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A B S T R A C T

Broca's region can be subdivided into its constituent areas 44 and 45 based on established differences in
connectivity to superior temporal and inferior parietal regions. The current study builds on our previous work
manually parcellating Broca's area on the individual-level by applying these anatomical criteria to functional
connectivity data. Here we present an automated observer-independent and anatomy-informed parcellation
pipeline with comparable precision to the manual labels at the individual-level. The method first extracts
individualized connectivity templates of areas 44 and 45 by assigning to each surface vertex within the
ventrolateral frontal cortex the partial correlation value of its functional connectivity to group-level templates of
areas 44 and 45, accounting for other template connectivity patterns. To account for cross-subject variability in
connectivity, the partial correlation procedure is then repeated using individual-level network templates,
including individual-level connectivity from areas 44 and 45. Each node is finally labeled as area 44, 45, or
neither, using a winner-take-all approach. The method also incorporates prior knowledge of anatomical location
by weighting the results using spatial probability maps. The resulting area labels show a high degree of spatial
overlap with the gold-standard manual labels, and group-average area maps are consistent with cytoarchitec-
tonic probability maps of areas 44 and 45. To facilitate reproducibility and to demonstrate that the method can
be applied to resting-state fMRI datasets with varying acquisition and preprocessing parameters, the labeling
procedure is applied to two open-source datasets from the Human Connectome Project and the Nathan Kline
Institute Rockland Sample. While the current study focuses on Broca's region, the method is adaptable to
parcellate other cortical regions with distinct connectivity profiles.

1. Introduction

Broca's region is one of the most widely studied brain areas because
of its historical significance and critical role in language processing
(Sahin et al., 2009). Located on the inferior frontal gyrus in the
language-dominant hemisphere, it can be subdivided into its constitu-
ent areas 44 and 45 based on cytoarchitectonic boundaries that roughly
correspond to the macroanatomical landmarks of the pars opercularis
and pars triangularis respectively (Amunts et al., 1999; Petrides and
Pandya, 2002). Based on this knowledge, it is common in neuropsy-
chological research to make use of morphologically defined regions-of-
interest (ROIs) as proxies for areas 44 and 45. However, there is a high
degree of inter-individual variability in cortical morphology in the
ventrolateral frontal region (Tomaiuolo et al., 1999; Keller et al., 2007),

making it difficult to distinguish accurately areas 44 and 45 based on
macroanatomical features alone. In addition to anatomical variability,
recent studies using resting-state fMRI have shown that higher-level
cortical association areas, including Broca's region, show particularly
strong inter-individual variability in functional connectivity (Yeo et al.,
2011; Mueller et al., 2013; Wig et al., 2014). Methods for the analysis
of resting-state functional connectivity, such as dual regression, have
addressed this variability by estimating individual-level versions of
group-level network templates, thereby facilitating the study of group
differences in specific functional networks (Filippini et al., 2009).
Tailoring cortical parcellation approaches to the individual brain is
critical in order to capture the unique functional and morphological
characteristics of each subject with precision, and this can be done by
applying similar principles as those used for the dual regression
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approach (see for example Wang et al. (2015)). Functional atlases
based on individual-level parcellation provide a foundation for explor-
ing the relationship between structural and functional boundaries in
the brain and their correspondence across individuals.

Existing automatic connectivity-based parcellation techniques aim
to provide whole-brain functional atlases by parcellating the entire
cerebral cortex using the same basic criteria, namely similarity or
homogeneity of connectivity patterns, and therefore do not take
advantage of the considerable amount of prior knowledge that exists
about the anatomy and unique connectivity patterns of highly studied
regions such as areas 44 and 45. Additionally, since no gold-standard
connectivity-based cortical atlas currently exists, difficulty can arise
when interpreting the correspondence of whole-brain parcellations to
existing ontologies. For this reason, anatomical criteria are commonly
used to define cortical regions in studies using functional data. The
anatomy-informed manual labeling approach for areas 44 and 45,
described in our previous work (Jakobsen et al., 2016), attempts to
address this issue by incorporating prior knowledge of the anatomical
locations, distinct connectivity profiles, and variability of the ROIs into
each individual parcellation. It has previously been shown that areas 44
and 45 are clearly distinguishable by differences in connectivity to the
inferior parietal and lateral temporal regions using resting-state
functional connectivity (Kelly et al., 2010; Margulies and Petrides,
2013). Based on these connectivity differences, Brodmann areas 44 and
45 were manually labeled in 101 individual datasets using functional
connectivity glyphs (Boettger et al., 2014; Jakobsen et al., 2016). By
simultaneously displaying the seed-based connectivity patterns of
multiple neighboring vertices of the cortical surface reconstruction,
this technique allows for meticulous manual segmentation based on
differences in the connectivity patterns of adjacent cortical regions.
Resulting group-level probability maps based on the individual manual
parcellations of areas 44 and 45 are consistent with cytoarchitectonic
probability maps of the same regions while still reflecting the high
degree of individual morphological variability, thereby validating the
usefulness of intrinsic functional connectivity as the basis for accurate
in vivo cortical parcellation. The manually defined area labels therefore
serve as gold-standard functional labels that can be used to validate the
results of an automated data-driven parcellation approach.

