤ n. Using
Proposition 9 in the case where 0 < k < n (the cases k = 0 or k = n are obvious) we have

S̃n−1
k−1 (d − 1) + k · S̃n−1

k (d − 1) =
min(n−k,d−1)∑

u=0
(−1)u

{
n − u

k

}(
d − 1

u

)

+ k ·
min(n−1−k,d−1)∑

u=0
(−1)u

{
n − u

k + 1

}(
d − 1

u

)

By using factorization and Stirling numbers of the second kind recurrence, we obtain:

S̃n−1
k−1 (d − 1) + k · S̃n−1

k (d − 1) =
min(n−k,d−1)∑

u=0
(−1)u

({
n + 1 − u

k + 1

}
−

{
n − u

k + 1

}) (
d − 1

u

)
.

After having telescoped the two sums we get the stated result. ◀

Finally, given two prefixes, one being smaller than the second one, the next proposition
allows to compute how many partitions are in-between the two prefixes. More formally:

▶ Proposition 10. Let 1 ≤ k ≤ n be two positive integers. Let d1 ∈ JnK \ {1}, d0 ∈ [d1 − 1]
and ℓ > 1 be integers. The number of elements of Pn

k that admit a length-ℓ prefix satisfying
1 α2 . . . αℓ−2 d0 d̃1 (for all d̃1 ranging from d0 + 1 to d1) is given by

Rn
k (ℓ, d0, d1) = S̃n−ℓ

k−1(d0 − ℓ) − S̃n−ℓ
k−1(d1 + 1 − ℓ).

The proof of the proposition is given in Appendix A.

3 Methods for unranking set partitions

Merging the combinatorial properties stated in the previous section, we are now ready to
design algorithms to unrank set partitions in the lexicographic order.
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3.1 Unranking algorithm design
Our aim consists in constructing the r-th partition related to a pair n, k in sequential form
for the lexicographic order. The constructions follows the next main lines. The global idea
consists in building the normalization of the partition. So we build together its block pattern
and its reversed factoradics (seing the partition as a size-n permutation).

The building of the blocks is going from left to right;
The construction of a block is also from left to right, component by component using a
binary search approach;
Finally once the block pattern and the reversed factoradics are set, a slight adaptation of
the lexicographic permutation unranking algorithm gives the result.

The details for the correctness of our approach lies on the ranking function associated to
the set partitions. Details about this function are presented in Appendix B.

We first present in detail the main function Unranking of Algorithm 1. Using a loop,
at each turn it defines the next block of the partition and then refine the value of the rank
related to the remaining part of the partition. The result B returned by next_block
contains the indices of the components of the block that has been calculated and acc allows
to update the rank so that it is related to the remaining part of the partition that must still
be computed. With our previous definition, B is the normalization of the corresponding
partition block. At the end of the function a dynamic extraction is executed in an array
containing elements from 1 to n according to the indices in Res.

Algorithm 1 Lexicographic unranking of the partition with rank r in Pn
k

1: function Unranking(n, k, r)
2: n′ := n
3: Res := []
4: while k > 1 do
5: (B, acc) := next_block(n, k, r)
6: Append(Res, B)
7: r := r − acc
8: n := n − len(B)
9: k := k − 1

10: Append(Res, [0, 0, . . . , 0])
11: Res :=Extract(n′, Res)
12: return Res

1: function Extract(n, R)
2: L := [1, 2, . . . , n]
3: P := []
4: for r in R do
5: p := []
6: for i in r do
7: Append(p, L[i])
8: Remove(L, i)
9: Append(P, p)

10: return P

Remove(L, i) removes element with index i in L.

1: function next_block(n, k, r)
2: Block := [0]; acc :=

{
n−1
k−1

}
3: if r < acc then
4: return (Block, 0)
5: d0 := 1; index := 2; inf := 2; sup := n
6: complete := F alse
7: while not complete do
8: while inf < sup do
9: mid := ⌊(inf + sup)/2⌋

10: if r >= acc + Rn
k (index − 1, d0, mid − 1) then

11: inf := mid + 1
12: else
13: sup := mid

14: mid := inf ; threshhold :=
{

n−index
k−1

}
15: acc := acc + Rn

k (index − 1, d0, mid − 2)
16: Append(Block, mid − index)
17: if r < threshhold + acc then
18: complete := T rue
19: else
20: index := index + 1
21: d0 := mid; inf := d0 + 1; sup := n
22: acc := acc + threshhold
23: return (Block, acc)

