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ABSTRACT

Context. Maxwell stresses exerted by dynamo-generated magnetic fields have been proposed as an efficient mechanism to transport
angular momentum in radiative stellar layers. Numerical simulations are still needed to understand its trigger conditions and the satu-
ration mechanisms.
Aims. The present study follows up on a recent paper where we reported on the first simulations of Tayler–Spruit dynamos. Here we
extend the parameter space explored to assess in particular the influence of stratification on the dynamo solutions. We also present
numerical verification of theoretical assumptions made previously that were instrumental in deriving the classical prescription for
angular momentum transport implemented in stellar evolution codes.
Methods. A simplified radiative layer is modeled numerically by considering the dynamics of a stably stratified, differentially rotating,
magnetized fluid in a spherical shell.
Results. Our simulations display a diversity of magnetic field topologies and amplitudes depending on the flow parameters, includ-
ing hemispherical solutions. The Tayler–Spruit dynamos reported here are found to satisfy magnetostrophic equilibrium and achieve
efficient turbulent transport of angular momentum, following Spruit’s heuristic prediction.

Key words. instabilities – dynamo – stars: kinematics and dynamics – turbulence – magnetic fields –
magnetohydrodynamics (MHD)

1. Introduction

Understanding the transport of angular momentum (AM) and
chemical elements in stellar interiors is a cornerstone of stel-
lar evolution models (Maeder & Meynet 2000). In recent years,
asteroseismic data from space-born missions, namely the CoRoT
(Baglin et al. 2009), Kepler, and TESS (Borucki et al. 2010;
Aguirre et al. 2020; Rauer et al. 2014) missions, have provided
unprecedented insight into the dynamics of internal layers by
constraining the rotation rates of the envelope and core of thou-
sands of stars (Aerts et al. 2019). In particular, these observations
show that considerable spin-down occurs in the radiative cores of
evolved stars through a process that is not explained by current
stellar evolution models (Ceillier et al. 2013; Christophe et al.
2018; Van Reeth et al. 2018; Eggenberger et al. 2019; Bugnet
2020).

While AM transport is expected to be influenced by a
diversity of physical mechanisms, including stellar winds,
contraction and dilatation, meridional circulation, internal
gravity waves, and magnetic fields, the last in particular are
thought to play a major role as their parameterization in
stellar codes has been shown to strongly suppress differential
rotation (Eggenberger et al. 2005). However, while surface
magnetic fields have been detected in the radiative envelopes of
many massive and intermediate-mass stars (Wade et al. 2016),

magnetic fields in the radiative cores of post-MS stars are still
notoriously difficult to constrain despite the promising detection
of magnetic signatures on rotational splittings (Prat et al. 2020;
Van Beeck et al. 2020; Mathis et al. 2021). Therefore, the
parameterization of magnetically driven AM transport in 1D
stellar codes relies on theoretical predictions and on direct
numerical simulations to characterize magnetic fields and the
condition for their generation in radiative layers.

Magnetic fields can be generated and sustained against
ohmic dissipation in the star internal layers through a dynamo
instability, whereby a fraction of the kinetic energy of plasma
motions is converted into magnetic energy. In radiative zones
however, the mechanisms for dynamo action are poorly under-
stood due to the scarcity of numerical simulations. So far, the
only theoretical models for radiative dynamo that have been
parameterized in stellar codes are driven by magneto-rotational
instability (MRI) and Tayler instability (Wheeler et al. 2015;
Griffiths et al. 2022). These parameterizations have shown that,
while MRI is found to strongly enhance chemical mixing, the
most efficient at transporting AM is arguably the Tayler–Spruit
dynamo mechanism put forward by Spruit (2002; see also
Eggenberger et al. 2022).

In this model, dynamo action results from a constructive
feedback loop between the winding up of poloidal magnetic
fields into toroidal fields by differential rotation (the Ω-effect)
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on the one hand, and a strong toroidal magnetic field becoming
unstable to a pinch-type instability (Tayler 1973) on the other
hand. In Spruit (2002), a scenario for magnetic field amplifica-
tion is suggested, where differential rotation generates a strong,
axisymmetric toroidal field out of an arbitrarily weak poloidal
magnetic field, until the former breaks into nonaxisymmetric
modes upon reaching a critical amplitude, thus initiating the
dynamo loop. This scenario however was never reproduced in
numerical simulations despite numerous attempts, so that the
possibility for Tayler–Spruit dynamos to operate in radiative
stellar layers had remained somewhat controversial (Zahn et al.
2007). Moreover, even assuming that the classical Tayler–Spruit
mechanism is indeed relevant for radiative zones, the rotation
rates of subgiant stars was shown to remain unaccounted
for (Cantiello et al. 2014; Salmon et al. 2022), motivating
investigation of alternative, possibly more efficient saturation
mechanisms for this dynamo (Fuller et al. 2019). In a forthcom-
ing paper (Daniel et al. 2023), we report that the turbulence
induced by the dynamo discussed here produces an additional
contribution to angular momentum transport via the Reynolds
stress tensor. This could significantly affect the profile of rota-
tion, as for some RGB we show that it could be up to one order of
magnitude more important than the magnetic torque applied on
the flow.