The current study presents a new method for automated, observer-
independent, and anatomy-informed parcellation of specific cortical
regions based on functional connectivity. This method aims to simulate
the gold standard manual parcellation procedure and takes advantage
of prior knowledge of well-studied brain regions by basing parcellations
on a combination of area-specific functional connectivity features and
meaningful anatomical criteria. Using the previously generated manual
labels of areas 44 and 45 as gold-standard, the goal of this approach is
to generate observer-independent area labels with comparable preci-
sion to manual labeling at the individual-level. The approach consists
of three main steps: (1) defining a broad target ROI that includes nodes
surrounding the areas of interest, (2) assessing the similarity of each
node's connectivity to a set of group-level templates corresponding to
the areas of interest and other canonical networks, (3) extracting
individual-level templates used to assign vertices to their most similar
network and (4) weighting the similarity values by spatial location and
ensuring spatial continuity of the final labels. In keeping with the
manual parcellation procedure, the automated parcellation pipeline1

incorporates macroanatomical information through ROI definition and
spatial weighting, but allows the resulting functional boundaries to
deviate from anatomical constraints in order to better fit the individual
anatomy and connectivity.

The area 44 and 45 labels derived from the automated observer-
independent parcellation method display a high degree of overlap with

the results of the manual labeling procedure, validating the precision of
the method at the individual-level. Parcellation results are also
presented for an independent resting-state fMRI dataset, demonstrat-
ing that the method is able to generalize to datasets with varying
acquisition and preprocessing parameters.

2. Materials and methods

2.1. Data and preprocessing

The data used in the development of the parcellation pipeline were
provided by the Human Connectome Project (HCP) and comprised 101
previously manually labeled (based on connectivity and anatomical
priors) resting-state fMRI datasets and corresponding T1-weighted
structural data for each individual (mean age 29, 13 left-handed, 59
females). All data were preprocessed according to standard HCP
preprocessing pipelines including ICA-based artefact removal
(Salimi-Khorshidi et al., 2014) and registration to HCP 2 mm standard
surface space (fs_LR 32k node surfaces). Further details about the
standard HCP data acquisition and preprocessing methods can be
found in Smith et al. (2013). Since language processing is strongly left-
lateralized (Rasmussen and Milner, 1975), analyses included only the
left cerebral hemisphere. Several additional study-specific preproces-
sing steps were performed as follows: (1) The functional time-series
data of the left cerebral cortex was extracted for each of four 15-min
rfMRI scans (TR=0.7 s) per subject, (2) surface-based smoothing with
a 2 mm FWHM kernel was applied, (3) a correlation matrix was
computed and Fisher's r-to-z transformed (Fisher, 1915; 1921), (4) the
resulting 32k×32k matrices were averaged across the four rfMRI runs
for each participant, (5) the average matrices were z-to-r transformed.
Note that these datasets are identical to those used in previous work
describing the manual labeling procedure (Jakobsen et al., 2016).

In order to show that the parcellation pipeline can be successfully
applied to independent datasets, 100 additional resting-state and
corresponding T1-weighted structural datasets from the Enhanced
Nathan Kline Institute- Rockland Sample (NKI) (Nooner et al., 2012)
(mean age 43, 10 left-handed, 65 females) were also used. These data
comprised one 10-min multiband rfMRI scan (TR=645 ms) per sub-
ject, for which the following preprocessing steps were performed: (1)
removal of the first 5 volumes, (2) head motion correction, (3)
coregistration of functional data to anatomy, (4) denoising, and (5)
band-pass filtering. The full preprocessing pipeline for this dataset can
be found at 2. Several additional study-specific preprocessing steps
were then performed as follows: (6) The timeseries data of the left
cerebral cortex were extracted and projected to fsaverage5 (10k nodes
per hemisphere) surface space, (7) surface-based smoothing with a
6 mm FWHM kernel was applied. The choice of a more traditional
6 mm smoothing kernel was due to the larger voxel size and shorter
resting-state acquisition time of the NKI as compared to the HCP data.
(8) Correlation matrices were then computed using Pearson's correla-
tion, and (9) the individual native FreeSurfer surfaces were down-
sampled to fsaverage5 template for visualization purposes.