The function next_block takes parameters n, k, r and returns essentially the first block
of the r-th partition in Pn

k . In fact, using Table 2 the call next_block(5, 3, 16) returns 0 1 1
(instead of 1 3 4), the latter block being obtained through a dynamic extraction of the element
0 in [1, 2, 3, 4, 5] then the element 1 is extracted in the remaining part [2, 3, 4, 5] and finally
the element 1 in [2, 4, 5]. Constructing the blocks of indices instead of the blocks of values
allows to neglect about the remaining elements for the further blocks construction. Note that
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obviously the last block of the partition contains only the indices 0 (Line 10 from Unranking
Algorithm) and the first element of a block is always index 0, both due to the sequential form.
Finally while calling Unranking(5, 3, 16), at the end of Line 10, Res contains [[0 1 1][0][0]].
Reading the components from right to left we get the factoradics 0 0 1 1 0 of the number 8
corresponding to the lexicographic rank of the permutation [1, 3, 4, 2, 5] (cf. [6] for details).

▶ Theorem 11. Unranking(n, k, ·) is a lexicographic unranking algorithm for set partitions
from Pn

k .

Proof key-ideas. To derive the proof, we first rely on the factoradics of the rank number,
and the Ranking function, both detailed in Appendix B. Hence the core property of our
algorithm relies on the function next_block. Its call with parameters n, k, r returns the
first block of the r-th partition of Pn

k (in sequential form). After k − 1 calls to it we get the
pattern of the partition and also the factoradics for the underlying permutation. ◀

3.2 Complexity analysis and experiments for unranking
In our implementation in Go4, we offer two approaches for the necessary Stirling numbers
calculations: either a precomputation of them or a computation on the fly of those that are
needed at each step. We never precompute the 3 dimension table S̃n

k (d). In fact, in many
bad cases these numbers are of order of n!, thus precomputing would be too expensive while
only few of the numbers are needed. We compute the necessary numbers S̃n

k (d) on the fly.
First let us recall the behavior of the sequence of Stirling numbers of the second kind

when k is ranging from 1 to n.

▶ Fact. Let 1 ≤ k ≤ n be two positive integers. The sequence
{

n
k

}
is unimodal and its

maximum is reached when kn ∼ n/ ln n. Around this value, we have log
{

n
kn

}
= Θ(n log n)5.

Furthermore, we have an upper bound valid for all 1 ≤ k ≤ n:

log
{

n

k

}
≤ (n − k) log k + log

(
n

k

)
≤ (n − k) log k + k log

(n · e

k

)
.

See the fundamental paper of Rennie and Dobson [18] to get a proof for these results.
In the following we propose six distinct implementations of the function S̃ presented in

Proposition 7 and underlying the function R from Proposition 10.

S_v1: direct implementation of the formula stated in Proposition 7;
S_v2: implementation of the formula from Proposition 7 taking into account the symmetry of

binomial coefficients, thus the sum contains half of the terms in comparison to S_v1 (and
thus half of the multiplications);

S_v3: direct implementation of the formula stated in Proposition 9;
S_v4: implementation of the formula from Proposition 9 taking into account the symmetry of

binomial coefficients, thus the sum contains half of the terms in comparison to S_v3;
S_v5: is our most efficient algorithm without precomputations. The calculation way consists

in deciding according whether a call to S_v2 or to S_v4 should be the most efficient,
according to the number of terms in the sums interacting with Propositions 7 and 9;

S_v6: all necessary Stirling numbers of the second kind are precomputed and this precomputation
is not taken into account in the further time complexity experiments.

4 Go implementation and the material used for repeating the experiments are all available here.
5 In this paper we use the notation log for the logarithm in basis 2.

https://github.com/AMAURYCU/setpartition_unrank
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The integers computed during the unranking algorithm are very large, thus a classical
complexity in the number of arithmetical operations is not precise. We hence are interested
in the bit-complexity, corresponding the the number of atomic operations on digits.