In a recent paper (Petitdemange et al. 2023), we reported
the first numerical evidence of such dynamo solutions in simu-
lated radiative layers of stars. The initialization of the dynamo
loop was found to somewhat differ from the original predic-
tion of Spruit (2002), in that the excitation of the Tayler–Spruit
dynamo was nonlinearly achieved through the prior excitation
of a weaker, shear-driven dynamo instability. Extensive numer-
ical simulations are still needed to fully understand its trigger
conditions and the saturation mechanisms, and the first aim
of the present paper is to clarify the dominant balances at
play in the simulated Tayler–Spruit dynamos at steady state.
We then extend our exploration of the parameter space, and
report the existence of various dynamo topologies, depending
on the stratification regime, and in particular the corresponding
hydrodynamic configuration of the base flow.

2. Methods

Our numerical model is presented in detail in the supplementary
material of Petitdemange et al. (2023); we briefly recall it here
for clarity. In order to considerably reduce costs, our numerical
approach focuses on modeling a star’s radiative (stably strati-
fied) layer, without solving for the complicated couplings with
the innermost core regions or the external stellar layers that
determine the radial shear profile. Instead, we consider a sim-
ple numerical setup where differential rotation in the flow is
achieved through entrainment by rigid boundaries. In our model,
an electrically conducting fluid with magnetic diffusivity η and
molecular viscosity ν fills the gap between two spherical shells
rotating about a common axis at different speeds, where Ω
and Ω + △Ω are the angular velocities of the outer and inner
spheres, respectively. The calculations are performed in the rotat-
ing frame of reference where the outer sphere is at rest. The
parameters controlling diffusivities are far from realistic due to
computational limitations, but we tend to determine systematic
behaviors. In addition, it is important to note that the values
of effective diffusivities can be increased by several orders of
magnitude in strongly turbulent systems such as the tachocline
region.

No-slip boundary conditions are applied on both spheres,
along with electrically insulating boundary conditions on the
outer sphere, whereas the inner sphere has the same conductiv-
ity as the fluid. Stable stratification is achieved inside the fluid
by prescribing a positive temperature difference △T between the
inner and outer shells, whose temperatures are fixed. The aspect
ratio between the inner and outer spheres radii χ = ri/ro is set
to 0.35 throughout the study. We use the Boussinesq approxi-
mation to neglect variations in the fluid density except in the
buoyancy term, leading to the following magnetohydrodynamic
(MHD) equations:

∂v
∂t
+ (v · ∇)v = ν△v − 2Ωez × v −

1
ρ
∇P + j × B + αg0rΘer, (1)

∂B
∂t
= η△B + ∇ × (v × B), (2)

∂T
∂t
= −(v · ∇)T + κ△T, (3)

∇ · v = 0, (4)
∇ · B = 0, (5)

where v, P, B, and T are respectively the velocity field, pressure
field, magnetic field, and temperature field; Θ is the temperature
fluctuation accounting for density fluctuations in the buoyancy
term, ez the unit vector along the rotation axis, and er the local
radial unit vector. The physical properties of the fluid are deter-
mined by its magnetic permeability µ0, its mean density ρ, its
thermal expansion coefficient α, and its thermal diffusivity κ; g0
denotes the gravitational acceleration at the outer shell.

In terms of numerical control parameters, the flow regime is
entirely described by means of five independent, dimensionless
parameters: the Ekman number E = ν/Ωor2

o quantifying the ratio
between viscous force and Coriolis acceleration, the Rayleigh
number Ra = αg0△Tr3

o/(νκ) measuring the intensity of thermal
forcing (hence the strength of the stratification), the Reynolds
number Re = riro△Ω/ν measuring the ratio of inertial to vis-
cous effects, the magnetic Reynolds number Rm = riro△Ω/η
comparing the respective effects of induction and ohmic dissi-
pation, and the Prandtl number Pr = ν/κ comparing molecular
and thermal diffusivities. It is important to note that the extreme
flow regimes found in astrophysical flows remain far beyond the
reach of numerical simulations, due to their formidable com-
putational cost. In particular, the Ekman number E is of order
E ∼ 10−15 in stellar interiors, whereas the most intensive high-
performance direct numerical simulations (DNSs) currently only
reach E ≳ 10−7–10−8 (Schaeffer et al. 2017). Simulations in the
strongly stratified regime also require a very high spatial resolu-
tion as stratification decreases the size of flow structure in the
radial direction, and the timestep must be decreased in order
to take into account the possibility of internal gravity waves.
Nevertheless, 3D DNSs can now achieve fully turbulent strongly
stratified flow regimes, due to the ever-increasing availability of
numerical resources. Moreover, our simulations systematically
span a large range of parameters in order to determine useful
scaling laws.

The numerical resolution chosen is large enough so that
physical viscosity always dominates over grid viscosity in our
nonideal simulations, and our results are therefore independent
of the resolution. All the simulations reported in this study were
carried out using the PARODY-JA code (Dormy et al. 1998;
Aubert et al. 2008) coupled with the ShTns library (Schaeffer
2013). PARODY-JA uses finite-difference discretization in
the radial direction and spherical harmonic decomposition.
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The number of radial gridpoints (nr) used in the fluid domain
is 288 < nr < 360, and the maximum degree (lmax) and
order (mmax) of the spherical harmonic decomposition are
128 < lmax < 198 and 58 < mmax < 128, respectively.