2.2. Generation of connectivity templates and ICA maps

Prior to parcellation of the individual datasets, group-level con-
nectivity maps of areas 44 and 45 (Fig. 1) were computed based on the
101 manually labeled HCP datasets. First, the average functional
connectivity was averaged across all vertices included in each indivi-
dual manual label, and the resulting connectivity vectors were then
averaged across the 101 individuals. Note that the relatively low
maximum correlation values are likely due to noise inherent in
resting-state fMRI data (Biswal et al., 1995) as well as variance in

1 https://github.com/NeuroanatomyAndConnectivity/broca/tree/master/
PartialCorrelation. 2 https://github.com/NeuroanatomyAndConnectivity/nki_nilearn.
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the average correlation values across individuals in the HCP dataset
(Jakobsen et al., 2016). These connectivity maps were subsequently
used as group-level seed-based functional connectivity templates for
areas 44 and 45 in the individual-level parcellation pipeline (Fig. 1).

In order to estimate the possible connectivity patterns of vertices
not belonging to areas 44 or 45, group- and individual-level indepen-
dent component analyses (ICA) were run on the timeseries of the 101
HCP datasets, resulting in 20 group- and individual-level independent
component maps (Figs. 2 and 3 respectively).

Spatial correlations were then computed between each of the
group-level IC maps and the previously generated group-level con-
nectivity templates of areas 44 and 45 (Fig. 1). The two IC maps with
the highest spatial correlations (r > 0.4) were then removed so that only
IC maps not representative of areas 44 and 45 were included. More
specifically, this was done to ensure that the connectivity patterns of
interest were not included in the matrix of spatial regressors used in
subsequent partial correlation steps. The 18 remaining IC maps were
then used in the parcellation pipeline as group-level templates repre-
senting the connectivity patterns of vertices located outside of areas 44
and 45. A similar procedure applied to the individual-level IC maps is
included in the parcellation pipeline, described below.

2.3. Parcellation pipeline

The individual datasets were then processed using an automated
parcellation pipeline to produce binary labels of areas 44 and 45
tailored to account for intersubject variability in functional connectivity
patterns by first comparing the connectivity of single vertices to group-
level templates and then refining the results using individual-level
connectivity patterns. The pipeline comprised 7 steps, as summarized
in Fig. 4:

1. To reduce the size of the input matrix and thereby increase the
processing speed of the parcellation pipeline, the whole-brain
connectivity matrix of each individual subject is masked along one
dimension to an ROI covering the ventrolateral prefrontal cortex,
resulting in an asymmetrical matrix representing the connectivity of
each vertex within the ROI to the whole cortical surface. As a result,
only vertices within the ROI will be labeled. To allow for a higher
degree of morphological variability than would be provided by

anatomical labels based on sulcal information alone, the ROI is
created by combining the FreeSurfer labels corresponding to the
pars opercularis and pars triangularis with binarized (probability >
0) cross-subject probability maps of areas 44 and 45 based on the
101 manually labeled datasets.

2. Vertex-wise partial correlations are then run for the two group-level
seed-based connectivity templates for areas 44 and 45. In this step,
the connectivity pattern of each vertex is correlated with each of the
template connectivity maps, regressing out the effects of the eighteen
remaining group-level IC maps and the adjacent area 44 or 45. This
allows for quantification of the spatial similarity of each vertex with
the connectivity patterns of areas 44 and 45 when you remove the
variance attributable to the 18 other networks. This results in two
partial correlation maps representing the similarity of the connec-
tivity patterns of each vertex within the ROI to the group-level seed-
based connectivity templates for areas 44 and 45.

3. The vertices with the maximum partial correlation to the group-level
connectivity templates for areas 44 and 45 are then identified as the
vertices with the connectivity patterns most representative of areas
44 and 45. The seed-based connectivity vectors corresponding to
these representative vertices are then extracted from the connectiv-
ity matrix and subsequently used as individual-level seed-based
connectivity templates for areas 44 and 45.