▶ Theorem 12. For the time complexity, the algorithm Unranking based on each of the
function S_v· has a bit-complexity bounded by

O

(
(n − k)3M(n)

n
ln n log k + k(n − k)2M(n)

n
ln n log

(n · e

k

))
,

where M(n) is the bit complexity for the multiplication of two numbers, each one containing
n bits.

The naïve multiplication algorithm satisfies M(n) = Θ(n2). But using, for example,
Karatsuba algorithm, we obtain M(n) = Θ(nlog 3) for the time complexity. In Go6, as
soon as the integers are greater than 240, Karatsuba multiplication algorithm is used. In our
context, almost all cases are thus based on the latter algorithm.

Proof. We are interested in a worst case complexity analysis when n is large and for k

ranging in JnK. We are using the same kind of analysis in bit complexity as the one presented
in [6, Section 4.3]. We compute an upper bound of the complexity in the central range of
the Stirling numbers of the second kind. The central range, when n tends to infinity, is
observed when k = Θ(n/ ln n). A detailed similar analysis is presented in the paper [12]. In
our context each Stirling number necessitates log

{
n
k

}
bits to be stored. They are multiplied

by binomial coefficients containing at most n bits. Thus Stirling numbers are separated in
blocks of n bits in order to use a multiplication of similar sizes numbers, inducing a time
complexity bounded by log

{
n
k

}
/n · M(n). Furthermore the number of calls the the function

S̃ is O((n − k) ln n) induced by the repetitive calls to the binary search algorithm. Compiling
all these upper bounds gives the stated bit-complexity. ◀

For approach S_v6, the following result establishes that the precomputation is negligible
in terms of time complexity compared to the unranking itself. However note that the memory
complexity is quadratic instead of linear (in n) by using the precomputation step.

▶ Proposition 13. The bit-complexity for the Stirling numbers precomputation is bounded by

O

(
k(n − k)2M(log k) + k2(n − k) log n

log k
M(log k)

)
.

In order to get the Stirling numbers on the fly, we use parallel compuatations. In fact,
for each block determination, we observe that only two neighbors columns from the triangle
of numbers are needed. Thus during the determination of a block, we compute in parallel
the next two columns that will be necessary for the next block. Thanks to this approach, we
present an algorithm which uses a reasonable quantity O(n) of memory and with essentially
the same time complexity than the algorithm where Stirling numbers are exhaustively
precomputed, thus needing O(n2) memory size.

In Figure 1, we run experiments7 by fixing n = 1000 and k ranging from 2 to 992 with
steps of 15 units. For each value of k, 500 uniform samples are computed and the average time

6 Go documentation for big integers manipulations.
7 The experiments provided in this paper are driven by using a PC equipped with an Intel Xeon X5677

processor, 32GB of DDR4-SDRAM and running Debian GNU/Linux 12.

https://cs.opensource.google/go/go/+/master:src/math/big/nat.go
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Figure 1 Time (in seconds) for unranking a partition in P1000
k when k is ranging in J1000K.

for the building of the partition is drawn for each Algorithm S_v1 up to S_v6. Obviously
Algorithms S_v2 and S_v4 are better than their naïve versions respectively S_v1 and S_v2.
It is interesting to note that the optimization S_v5, obtained by computing the most efficient
formula between Propositions 7 and 9. Finally we remark that the Algorithm S_v5 is
almost as efficient as S_v6 where all precomputation of Stirling numbers have been stored
before the computation of the partition. Strangely, for the smallest values of k, we note
that S_v5 is even faster than S_v6. This is probably due to the RAM accesses: in fact in
some preliminary experiments with computers equipped with DDR5 RAM Algorithm S_v6
is always faster than S_v5, and this is what is expected.

4 Extension and conclusion

As we observe in Table 1, both enumeration cases 3 and 7 are some extended version of the
enumeration case 9. An adaptation for the Ranking function allows to rank the families
counted by cases 3 and 7; then adapting the unranking algorithm solves these cases.

4.1 Ordered set partitions
Recall Stirling numbers of the second kind are counting the numbers of surjective functions
from set N to set K, where the elements of N are distinguishable and also for those in K.
We can represent these functions as set partitions. Now, what happens when elements of K

are distinguished? These functions are counted by ordered Stirling numbers of the second
kind. In addition, they can be represented as ordered set partitions, which are similar to set
partitions except that the order of the subsets matters. For instance, while in the world of
unordered set partitions, elements 14/25/3; 14/3/25; 25/14/3; 25/3/14; 3/14/25 and 3/25/14
are equivalent and represented by the partition 14/25/3 in sequential form, in the world of
ordered set partition, the 6 elements are all different.