3. Comment on hydrodynamic states

Before turning to the dynamo problem, it is worth briefly con-
sidering the geometry of the (purely hydrodynamic) base flow,
which depends on the rotation and stratification parameters.
Weakly stratified, rapidly rotating flows are dominated by a force
balance between Coriolis acceleration and pressure gradient, a
situation referred to as the geostrophic equilibrium. This domi-
nant balance results in the flow being (at lowest order) invariant
along cylinders coaxial with the rotation axis (Proudman 1956).
In spherical Couette flow (and below the shear instability thresh-
old), the fluid located outside the notional tangent cylinder
encompassing the inner sphere at the equator is co-rotating with
the outer sphere. Inside the tangent cylinder (and far from both
the boundaries), the fluid rotates at the rateΩ+△Ω/2. The veloc-
ity jump across the tangent cylinder is accomodated through a
series of nested, free shear layers, known as the Stewartson lay-
ers (Stewartson 1966), whose thicknesses scale as powers of the
rotation parameter E (see Marcotte et al. 2016, who provide a
complete description of this problem). When the shear parameter
becomes sufficiently large, destabilization of a Stewartson shear
layer results in breaking the flow axisymmetry, while invariance
along the rotation axis remains largely preserved.

Strongly stratified, slowly rotating flows, on the other hand,
exhibit a spherical geometry due to the leading effect of buoy-
ancy; this corresponds to the typical regime where the shellular
approximation is meaningful, or in other words, that the angu-
lar velocity can be considered (at leading order) invariant in the
horizontal direction (Zahn 1992). The transition in flow geome-
try depends on the relative importance of stratification and global
rotation. However, as shown by Philidet et al. (2019), the critical
parameter is not the frequency ratio N/Ω between the buoyancy
frequency N = (αg△T/(ro − ri))1/2 and the global rotation rate
Ω, but the quantity Q ≡ Pr

(
N
Ω

)2
, which is equivalently expressed

here as Q ≡ E2Ra/(1−χ). This numerical result of Philidet et al.
(2019) can be retrieved with a simple dimensional analysis of the
problem. Balancing Coriolis acceleration and buoyancy in the
equatorial plane yields

2Ωuϕ ∼ αgΘ, (6)

where uϕ and Θ are typical values for the azimuthal velocity and
the thermal perturbation, respectively. In the Boussinesq approx-
imation, we can estimate the thermal perturbation at steady
state as

ur
dTs

dr
∼ κ △ Θ, (7)

where ur is a typical radial velocity; furthermore, the azimuthal
component of Eq. (1) in the equatorial plane provides

2Ωur ∼ ν △ uϕ. (8)

Combining Eqs. (6)–(8) yields

Q ≡
αg

Ω2

ν

κ

dTs

dr
∼ 4. (9)

This qualitative argument further suggests that the crossover
regime corresponds to Q of order unity, which happens to be

Fig. 1. Stratification influence on the onset of shear instability in a
spherical shell. Top: evolution of the critical Reynolds number Rec
(or equivalently the Rossby number Roc) as a function of stratifica-
tion intensity (quantified by the Rayleigh number Ra). When Re > Rec
(red upward triangles), nonaxisymmetric modes are maintained in time.
Conversely, when Re < Rec (dark downward triangles), the kinetic ener-
gies of nonaxisymmetric modes exponentially decay with time. The
insets highlight the pattern of unstable modes close to the threshold via
color maps of the radial velocity in the equatorial plane. Simulations
parameters: E = 10−5, Pr = 0.1. Bottom: critical Reynolds number Rec
for the onset of hydrodynamic instability with increasing stratification,
for various thermal and rotation parameters.

relevant for example in the case of the solar radiative zone due
to the smallness of the Prandtl number Pr (with QSun ∼ 1.3).

Figure 1 shows that increasing the stratification (controled by
the Rayleigh number Ra) when the rotation parameter E and the
thermal Prandtl number Pr are fixed tends to stabilize the non-
axisymmetric shear instability, which also develops at decreasing
wavenumbers. Unsurprisingly, the stability threshold Rec scales
as Rec ∼

√
Ra/Pr, which is equivalent to a Richardson number

Ri of order unity (Richardson 1920):

Ri ≡
N2

(△Ω)2 =
Ra

PrRe2 ∼ 1. (10)

4. Stratification, rotation, and dynamo morphology:
A route to Tayler–Spruit dynamos

The hydrodynamic base states described above are found to
power a diversity of self-sustained radiative dynamos, depend-
ing on the stratification-to-rotation ratio on the one hand, and
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Fig. 2. Time-averaged magnetic energy for dynamo simulations per-
formed with different parameters and initial conditions for the magnetic
field. The stars correspond to models in which the axisymmetric toroidal
magnetic component exceeds 80% of the total magnetic energy (toroidal
dynamos). The fixed simulation parameters are E = 10−5, Pr = 0.1,
Pm = 1.