4. Spatial correlations are then computed between each of the indivi-
dual-level IC maps and the individual-level seed-based connectivity
templates for areas 44 and 45 generated in step 3. The IC maps with
the highest spatial correlations (r > 0.4) are then removed (Fig. 3).
To account for individual variability in connectivity patterns, vertex-
wise partial correlations are then run for the two individual-level
seed-based connectivity templates for areas 44 and 45 and all
remaining individual-level IC component maps. This step results
in a set of partial correlation maps representing the similarity of the
connectivity patterns of each vertex within the ROI to each of the
individual-level connectivity template maps (consisting of areas 44
and 45, and approximately 18 IC maps for a typical subject).

5. A spatial weighting is then applied in order to decrease the
probability of vertices falling outside a certain anatomical region
being included in the final labels for areas 44 and 45. This step
consists of multiplying the new individual-level partial correlation
maps for areas 44 and 45 by the common logarithm of the cross-

Fig. 1. Group-level connectivity maps of areas 44 and 45 based on the average connectivity from 101 manually labeled functional connectivity datasets. These maps were used as group-
level seed-based connectivity templates in the automated parcellation pipeline. Note the connectivity differences in the anterior temporal and inferior parietal regions.
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subject spatial probability maps of areas 44 and 45 based on the 101
manually labeled datasets. The common logarithm is applied in
order to decrease the slope of the probability maps and thereby
apply a less restrictive spatial constraint.

6. A winner-take-all partition is then run across all partial correlation
maps, resulting in each vertex within the ROI being assigned to one
of approximately 20 possible connectivity-based classes.

7. To ensure spatial continuity of the final labels, the largest clusters
assigned to the classes corresponding to areas 44 and 45 are then
extracted, forming the final binary labels of areas 44 and 45.

2.4. Comparison of manual and automated parcellation results

To compare results from the manual and automated labeling
procedures, the 101 previously manually labeled HCP datasets were
run through the automated labeling pipeline. Spatial overlap of the area
44 and 45 labels from the manual and automated parcellation
procedures were then compared using the Dice coefficient (DC)
(Fig. 5). The Dice coefficient (Dice, 1945) ranges between 0 and 1
and is defined as:

A B
A B
2| ∩ |
| | + | |

Fig. 2. Results from the 20-component group-level ICA of the 101 HCP datasets. Component maps with the highest spatial correlation with the group-level seed-based connectivity
templates of areas 44 and 45 were removed (outlined in red), and the remaining component maps were used in the automated parcellation pipeline.
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To evaluate the effect of the spatial weighting applied in step 5 of
the parcellation pipeline (Fig. 4), the entire pipeline was repeated
skipping this step.

2.5. Group-level comparisons

Group-level probability maps of areas 44 and 45 based on the
results of the manual and automated parcellation procedures were then
computed (Fig. 6). These maps were then compared to cytoarchitec-
tonic probability maps from the Juelich Brain Model (Amunts et al.,
1999) by binarizing at various probability thresholds and calculating

the degree of spatial overlap between them using the Dice coefficient
(Fig. 7).

To obtain a label-specific measure of sulcal morphometry, we used
the FreeSurfer sulcmeasure. This measure represents the displacement
of a particular vertex on the cortical surface from a hypothetical surface
in the midpoint between gyri and sulci, with a mean displacement of
zero. The mean sulc value across the individual area 44 and 45 labels
produced by manual and automated labeling was computed, and their
distributions across subjects were compared.

Fig. 3. Results from the 20-component individual-level ICA of one HCP subject. Component maps with the highest spatial correlation with the individual-level seed-based connectivity
templates of areas 44 and 45 were removed (outlined in red), and the remaining component maps were used in subsequent steps of the automated parcellation pipeline.
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Fig. 4. Pipeline for automated labeling of areas 44 and 45 in an individual subject. The labeling procedure consists of the following steps: (1) The whole-brain connectivity matrix of
each individual subject is masked to a predefined region-of-interest (ROI) covering the ventrolateral prefrontal cortex. The following steps are then conducted on the whole-brain
connectivity map of each vertex within the ROI. (2) Vertex-wise partial correlations are run for areas 44 and 45 using group-level connectivity templates. (3) The vertices corresponding
to the maximum partial correlation for areas 44 and 45 are identified, and used as seeds to extract individual-level connectivity templates. (4) Vertex-wise partial correlations are run
using the individual-level seed-based connectivity templates of areas 44 and 45 and individual-level IC components. (5) A spatial weighting is applied to the partial correlation results for
areas 44 and 45 using previously generated group-level spatial probability maps from manual labeling. (6) A winner-take-all partition is run across all resulting partial correlation maps.
(7) The largest clusters corresponding to areas 44 and 45 are extracted.
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Fig. 5. Spatial overlap of the manual (black contours) and automated (red and green) labels of areas 44 (green) and 45 (red) for eight of the 100 individual HCP subjects, with (left) and
without (right) spatial weighting Dice coefficients have been averaged across areas 44 and 45 for each individual.