▶ Proposition 14. Let 1 ≤ k ≤ n, be two integers with n being the cardinality of set N . The
number of ordered set partition of N in k (non empty disjoint) subsets is k! ·

{
n
k

}
. The family

of these partition is denoted by On
k .
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The proof is direct: the blocks in the sequential form of a set partition are distinguishable,
thus permuting them gives the associated ordered set partitions.

▶ Fact. Let 1 ≤ k ≤ n, be two integers, the lexicographic order on set partitions Pn
k is easily

extended to get the lexicographic order for the ordered set partitions from On
k .

We can now derive the enumeration core result in this new context.

▶ Proposition 15. Let 1 ≤ k ≤ n be two integers. Let ℓ and d be two integers such that
either ℓ = d = 1 or 1 < ℓ ≤ d. Let T n

k (ℓ, d) be the number of ordered set partitions in On
k

accepting of the prefix of length ℓ: α1 . . . αℓ−1 d.

T n
k (ℓ, d) =

min(n−k−ℓ+1,n−d)∑
u=0

k!
{

n − ℓ − u

k − 1

}(
n − d

u

)
.

This formula is the analogous to Sn
k (ℓ, d). Using the same variable changes, we also get a

three variable function, like S̃n
k (d). Then we can deduce an adaptation of our first algorithm

by replacing Stirling numbers of the second kind by ordered Stirling numbers of the second
kind and using the latter formula.

4.2 Bell’s set partitions
In the twelvefold way, the remaining case where no lexicographic unranking algorithm is
known is when f is an arbitrary function from a set N whose elements are distinguishable to
a set K where elements are indistinguishable. We denote by F the family of these functions.
Such functions can be represented as unordered set partitions with at most k blocks where k

is the numbers of elements in K.
Let Ki ⊂ K be a subset of i distinguishable elements and Bi the functions that are surjective
from N into Ki. We have Bn

k =
⋃k

i=1 Bi and for a given i ∈ JkK, |Bi| =
{

n
i

}
. Obviously

|Bn
k | =

∑k
i=0 |Bi| =

∑k
i=0

{
n
i

}
. The cardinality of Bn

k is counted by the k-restricted Bell
numbers and finally, when k = n, we get the Bell numbers.

▶ Fact. Let 1 ≤ k ≤ n, be two integers, the lexicographic order on set partitions Pn
k is also

lexicographic for Bn
k .

▶ Proposition 16. Let 1 ≤ k ≤ n be two integers. Let ℓ and d be two integers such that
either ℓ = d = 1 or 1 < ℓ ≤ d. Let Un

k (ℓ, d) be the number of Bell’s set partitions in Bn
k

accepting of the prefix of length ℓ: 1 α2 . . . αℓ−1 d.

Un
k (ℓ, d) =

min(n−k−ℓ+1,n−d)∑
u=0

k∑
i=1

{
n − ℓ − u

i − 1

}(
n − d

u

)
.

Again, his formula is the analogous to Sn
k (ℓ, d). Using the same variable changes, we also

get a three variable function, like S̃n
k (d). Then we can deduce an adaptation of our first

algorithm by replacing Stirling numbers of the second kind by Bell’s number and using the
latter formula.

As a final remark, the correctness of both previous algorithms is directly hanging to the
one for the set partition algorithm. What is remaining is their complexity analysis: it is not
difficult, and it will be written in a long version of this paper.
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A Appendix related to the formulas for S̃

Here we provide the proof of the recursive equation satisfied by S̃n
k (d).