on the initial condition for the magnetic field on the other
hand. The variety (both in amplitude and in structure) of the
dynamo-generated magnetic fields is exemplified by the diagram
in Fig. 2, which summarizes the study of the dynamo bifurca-
tion for fixed diffusivity ratios Pr = 0.1, Pm = 1 and rotation
parameter E = 10−5, when the Rayleigh number controlling the
degree of stratification is varied over four orders of magnitudes.
The dynamo morphology can be mainly classified into three cat-
egories (see Fig. 3): toroidal, dipolar, and hemispheric dynamos.
Toroidal dynamos are characterized here by a strongly dominant
axisymmetric toroidal component (representing more than 80%
of the magnetic energy), and a largely subdominant, nonaxisym-
metric poloidal component dominated by the azimuthal mode
m = 1. These dynamos correspond to Tayler–Spruit dynamos
(Spruit 2002), numerically reproduced for the first time in
Petitdemange et al. (2023) and presented in detail therein. Dipo-
lar dynamos on the other hand refer to dynamos where the
poloidal energy only slightly dominates over the toroidal energy,
but the former is dominated by the axial dipole. Finally, hemi-
spherical dynamos are characterized by a strong asymmetry
between the two hemispheres.

The dipolar dynamos are observed at sufficiently low Ra,
where stratification has a minor influence on the MHD flow;
these dynamos are similar to those reported in Guervilly &
Cardin (2010) without stratification. In this low-Ra regime nei-
ther the magnetic field morphology nor its amplitude are found
to depend on the initial conditions. The relative weakness of the
dynamo-generated magnetic fields results in the flow not being
significantly affected by the dynamo: although the total kinetic
energy is slightly reduced, the dominant nonaxisymmetric com-
ponent of the velocity field remains unchanged compared to the
purely hydrodynamic simulations.

Stratification effects become nonnegligible as Ra increases
to Ra = 108. In Fig. 2 two distinct branches of dynamo solutions
can be observed depending on the magnetic seed field prescribed
initially. Specifically, tiny random magnetic fields are amplified
and evolve toward saturated dipolar dynamos (dashed line with
circles), whereas systems initialized with a stronger, well-chosen
magnetic field spontaneously evolve toward a new equilibrium,

W*

W*

W*

Fig. 3. Meridional sections of the axisymmetric components of
azimuthal magnetic Bϕ, radial magnetic field Br, and angular veloc-
ity Ω⋆ (normalized by △Ω). Top: weakly stratified dipolar dynamo at
E = 10−5, Ra = 107, Re = 5000, Pr = 0.1, Pm = 1. Middle: hemispher-
ical dynamo at E = 10−5, Ra = 108, Re = 12 000, Pr = 0.1, Pm = 1.
Bottom: strong toroidal (Tayler–Spruit) dynamo at E = 10−5, Ra = 1010,
Re = 3.104, Pr = 0.1, Pm = 1.

corresponding to a toroidal (Tayler–Spruit) dynamo (dashed
line with stars). These two branches appear as soon as Re/Rec
becomes slightly greater than one, meaning that both solutions
require the hydrodynamic instability to set in for a magnetic field
to be maintained by dynamo action. For Re < Rec, the magnetic
energy and the kinetic energy of all nonaxisymmetric modes
eventually undergo exponential decay whatever the tested ini-
tial condition. Moreover, the amplitude of the saturated magnetic
field is more than one order of magnitude larger for Tayler–Spruit
dynamos than for dipolar dynamos (and almost three orders of
magnitude for Re/Rec < 1.5). As a consequence, Tayler–Spruit
dynamos are observed to trigger MHD turbulence, whereas dipo-
lar solutions are not. As shown in Petitdemange et al. (2023), the
associated transport of angular momentum tends to suppress the
shear in the bulk of the flow where magnetic activity is most
intense.

The rich dynamo topology of this moderately stratified
regime is further illustrated by the emergence of hemispheri-
cal dynamo solutions. Figure 3 shows meridional maps of the
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angular velocity and magnetic fields. In these dynamo solu-
tions, magnetic activity is nearly absent from one hemisphere,
and the flow corresponds to that of the hydrodynamic state,
with columnar vortices aligned with the tangent cylinder. In the
other hemisphere, a strong, large-scale axisymmetric toroidal
magnetic field builds up at mid-latitudes. In comparison, the
radial component has a typical length scale that is smaller, and
it is dominated by its nonaxisymmetric components. The field
strength for these dynamos is strong enough to considerably
modify the flow structure in the hemisphere influenced by the
magnetic field: the cylindrical symmetry of the flow is bro-
ken and the nonaxisymmetric components of the radial velocity
exhibit the same spatial distribution as the magnetic field.