Fig. 6. Group-average probability maps of areas 44 and 45 on the HCP fs_LR 32k 440-subject average surface, using different parcellation methods. From left: Probability maps from
the Juelich Brain Model, based on cytoarchitectonic parcellation of 10 postmortem brains; Group-average masks from the manual parcellation of 100 functional connectivity datasets;
Group-average masks from the automated parcellation of the same 100 functional connectivity datasets as used for manual parcellation. Abbreviations: aalf anterior ascending ramus of
the lateral fissure; cs, central sulcus; half, horizontal anterior ramus of the lateral fissure; iprs, inferior precentral sulcus; Op, pars opercularis; Tr, pars triangularis.
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2.6. Evaluating the effect of assigning vertices to the ‘neither’
category

To evaluate the effect of the assignment of vertices to the confound
networks (represented by the IC maps), the labeling pipeline was rerun
on the 100 HCP subjects without assigning any vertices to the ‘neither
area’ category. In this case, all vertices within the ROI are assigned as
areas 44 or 45, and the two largest spatially continuous resulting
clusters are selected as the final labels.

2.7. Comparing results to k-means++ clustering

To evaluate the spatial overlap of the results of the current
parcellation pipeline and labels derived from existing data-driven
clustering methods, we ran k-means++ clustering with a 2-cluster
solution (k=2) on the 100 HCP datasets. k-means ++ is a clustering
algorithm that has been shown to outperform standard k-means due to
an optimized seeding technique (Arthur and Vassilvitskii, 2007).
Further comparisons of the manual labeling procedure and various
other clustering algorithms, including k-means++ can be found in
Jakobsen et al. (2016).

2.8. Testing on an independent dataset

To confirm that the labeling pipeline can be applied to independent

datasets with varying data acquisition and preprocessing parameters,
the automated labeling procedure was applied to the 100 NKI datasets,
eight of which were manually labeled post hoc. Prior to running the
parcellation pipeline, the group-level connectivity and probability maps
of areas 44 and 45 created using the manually labeled HCP datasets
were downsampled from fs_LR_32k to fsaverage5 surface space. 20-
component group- and individual-level independent component ana-
lyses were then run on the time series of the 100 NKI datasets.

Since the group-level connectivity templates of areas 44 and 45
were derived from the HCP and not the NKI dataset, which has a
comparably lower signal-to-noise ratio due to much shorter scan
lengths, the spatial correlations between the IC maps and the group-
level templates were decreased compared to the HCP data. For this
reasons, the threshold for removal of IC components was decreased to
a correlation value of greater than 0.1. This resulted in more
components being identified as related to BA 44 or 45 prior to running
the partial correlation steps and subsequently regressing out fewer
components, allowing for a higher degree of variability in the con-
nectivity patterns within labels. All other aspects of the parcellation
pipeline remained the same as for the HCP data. Group-level prob-
ability maps were then computed across the 100 NKI datasets for
comparison (Fig. 11). Eight of the 100 subjects were then manually
labeled post hoc, blind to the results of the automated labeling, and
spatial overlap of the automated and manual area 44 and 45 labels was
compared using the Dice coefficient (Fig. 12).

3. Results

3.1. Exclusion of one subject from automated parcellation

Of the 101 manually labeled HCP datasets, one subject was
excluded from automated parcellation due to missing files in more
recent HCP data releases. Removal of this subject has no effect on the
results of the remaining subjects. The results of the automated
parcellation are therefore presented for 100 of the 101 HCP subjects.