Proof of Corollary 8. We aim at proving that this recurrence is satisfied by the formula
S̃n

k (d) given in Proposition 7. Let 0 ≤ k ≤ n be two integers. We get the value Sn
k (0) =∑n−k

u=0
{

n−u
k

}(
n
u

)
=

{
n+1
k+1

}
according to [7, p. 251]. We now consider the case where the three

integers n, k, d satisfy 0 ≤ k ≤ n and 1 ≤ d ≤ n. Using Proposition 7 in the case where
0 < k < n (the cases k = 0 or k = n are obvious) we have

S̃n−1
k−1 (d − 1) + k · S̃n−1

k (d − 1) =
min(n−k,n−d)∑

u=0

{
n − 1 − u

k − 1

}(
n − d

u

)

+ k ·
min(n−1−k,n−d)∑

u=0

{
n − 1 − u

k

}(
n − d

u

)

=
min(n−k,n−d)∑

u=0

({
n − 1 − u

k − 1

}
+ k ·

{
n − 1 − u

k

}) (
n − d

u

)
.

Using the classical recurrence for Stirling numbers of the second kind (cf. Equation (1)) we
obtain the stated result. ◀

Proof of Proposition 10. Using the notations from the proposition statement, we are
interested in the number of set partitions from Pn

k accepting as prefix 1 α2 . . . αℓ−2 d0 d̃1, when
d̃1 ranges in {d0 + 1, . . . , d1}. So using the approach exhibited in the proof of Proposition 6,
we get

Rn
k (ℓ, d0, d1) =

min(n−k−ℓ+1,n−d0)∑
u=1

{
n − ℓ − u

k − 1

}(
n − d0

u

)

−
min(n−k−ℓ+1,n−1−d1)∑

u=1

{
n − ℓ − u

k − 1

}(
n − 1 − d1

u

)
.

In fact the first sum computes the number of partition accepting prefix 1 α2 . . . αℓ−2 d0, but
the first block contains at least one more element (since u starts at 1 ). To those partitions
we remove the ones whose first block is completed only with elements greater than d1. Then
if we add the terms u = 0 in both sums, this terms are opposite, thus we can rewrite

Rn
k (ℓ, d0, d1) = S̃n−ℓ

k−1(d0 − ℓ) − S̃n−ℓ
k−1(d1 + 1 − ℓ),

as stated in Proposition 10. ◀
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B Appendix related to the ranking algorithm

In order to introduce the way to rank a set partition, we first recall the definition of the
factorial number system, or factoradics. It is a mixed radix numeral system in which the
representation of integers relies on the use of factorial numbers. The factoradics are deeply
related to the lexicographic (un)ranking of permutations. Details and references are presented
in our paper [6].

▶ Definition 17. Let u be a positive integer and let n be the unique integer satisfying (n−1)! ≤
u < n!. Then there exists a unique sequence of integers (fℓ)ℓ∈{0,...,n−1}, with 0 ≤ fℓ ≤ ℓ for
all ℓ, such that:

u = f0 · 0! + f1 · 1! + · · · + fn−2 · (n − 2)! + fn−1 · (n − 1)!

The finite sequence f0 f1 . . . fn−1 is called the factoradic decomposition (or factoradics)
of u (note that f0 = 0 for all values for u).

Take the number u = 41 196 as an example, we obtain the following decomposition: 41 196 =
0 · 0! + 0 · 1! + 0 · 2! + 2 · 3! + 1 · 4! + 1 · 5! + 1 · 6! + 0 · 7! + 1 · 8!, thus its factoradics is
0 0 0 2 1 1 1 0 1. Obviously 0s can be appended to the right of the factoradics without
changing the integer.

▶ Fact. Let n be a positive integer. The factoradics with n components relates the lexicographic
rank of a permutation and the permutation itself.

This deep link is, for example, described in our previous paper [6].
Let us further introduce two new notations. Let 1 ≤ k ≤ n be two positive integers. Let

P be a partition from Pn
k , represented in its sequential form B1/B2/ . . . /Bk. For i ∈ JkK, we

denote by ti the number of elements of the block Bi and for j ∈ [ti], the notation Bi,j refers
to the j-th element of Bi. We further denote by t<i the accumulated number of elements in
B1/ . . . /Bi−1, i. e. t<i =

∑i−1
j=1 tj .

▶ Definition 18. Let 1 ≤ k ≤ n be two positive integers. Let P ∈ Pn
k be a partition

written in sequential form. The normalization of P , denoted by P̄ consists in the collection
B̄1/B̄2/ . . . /B̄k, such that each element B̄i,j is equal to Bi,j translated by −|{ℓ | ∃i0 ≤
i and Bi0,ℓ ≤ Bi,j}|.