As Ra further increases, however, a crucial feature of Tayler–
Spruit dynamos is that some strong magnetic fields can be
maintained, not only below the linear instability threshold for
dynamo action, but even below the shear instability threshold
(Petitdemange et al. 2023). In the Ra = 109 series presented in
Fig. 2 for example, no initially weak magnetic fields are ampli-
fied up to Re/Rec ∼ 1.75. Above this threshold, initially weak
seed fields are amplified by dynamo action and develop into
strong, toroidal fields, which in turn promote turbulent fluid
motions. We note that all the series shown in this particular
figure correspond to Pm = 1. Another type of dynamo, morpho-
logically similar to the Tayler–Spruit dynamos presented here,
but considerably weaker and essentially laminar, can be obtained
at lower Pm and was reported in Petitdemange et al. (2023).
These strong dynamo-generated fields could be maintained down
to Re ∼ 0.5Rec, modifying the flow so as to sustain the turbulent
motions that power them even below the (hydrodynamic) insta-
bility threshold. In Daniel et al. (2023), we show by a Pm study
that the relevant criterion controlling how low the system can
go before losing dynamo action (in terms of differential rota-
tion) is actually a constant magnetic Reynolds number, whose
value is fixed by the global rotation and stratification, in very
good agreement with what was proposed by Spruit (2002). It is
therefore likely that in a real star, as the Rm number is large,
Tayler–Spruit dynamos could flatten rotation profiles across the
radiative zone and still operate even when the shear becomes
comparatively weak.

This subcriticality of the Tayler–Spruit mechanism was cer-
tainly instrumental to numerically reproduce these particular
dynamo solutions, and may explain why they have long eluded
numerical investigation. Tayler–Spruit dynamos here can be
obtained from initially weak, random seed fields only when the
shear is sufficiently strong and the base flow axisymmetry is bro-
ken by the hydrodynamic instability, meaning that Re ≫ Rec ∼√

Ra/Pr = N/(ΩE). While this is never a restrictive condition in
a (real) stellar interior, where the expected Reynolds numbers are
of order Re ∼ 1010 or larger, it certainly is restrictive for numer-
ical simulations, for which the computational cost associated
with the shear-unstable regime rapidly becomes overwhelming
at large Ra (strong stratification). In other words, attempting to
grow a numerical Tayler–Spruit dynamo directly out of weak,
random magnetic fields using, for example, a solar-like ratio
N/Ω ∼ 100 and a reasonably small rotation parameter E ≪ 1
is practically impossible. This may seem particularly surpris-
ing since Tayler–Spruit’s theory predicts dynamo action out of
vanishingly small initial perturbations, due to prior amplification
through theΩ-effect; while this scenario may apply in true radia-
tive stellar layers, the required flow regimes might not permit
such a scenario in numerical simulations.

In our approach, instead, we exploit the subcriticality of
Tayler–Spruit dynamos to reach high N/Ω regimes by first

Fig. 4. Meridional sections of axisymmetric latitudinal and radial com-
ponents of the velocity field (left) and magnetic field (right). Parameters:
Re = 2.75 × 104 and Ra = 109 (uppel panel; Q = 0.15); Re = 3.104 and
Ra = 1010 (lower panel; Q = 1.5). The other control parameters are
fixed as in Fig. 3.

addressing the computationally more accessible supercritical
flow regime (Re > Rec) for N/Ω = O(1). Once a dynamo builds
up, the resulting magnetic and velocity fields at steady state are
used to initialize a new simulation, where the control param-
eters defining the flow regime are slightly modified. Once the
fields have adjusted to the new flow conditions and settled into a
steady state, the latter is used to initialize a new simulation where
the control parameters are further modified, and so on. Follow-
ing the dynamo manifold requires that the control parameters
vary slowly while exploring the parameter space, due to the sub-
critical nature of the dynamo. Despite the numerical constraints,
we find that Tayler–Spruit dynamos are surprisingly robust and
actually span a wide spectrum of flow regimes. While many sim-
ulations here are performed with low N/Ω ratios that are relevant
for rapid rotators, it was possible to obtain a few simulations
with N/Ω up to 20 and 50, thus approaching the solar ratio
(N/Ω|Sun ∼ 100). These simulations correspond to Q = 62 and
Q = 246, respectively, meaning that the base flow has very clear
spherical symmetry. The velocity and magnetic maps shown in
Fig. 4, both corresponding to Tayler–Spruit simulations, exem-
plify the clear emergence of this symmetry as Q increases and
the robustness of the dynamo mechanism with respect to the flow
geometry.

It is important to note that, while our simulations present
a few typical properties indicating that a Tayler instability is at
work to generate the nonaxisymmetric fluctuations whose non-
linear interactions close the dynamo loop, the possibility for the
azimuthal field to become destabilized through azimuthal mag-
netorotational instability (AMRI) in some parameter regimes,
and thus to feed the dynamo cannot be ruled out. For exam-
ple, simulations by Guseva et al. (2017) have shown that AMRI
can drive a dynamo and sustain MHD turbulence in a cylin-
drical shear flow. Motivated by the design of experiments,
the stability of an azimuthal, background magnetic field has
been investigated in cylindrical geometry, considering different
radial variations of the background magnetic and velocity field
(Kirillov et al. 2014; Rüdiger et al. 2018). These studies have
shown that purely azimuthal fields can trigger both Tayler insta-
bility and AMRI, and that their instability domains actually
overlap in some regions of the parameter space, making the dis-
tinction between the two mechanisms somewhat difficult. In the
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Fig. 5. Distribution of axisymmetric and nonaxisymmetric magnetic
components. Top: radial profile of the magnetic Rossby number Rb and
the axisymmetric azimuthal field B̄ϕ. Bottom: isovalues of the nonax-
isymmetric component Bn

r (positive in green and negative in black) are
superposed to a meridional section of axisymmetric toroidal component
of the magnetic field at a given time during the saturation phase of the
dynamo. Parameters: Re = 2.75 × 104 and Ra = 109. The other control
parameters are fixed as in Fig. 3. These parameters correspond to the
fiducial run shown in Fig. 2 of Petitdemange et al. (2023).