3.2. Comparison of manual and automated parcellation results

The results from the automated parcellation pipeline displayed a
high degree of spatial overlap with the gold standard maps produced by
manual labeling (Fig. 5). The average Dice coefficient across the 100
subjects was 0.71 for area 45 and 0.63 for area 44. To demonstrate the
improvement of the parcellation results when anatomical information

Fig. 7. Dice similarity of cytoarchitectonic probability maps with group-average func-
tional probability maps produced by manual and automated labeling, across different
probability thresholds.

Fig. 8. Distribution of mean FreeSurfer ‘sulc’ value across the individual area 44 and 45 labels produced by manual (left) and automated (right) labeling for the 100 original subjects.
Sulci are represented by negative ‘sulc’ values, and gyri by positive ‘sulc’ values. Mean ‘sulc’ values from manual and automated labeling are not significantly different for area 45
(p=0.78) or area 44 (p=0.38).
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is incorporated via spatial weighting of the partial correlation maps,
results are additionally presented without the application of spatial
weighting. For these results, the average Dice coefficient across the 100
subjects was 0.62 for area 45 and 0.39 for area 44 (note the markedly
lower spatial overlap of the area 44 labels without spatial weighting).

3.3. Group-level comparisons

The group-level probability maps of the labeled areas 44 and 45
demonstrate high consistency between the manual and automated
labeling techniques. The region of highest overlap between subjects for
area 45 is on the posterior half of the pars triangularis, directly anterior
to the anterior ascending ramus of the lateral fissure. For area 44, the
region of highest overlap lies on the anterior bank and fundus of the
inferior precentral sulcus, adjacent to and including the pars opercu-
laris. The functional connectivity-based group-level probability maps
also show consistency with cytoarchitectonic probability maps derived
from post-mortem histology (Amunts et al., 1999; Fig. 6).

The degree of spatial overlap between the functional (manual and
automated) and cytoarchitectonic probability maps shows a relatively
steady decrease with increasing probability values, with only the
highest probability values showing no overlap. Spatial overlap was
slightly higher for area 45 than area 44 for both manual and automated
labeling (Fig. 7).

Fig. 8 shows the distribution of mean sulc value across the
individual area 44 and 45 labels produced by manual and automated
labeling for the 100 subjects. In the HCP data, sulci are represented by
negative sulc values, and gyri by positive sulc values (note that this
deviates from standard FreeSurfer convention). For both the manual
and automated labeling, the mean sulc value for area 45 is consistently
positive, suggesting that the area 45 labels include mostly gyral
vertices. The mean sulc value across individuals for area 44 shows a
wider distribution centered around zero for both the manual and
automated labeling. This result is consistent with a higher degree of
sulcal variability surrounding the pars opercularis as compared to the
pars triangularis (Jakobsen et al. 2015), with the individual labels often
extending into the inferior precentral sulcus. For both areas 44 and 45,
the distributions of mean sulc values are wider for labels resulting from
manual as compared to automated labeling, suggesting that the spatial
weighting applied in the automated labeling pipeline is slightly more
restrictive than in the manual labeling. However, a paired sample t-test
revealed that the mean sulc values from the manual and automated
labels are not significantly different (p=0.78 for area 45 and p=0.38 for

area 44). For both manual and automated labeling, the mean sulc
values from areas 44 and 45 were significantly different at p < 0.001.

3.4. Evaluating the effect of assigning vertices to the ‘neither’
category

On average, 894 vertices (corresponding to 64% of the approxi-
mately 1400 vertices comprising the ROI) are assigned to the neither
category in the presented results. Without assigning vertices to the
neither category, the average Dice coefficient across the 100 subjects is
0.57 for area 45 and 0.49 for area 44 (significantly lower as compared
to 0.71 and 0.63 when including the neither category). In this case, the
average number of vertices within the ROI not included in the labels
(i.e. not belonging to the two largest spatially continuous clusters of
vertices assigned as areas 44 and 45) is 364 (corresponding to 26% of
the approximately 1400 vertices comprising the ROI). Fig. 9 shows the
results of the labeling pipeline with and without assigning vertices to
the neither category in a single representative subject.

3.5. Comparing results to k-means++ clustering

The average Dice Coefficient across the 100 subjects when compar-
ing the largest spatially continuous clusters resulting from k-means++
clustering (k=2) to the manual labels is 0.58 for area 45 and 0.34 for
area 44. The same analysis using the automated labels yields an
average Dice coefficient of 0.61 for areas 45 and 0.40 for area 44.
These results represent a markedly lower spatial overlap with the
manual labels than the current parcellation pipeline. This is due to
overestimation of the areas by k-means++ clustering since the nature
of the algorithm is such that every vertex within the ROI will be
assigned as either area 44 or 45 when a 2-cluster solution is applied.