For example, for P the set partition from P10
3 written in sequential form : P = 13/25679/4810,

we get P̄ = 01/01112/000. Using the normalization of a set partition is such that, once
the first blocks have been computed, the rest of the partition can be constructed without
considering the elements appearing in the previous blocks. We gain some kind of independence
between the blocks. Obviously this is only a relative independence. Once we want to get the
set partition itself, we take care of the remaining elements when the first blocks have been
determined.

▶ Theorem 19. Let 1 ≤ k ≤ n be two positive integers. Let P ∈ Pn
k be a partition

written in sequential form and P̄ = B̄1/B̄2/ . . . /B̄k its normalization. The rank of P for the
lexicographic order is given by

Ranking(P ) =
k−1∑
i=1

ti∑
ℓ=2

({
n − t<i − ℓ + 1

k − i

}
+ Rn−t<i

k−i+1(ℓ, B̄i,ℓ−1 + ℓ − 1, B̄i,ℓ + ℓ − 1)
)

.
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Proof key-ideas. Let 1 ≤ k ≤ n be two positive integers. Let P ∈ Pn
k be a partition and P̄

its normalization written as B̄1/B̄2/ . . . /B̄k. The Ranking function takes into account the
block pattern of P and the rank of of P seen as a size n permutation (i.e. by omitting the
block pattern of P̄ ) to produce the lexicographic rank of P seen à a partition from Pn

k .
First of all, from P (or P̄ ) we deduce the values for n and k. Then, in order to compute

the rank associated of P , we iterate the following process from left to right, block by block.
We do not need to consider the remaining values once a block has been built due to the
normalization P̄ .

So let us suppose we are interested in the first block. We iterate over all prefixes p smaller
than B̄1, and accumulate the numbers of partitions accepting p as a prefix, because all of
them are smaller than P in the lexicographic order. These numbers are calculated using
functions Sn

k and Rn
k . Once done we get the first possible value for the rank of P , and

also its maximal value again by using Sn
k (the upper bound is not necessary for the rest of

the process). We the start again with the next block, keeping in memory the accumulated
value. ◀

Let us present on our running example the process. So we are dealing with P whose
normalization is 01/01112/000. We thus deduce n = 10 and k = 3. The accumulate rank
is 0 for the moment. Starting with the first block 01 we increase the accumulate rank by
255 corresponding to the number of set partition whose first normalized block is reduced
to 0, i. e.

{9
2
}

. We further increase the rank by 3025 that corresponds to all set partitions
whose first block is of length at least 2 and that accept 0 as a prefix, but not 01. At this
point, we have used all information from the first normalized block and memorized it into the
accumulated rank whose value is now 3280. The second block starts with 0 and the number
of set partitions with a block reduced to 0 is now

{7
1
}

= 1, i. e. it remains 7 elements to fill
the last block. Then the number of partitions whose (first) normalized block is of length at
least 2 and that accept 0 as a prefix, but not 01 is 63. Thus the accumulated rank is now
3344. At this point we suppose the the second block starts with 01 and first it is reduced
to 01, there is only 1 in this situation (all other elements fill the last block). We now are
interested in the number of partitions whose (first) normalized block is of length at least
3 and that accept 01 as a prefix, but not 011. Their count is 0 (010 is not an acceptable
prefix). Thus the accumulated rank is now 3345. It remains two steps as the previous ones
to finally obtain the rank 3351 for the set partition P .

Finally, as a conclusion, taking the lexicographic rank of a partition, the values n and k,
and following an analogous process as the previous one (but not the reversed process because
it is more convenient to do the exhibition of the normalized partition from left to right) we
obtain an algorithm for lexicographic unranking.
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C Appendix related to the unranking algorithm

Let us introduce a second experiments in Figure 2 for larger set partitions. We do not observe
here anymore Algorithm S_v5 that is more efficient than S_v6. When we compute the ratio
of time necessary for both algorithms, we note when n is increasing the ratio is tending to
1 until when k is almost n (then there is almost nothing to compute for obtaining a set
partition while the computing of a linear number of Stirling numbers of the second is costly
and present using S_v5 algorithm).

Figure 2 Time (in seconds) for unranking a partition in P3000
k when k is ranging in J3000K.
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