present case, several indicators point toward the Tayler insta-
bility. As we show in Petitdemange et al. (2023; Fig. 2), the
secondary energy growth characterizing the onset of strong,
toroidal dynamo action occurs at the time where the local stabil-
ity criterion for Tayler instability is met, as quantified using the
local Elsasser number. Secondly, at high Pm, Daniel et al. (2023)
find that the minimum shear rate (controlled by the Rossby num-
ber) required to maintain these strong dynamo solutions is in
good agreement with the predictive scaling of Spruit (2002).
Finally, the radial profile of the corresponding axisymmetric,
azimuthal magnetic field is shown in Fig. 5 (top), where the mag-
netic Rossby number Rb ≡ r2∂r(B̄ϕ/r)/(2B̄ϕ) measures the local
steepness of the axisymmetric component of the azimuthal field
B̄ϕ. A comparison with the meridional map of nonaxisymmetric
magnetic fluctuations in Fig. 5 (bottom) reveals that the latter
develop only when the large-scale field increases sufficiently
quickly in radius, as in Spruit’s scenario. More specifically, non-
axisymmetric fluctuations take place in the region, relatively
close to the inner sphere, where Rb > 0; this is always found
to promote Tayler instability in the setups considered by

Kirillov et al. (2014). Conversely, the flow domain where Rb <
−0.5, which is a priori expected to be prone only to AMRI fol-
lowing Kirillov et al. (2014), remains well off the dynamo active
region. Some caution is needed when interpreting the present
simulations in light of these studies, which consider unstrati-
fied fluids and a different geometry, and it would be desirable
to investigate how these results pertain to the stratified case and
spherical geometry in a future work.

5. Saturation of the Tayler–Spruit dynamo and
angular momentum transport

A major consequence for the possible existence of Tayler–Spruit
dynamos in radiative stellar layers is the resulting enhancement
of angular momentum (AM) transport. Quantitative prediction
of AM transport, however, requires understanding the satura-
tion processes at play in the Tayler–Spruit dynamo loop. In
the seminal paper Spruit (2002), the author derives a theo-
retical prediction for quantifying the azimuthal Maxwell stress
T ∼ BrBϕ/µ using dimensional analysis. The derivation can be
summarized as follows. First, the azimuthal component of the
induction equation at steady state provides a balance between
the amplification of the azimuthal field by the Ω-effect on the
one hand, and its (effective) damping through Ohmic diffusion
on the other hand. At leading order,

r(Br · ∇)Ω ∼
ηeff

l2r
Bφ, (11)

where lr is the typical radial (vertical) lengthscale for magnetic
activity, Br and Bϕ are the typical amplitudes of the radial and
azimuthal dynamo-generated field, and ηeff is the effective (i.e.,
turbulent) magnetic diffusivity. Simple dimensional arguments
stemming from mixing length theory suggest that ηeff ∼ σl2r ,
where σ = B2

ϕ/ρµΩr2 is the growth rate of the Tayler instability
Spruit (2002), such that

BrqΩ ∼
B3
ϕ

Ωρµr2 , (12)

where we follow Spruit’s notation for the dimensionless shear
rate q ≡ r∂rΩ/Ω. The typical radial scale for dynamo activity
can be chosen as the largest unstable length scale with respect to
the Tayler instability:

lr ∼
Bϕ
√
ρµN
. (13)

The scaling above derives from the consideration that stratifica-
tion suppresses instability at the largest scales, and is obtained
for the case κ = 0. A classical way of reinstating thermal dif-
fusivity when κ ≫ η , 0 is to observe, since thermal diffusion
acts on a shorter timescale than the dynamo, that its effect is
merely to partly suppress temperature gradients, thus decreas-
ing the effective buoyancy frequency N ← Ne = N

√
η/κ < N

(Zahn 1974).
A last equation is needed to close the system and evaluate T .

For this, Spruit (2002) considers the rate at which the radial mag-
netic field is generated from the axisymmetric azimuthal field by
Tayler-unstable displacements to write

Br

lr
∼

Bϕ
r
. (14)
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Since Bϕ is slowly varying in r, this can be obtained by noting

∂Br

∂t
∼ ur
∂Bϕ
∂r
=⇒ Br ∼ (τur)

Bϕ
r
∼ lr

Bϕ
r
, (15)

where τ is the production timescale of Br through the Tayler
instability, and ur the radial velocity associated with unstable
displacements. Combined together, Eqs. (12)–(14) yield the pre-
dictive scaling law for the Maxwell stress in the diffusionless
case:

T =
BrBϕ
µ
∼ ρΩ2r2q3

(
Ω

N

)4

. (16)