To further illustrate the similarities and differences between the two
methods, Fig. 10 depicts the results of running k-means++ clustering
with increasing numbers of clusters (k=2–10, 20) on a single subject
with the corresponding subject's manual and automated area 44 and 45
labels overlaid.

As can be seen in Fig. 10, there is a relatively high degree of spatial
overlap between the manual and automated labels and certain clusters
resulting from k-means++. However, while the boundary separating
areas 44 and 45 is well-defined by k-means++, the outer boundaries of
the areas change depending on the number of clusters chosen, and
sometimes the areas of interest are split into multiple clusters. This
gives rise to difficulty in determining the appropriate number of

Fig. 9. Results of the parcellation pipeline with (left) and without (right) assigning vertices to the ‘neither’ category for a single representative subject. On average, approximately 64% of
the vertices comprising the ROI are assigned to the ‘neither’ category. Without assigning vertices to the neither category, all vertices are assigned as belonging to area 44 or 45, and the
two largest spatially continuous resulting clusters are selected as the final labels.
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clusters when the aim is to delineate specific cortical areas. By
excluding vertices from the final area labels if their connectivity is
more similar to one of the confound networks (IC maps) than to the
networks of interest (areas 44 or 45), the current parcellation approach
allows for more flexible and accurate definition of the outer boundaries
of the areas of interest.

3.6. Testing on an independent dataset

The results of post hoc manual labeling on eight NKI datasets
showed a high degree of spatial overlap with the area 44 and 45 labels
produced by the automated labeling pipeline (Fig. 11). The average
Dice coefficient across the eight subjects was 0.71 for area 44 and 0.69
for area 45. These results demonstrate the ability of the automated
labeling pipeline to generalize to datasets with varying resolution and
acquisition parameters.

Fig. 12 shows the group-level probability maps from automated

labeling of the 100 NKI datasets. These maps are consistent with those
from the HCP data as well as cytoarchitectonic probability maps
derived from post-mortem histology (Fig. 6).

All results including individual subject labels and group-level
probability maps are available for download at [link to be added upon
publication], as well as the automated labeling pipeline script.3

4. Discussion

The results of the current study suggest that the automated
parcellation pipeline is able to produce functional connectivity-based
labels of areas 44 and 45 with comparable precision to the manual
labeling procedure we had previously described (Jakobsen et al., 2016).
The accuracy of parcellating and assigning labels in new datasets

Fig. 10. Results of k-means++ clustering (k=2–10, 20) on a single subject with the corresponding manual and automated labels overlaid (black outlines).

3 https://github.com/NeuroanatomyAndConnectivity/broca/tree/master/
PartialCorrelation.
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suggests that the method is not dependent on the specific cohort used
to create the group-level connectivity templates and can be applied to
independent functional connectivity datasets with varying scanning
parameters.

Due to the high dimensionality and inherent complexity of func-
tional connectivity data derived from resting-state fMRI, the develop-
ment of data-driven parcellation techniques for dimensionality reduc-
tion has become a priority in the field (Thirion et al., 2014). Such
approaches often make use of clustering algorithms, such as k-means,
hierarchical, or spectral clustering, to group voxels or vertices into
networks based on the similarity of their connectivity patterns (Yeo
et al., 2011; Kahnt et al., 2012; Craddock et al., 2012; Blumensath
et al., 2013). Other methods make use of boundary detection techni-
ques to map the transitions in connectivity patterns between cortical
regions (Cohen et al., 2008; Hirose et al., 2012; Wig et al., 2014). More
recently, a method by Wang and colleagues (2015) made use of an
iterative approach to fit a population-based functional atlas to indivi-
dual brains, which critically and effectively captures cross-subject
variability. These approaches for cortical parcellation are powerful
tools for dimensionality reduction of complex functional connectivity

data and can provide whole-brain functional atlases that are instru-
mental within particular research contexts.

One key difference that distinguishes the current parcellation
approach from existing clustering methods is the exclusion of vertices
that are more similar to a set of confound networks (represented by IC
maps) than to the connectivity patterns of the target areas. Clustering
methods such as k-means and hierarchical clustering produce parcella-
tions with a predefined number of clusters, regardless of how many
distinct networks actually exist within the ROI. This gives rise to the
problem of determining the appropriate number of clusters to choose
when the aim of the parcellation is to distinguish particular cortical
areas (see Jakobsen et al. (2016) for a detailed comparison of the
manual labeling approach and various data-driven clustering algo-
rithms). The current parcellation approach does not force vertices to be
assigned to every possible network and thereby allows for more flexible
and accurate definition of the outer boundaries of the areas of interest.
In more general terms, the parcellation approach presented here differs
from other data-driven parcellation techniques by aiming to simulate
the process of individual-level manual labeling driven by prior knowl-
edge of the anatomy and connectivity of specific cortical areas. By

Fig. 11. Spatial overlap of the manual (black contours) and automated (red and green) parcellation techniques for the eight NKI datasets for which post hoc manual labeling was
performed, shown on the individual surfaces in fsaverage5 space. Dice coefficients have been averaged across areas 44 and 45 for each individual.

Fig. 12. Group-average probability maps of areas 44 and 45 from automated labeling of the 100 NKI datasets, shown on the fsaverage5 surface.
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targeting specific known differences in connectivity patterns and
incorporating anatomical information via spatial weighting, the result-
ing area labels represent the best fit to the individual anatomy and
connectivity. The availability of the manually labeled dataset is
uniquely valuable for validation of the area labels derived from the
automated parcellation pipeline, the accuracy of which would other-
wise be difficult to quantify due to the lack of gold standard functional
atlases.

The two-step partial correlation approach using both group-level
and individual template connectivity maps ensures that cross-subject
variance in connectivity patterns is accounted for in the parcellation
pipeline. This approach notably shares some conceptual similarities
with dual regression, which also makes use of group-level ICA-based
network maps to estimate individual-level versions of the same net-
works (Filippini et al., 2009), but the goals of the two approaches differ
slightly. In dual regression the aim is to facilitate comparisons of the
same networks between groups of individuals, while in the current
parcellation approach the aim is to produce individual area labels
based on their unique patterns of connectivity. Therefore, in the
current approach, the group-level spatial maps are simply used to
identify an appropriate seed location from which to extract the
individual-level network templates from the unmodified data, instead
of using temporal regression to create individual-level versions of the
group-level templates as is the case with dual regression.

The current study applied the automated parcellation pipeline to
Broca's region where (i) the two cytoarchitectonic areas that comprise
it are known to have distinct functional connectivity and (ii) the
availability of the manually labeled datasets could provide a basis for
comparison. However, the described parcellation pipeline could be
modified to delineate any cortical regions for which known differences
in functional connectivity exist. In this case, alternative group-level
template sources, such as the IC maps most resembling the connectiv-
ity patterns of interest, could be used to initiate the analysis and
subsequently extract the individual-level templates (see Supplementary
materials for preliminary results of such an alternative method).
Additionally, the spatial probability maps based on the manually
labeled datasets used for spatial weighting could be replaced with a
different form of spatial information such as cytoarchitectonic prob-
ability maps or geodesic distance from an anatomically-defined ROI.

Like most cortical parcellation techniques, the current method
provides deterministic binary labels of areas 44 and 45. However, it
has recently been demonstrated that different cortical areas display
varying degrees of sharpness in their boundaries (Wig et al., 2014). For
certain research applications it may therefore be advantageous to
output probabilistic area labels at the individual level, and the
parcellation criteria upon which the current method is based could
just as well be used for this purpose. More specifically, the parcellation
pipeline is very easily modified to output the partial correlation maps
themselves, which, with the application of spatial weighting based on
anatomical criteria, could serve as individual-level probabilistic area
labels to be used for the investigation of transition gradients and
quantification of the sharpness of boundaries across individuals.

Until recently, non-invasive in vivo definition of areas 44 and 45
has been a significant challenge and many functional neuroimaging
studies have relied on anatomical definitions of the regions based on
data derived from cytoarchitectonic studies. To our knowledge, no
behavioral task exists that is able to reliably distinguish areas 44 and 45
from each other, and resting-state functional connectivity-based par-
cellation provides a solution to this problem. Our observer-indepen-
dent parcellation method is able to produce probability maps based on
both functional connectivity and anatomical location, which represent
variability across a much larger number of individual brains than what
is viable using invasive techniques. Additionally, we believe that the
individual labels will prove useful for a variety of applications ranging
from serving as functionally defined ROIs for fMRI studies to clinical
applications such as presurgical planning. This method fills a gap in the

tools currently available for mapping the functional boundaries of
specific cortical areas on an individual-level.
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