The arguments used to derive Eq. (16) in Spruit (2002) have
been largely debated (e.g., Zahn et al. 2007) owing to the fact
that the most unstable azimuthal wavenumber with respect to
the Tayler instability is not m = 0 but m = 1. As a result, the
radial field Br produced in Eq. (15) should be dominated by
the m = 1 component, which can hardly (directly) replenish
the axisymmetric Bϕ through Ω-effect in Eq. (12). This is not a
theoretical obstacle in a turbulent flow, however, since nonlinear
interactions between small-scale velocity and magnetic fluctua-
tions can produce the required axisymmetric fields through the
mean-field effect (Moffatt 1978). The scaling Eq. (14) could also
be recovered using an alternative argument, that Br can only
grow through the Tayler instability until the latter is quenched by
magnetic tension (Fuller et al. 2019). Further investigation is cer-
tainly needed to clarify the complicated saturation mechanisms
of the Tayler instability (Ji et al. 2023). However, a sufficient
requirement for the AM transport prediction in Eq. (16) to hold
is, rather than Eqs. (13) and (14) being independently satisfied,
that their combination be true:

Br

Bϕ
∼

Bϕ
√
ρµrN

. (17)

Replacing Eq. (17) in the induction equation dominant balance
in Eq. (12) is sufficient in order to derive Eq. (16). The scaling
law in Eq. (17) turns out to be satisfied in our turbulent Tayler–
Spruit dynamo simulations: Fig. 6 (upper panel) shows the
ratios Br/Bϕ versus Bϕ/

√
ρµrN, as crudely estimated from the

time- and volume-averaged magnetic energy contained in the
poloidal and toroidal axisymmetric magnetic field components,
respectively. Even though both ratios vary by only one order
of magnitude throughout all the simulations, the scaling law in
Eq. (17) was found to hold over more than two decades in the
magnetic field amplitude. It is rather more delicate to accurately
assess the robustness of scaling Eq. (13) in our simulations, due
to the difficulty of finding an objective (and automatic) criterion
to precisely measure the width of the most active dynamo
region. Despite this caveat, the typical width is always found
to be on the order of 0.1 dimensionless units in our simulations
(e.g., Fig. 4), which, given the unknown geometric prefactors
in the various scaling laws, is roughly compatible with the
magnitude of the ratio Bϕ/(

√
ρµrN).

Importantly, the Tayler–Spruit dynamo simulations pre-
sented here and in Petitdemange et al. (2023) are found to be
in good agreement with Eq. (16), as illustrated in Fig. 6 (bot-
tom panel). To test the scaling law against our simulations, we
measure the dimensionless magnetic torque

Gmag =

∫
S(r)

sinθ T (r)
ρν2

dS, (18)
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Fig. 6. Validity of analytical prescriptions. Top: dimensionless ratios
Br/Bϕ versus βBϕ/

√
ρµrN, for the dynamo simulations shown in

Petitdemange et al. (2023) and for our additional highly stratified model.
Br and Bϕ are determined by averaging the energy of the m = 0 poloidal
and toroidal magnetic fields over space and time (at steady state). Here
β = 1.8 is a fitting coefficient. The empty symbols denote simulations
in only weakly supercritical regimes (as quantified arbitrarily here by
Re/Rec ≤ 5/3). Because the flow regime remains close to the onset of
instability, the relevance of diffusionless scaling is subject to caution.
Bottom: scaling of the dimensionless magnetic torque with Spruit’s
diffusionless prediction in Eq. (19) (black line). The data include the
simulations shown in Petitdemange et al. (2023) and an additional
highly stratified model with Ra = 1010.

with S(r) the sphere of radius r centered at the origin, in the fluid
region of the most intense magnetic activity and compare it with
the scaling law

Gmag ∼ N ≡ r
5
2

(uϕΩ)
3
2

ρν2
, (19)

where uϕ is the axisymmetric azimuthal velocity at radius r. The
numerical procedure used to calculate Gmag from our simulations
is detailed in the Supplementary Material of Petitdemange et al.
(2023). The equivalence between Eq. (19) and Spruit’s predic-
tion in Eq. (16) is made possible because we use the following
estimate of the dimensionless shear rate q,

q =
r∂rΩ

Ω
∼

uϕ
Ωlr
, (20)

which we replace in Eq. (16) to obtain

T ∼ ρΩ2r
1
2

(uϕΩ)
3
2

N
, (21)
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and thus Eq. (19). One may wonder why q is not constructed
instead on the difference in rotation rates between the inner and
outer sphere (i.e., the Rossby number):

q′ = Ro = △Ω/Ω. (22)

This is because our modeling choice of differentially rotating
rigid boundaries to prescribe a sheared velocity profile across
the fluid domain, while numerically convenient, comes with a
caveat: most of the shear is accomodated in the (very) thin vis-
cous boundary layer attached to the inner sphere. However, the
peak of magnetic field intensity is found well away from the
boundary, in a region where viscous effects are negligible. As
a result, the shear that is effectively left across the dynamo
region is significantly smaller than the total shear q′. It is almost
completely accommodated through this region, for which the
typical lengthscale of the Tayler instability in Eq. (13) provides
a natural width assessment (and one that is consistent with our
simulations).

When flow motions are governed by magnetostrophic equi-
librium, these considerations dealing with the relevant shear
estimates may be easily bypassed. The radial component of
the Navier-Stokes equation becomes at leading order, where the
Coriolis acceleration balances the Lorentz force:

ρΩuϕ ∼ µ−1Bϕ
∂Bϕ
∂r
∼

B2
ϕ

µr
. (23)

Combining Eqs. (23) and (17) readily provide the alternative
scaling in Eq. (21) for the Maxwell stress:

T =
BrBϕ
µ
=

(
Br

Bϕ

)
×

B2
ϕ

µ

 ∼ (
Bϕ
√
ρµr

)
(ρΩuϕ), (24)

∼ r
1
2

(Ωuϕ)
3
2

N
. (25)

We note that in Eq. (23) we assume that the dominant term in
the Lorentz force is associated with the large-scale axisymmet-
ric (and slowly varying in radius) Bphi rather than a fluctuation
field δBϕ (which would vary over a scale lr). While in our
simulations the former is indeed largely dominant, further inves-
tigation is required to determine whether the latter could affect
the governing balance at saturation in a (real) stellar interior.
Our simulations turn out to fully satisfy magnetostrophic equilib-
rium: in Fig. 7 the ratio of magnetic to kinetic energies obtained
from our dataset is shown as a function of the Rossby number
Ro = △Ω/Ω = Re E/χ. As proposed by data-inferred scaling
laws put forward in different astrophysical contexts (Dormy
2016; Augustson et al. 2016; Dormy et al. 2018; Seshasayanan &
Gallet 2019; Raynaud et al. 2020), our strongly stratified Tayler–
Spruit dynamos follow the magnetostrophic law, where the ratio
Emag/Ekin (calculated by averaging energies over the full fluid
domain) is proportional to Ro−1. This ratio is much lower for
the dipolar dynamos obtained with weaker stratification. Hemi-
spherical dynamos also follow the strong-field scaling law when
the ratio Emag/Ekin is only calculated in the hemisphere where
dynamo action takes place. We note that the magnetostrophic
scaling holds as the Rossby number varies over more than one
decade and the ratio Emag/Ekin over two decades. For the lowest
value of Ro considered in our study, the magnetic energy exceeds
the kinetic energy by more than one order of magnitude. This
situation is reminiscent of the observations made for convection-
driven dynamo simulations at low Ekman numbers (Schaeffer
et al. 2017; Raynaud et al. 2020).
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Fig. 7. Ratio of magnetic to kinetic energies as a function of the
global shear parameter (dimensionless Rossby number) showing mag-
netostrophic scaling.

Finally, it is important to note that, although our simulations
use a finite thermal diffusivity κ ≫ η, the magnetic torque is still
found to scale as Spruit’s diffusionless prescription in Eq. (16).
In other words, the transport of angular momentum achieved
by Tayler–Spruit dynamos corresponds to fully developed MHD
turbulence and no longer depends on the fluid’s molecular prop-
erties (kinematic, thermal, or ohmic diffusivities; Petitdemange
et al. 2023; Daniel et al. 2023).

6. Conclusions

Dynamo action in simplified models of radiative stellar layers
can exhibit a rich diversity of magnetic field amplitudes and mor-
phologies, including hemispherical dynamos. In particular, the
dynamos found in the (sufficiently) strongly stratified regime are
governed by magnetostrophic turbulence and achieve efficient
AM transport, with measured Maxwell stresses in agreement
with the diffusionless predictive scaling law of Spruit (2002).
The existence of a dynamo similar to the Tayler–Spruit mecha-
nism is observed in the computationally challenging regime of
Rayleigh number up to Ra = 1010, confirming that the results
reported in Petitdemange et al. (2023) pertain to even stronger
stratification. Finally, intermediate scaling laws arising in the
derivation of Spruit (2002) are carefully tested against our simu-
lation results to assess the validity of the heuristic arguments in
estimating magnetic stresses at saturation.

It should be pointed out, however, that our simulations
provide a picture that is relatively far from the idealized sit-
uations considered in previous theoretical studies. The funda-
mental role of turbulent fluctuations or the presence of complex
magnetic field geometry considerably complicates the interpre-
tation within the framework of these theories. Although the
results reported here reproduce many of the predictions of the
Tayler–Spruit dynamo, we believe that our turbulent simulations
describe a more general scenario, relevant to stellar interiors, but
for which the canonical Tayler–Spruit or AMRI descriptions are
only asymptotic limiting cases.

Full exploration of the parameter space is beyond the scope
of the present study. The simulations presented here repre-
sent several millions of CPU hours, partly due to the necessity
to integrate MHD equations over long times to rule out tran-
sient states, partly due to the computationally demanding flow
regimes. Nevertheless, our numerical results already suggest that
Tayler–Spruit dynamos pertain to a wider parameter regime as
expected from the original theory: in particular, the analysis in
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Spruit (2002) relies on the hypothesis that N ≫ Ω, so that shel-
lular approximation applies. The fact that our simulations with
ratios Q of order unity or below still agree with Spruit’s origi-
nal prescription is rather unexpected and shows the robustness
of the Tayler–Spruit mechanism for rapid rotators. Whether this
scaling law is modified or not at extreme values of the Reynolds,
Rayleigh, or Ekman numbers, or for different ordering in the dif-
fusivity ratios, remains to be discovered, however, and it would
certainly be desirable to continue the numerical exploration of
the parameter space as far as possible toward realistic parameter
values.
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