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ABSTRACT

Context. Dynamically linking a meteor shower with its parent body is challenging, and chaos in the dynamics of meteoroid streams
may contribute to this challenge. For a robust identification of parent bodies, it is therefore necessary to quantify the amount of chaos
involved in the evolution of meteoroid streams.
Aims. Characterising chaos in meteoroid streams through the aid of chaos maps is still a new field of study. Thus, we examine two
very different meteoroid streams, the Draconids and the Leonids, in order to obtain a general view of this topic.
Methods. We used the method developed in a previous paper dedicated to Geminids, drawing chaos maps with the orthogonal fast
Lyapunov indicator. We chose four particle size ranges to investigate the effect of non-gravitational forces. As the dynamics are
structured by mean-motion resonances with planets, we computed the locations and widths of the resonances at play. We used semi-
analytical formulas valid for any eccentricity and inclination and an arbitrary number of planets.
Results. We pinpoint which mean-motion resonances with Jupiter play a major role in the dynamics of each meteoroid stream. We
show how those resonances tend to trap mostly large particles, preventing them from meeting with Jupiter. We also study particles
that manage to escape those resonances, for example, due to the gravitational perturbation of Saturn. Finally, we explain why non-
gravitational forces do not disturb the dynamics much, contrary to what is observed for the Geminids.
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1. Introduction

The ability to predict meteor showers is based on the knowl-
edge of their parent bodies. In the absence of such knowledge,
a hypothesis about their origin must first be made (Lyytinen &
Jenniskens 2003; Vaubaillon & Jenniskens 2007; Jenniskens &
Vaubaillon 2008; Jenniskens 2008). However, even the initial
conditions of the meteoroid stream are determined on the basis
of the existence of a meteor shower. Out of the numerous mete-
ors recorded in the past two decades at least, nearly 1600 showers
in total are in the International Astronomical Union (IAU) list of
meteor showers1. However, many of them are probably not gen-
uine meteor showers. The very identification of meteor showers
is an area of research in itself, and the definition of a robust
method to identify them is currently under study (Gartrell &
Elford 1975; Neslušan & Hajduková 2017; Jopek et al. 2023). In
particular, a meteor shower can only be recognised if the mete-
oroid orbits are similar to each other at the time of observation.
This implies that these orbits are also stable enough between the
time of their ejection from the parent body and the observation
such that their trajectories do not diverge substantially. Quantify-
ing the orbital similarity has also been the subject of many efforts
in the past, yet such efforts have only yielded inconclusive results
(Williams et al. 2019).

1 https://www.ta3.sk/IAUC22DB/MDC2022/Roje/roje_lista.
php accessed in April 2023.

In order to help in the effort of establishing the existence
of meteor showers, we used a method to quantify the chaoticity
in meteoroid streams as a function of meteoroid size and time
(Courtot et al. 2023). Chaoticity is indeed highly size depen-
dent as a result of non-gravitational forces (NGFs), as one could
expect (Liou & Zook 1997). Our previous study focused on
the Geminids meteoroid stream, whose parent body asteroid,
3200 Phaethon, is known to have a very stable orbit for 10 kyrs
(Williams & Wu 1993; Ryabova et al. 2019). The case of the
Geminids was therefore a good way to characterise the perfor-
mance of the developed method and its ability to detect chaos in
a relatively weak chaotic orbit. Yet many meteoroid streams are
more chaotic than the Geminids. Now that the tools described
by Courtot et al. (2023) are well established, we are able to
characterise chaos in various streams linked to verified meteor
showers, creating a general view of what chaos in verified meteor
showers can look like. This view can serve as a point of ref-
erence for future studies of groups of meteors whose identity
as meteor showers is not yet certain. In chaos maps related to
verified meteor showers, we will look for characteristics that do
not appear in maps drawn from the chance association of mete-
ors. Ultimately, it will allow us to distinguish between meteor
showers and chance associations of meteoroids.

This paper focuses on two well-known yet very different
meteor showers associated with a Jupiter family comet (JFC)
and a Halley-type comet (HTC). The Draconids meteor shower is
caused by the JFC 21P/Giacobini-Zinner, which is known to have
had its last very close encounter with Jupiter in 1898 (closest
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distance: 0.24 au). Such encounters also happen for the associ-
ated meteoroid stream, presumably at a much higher frequency,
as the stream has expanded a lot in the interplanetary space after
a few revolutions, giving it a much larger impact cross-section
than the comet itself. Close encounters with giant planets are
responsible for the stream dispersion in the Solar System (with
the result of gradually losing the dynamical signature of its par-
ent body because of chaotic diffusion), brutal changes in the
orbits of meteoroids, and rather complicated processes (for a
full review, see Vaubaillon et al. 2019). The Draconids activ-
ity is characterised by occasional outbursts of various strength
(Egal et al. 2019). In case of an outburst, meteoroids are densely
packed in a restricted region of the parameter space, but they may
then disperse because of chaos, which needs to be quantified.
In comparison, the Leonids associated with HTC 55P/Tempel-
Tuttle are dynamically less chaotic, since close encounters with
Jupiter are less frequent for them. Their activity is also charac-
terised by dramatic outbursts or even storms (Wu & Williams
1996; McNaught & Asher 1999). The high level of some shower
outbursts is caused by young and densely populated trails col-
liding with the Earth. The influence of the Earth in the stream
is negligible most of the time and causes small gaps in the trail
(Vaubaillon et al. 2019). In this paper, we aim to quantify the
level of chaos in these two drastically different streams. Follow-
ing the method developed by Courtot et al. (2023), our chaos
maps are drawn as a function of time and meteoroid size.

In Sect. 2, the method is briefly recalled, and the speci-
ficity of the studied streams is described. In Sect. 3, a method
to compute the width of mean-motion resonances (MMRs) for
meteoroids is presented. In Sect. 4, the results on the Leonids
and Draconids meteoroid streams are shown. More precisely, we
explore the role of MMRs with Jupiter, as well as close encoun-
ters with several planets. We also investigate the impact of NGFs.
We conclude in Sect. 5.

2. Method

We have described our method in depth in our previous article
(Courtot et al. 2023). In this work, we only report the main points
and the specifics of this study.

Drawing chaos maps requires a chaos indicator, and we chose
the orthogonal fast Lyapunov indicator (OFLI) from Fouchard
et al. (2002) since it suits our problem and purpose. Because of
the NGFs, our problem is dissipative, and therefore we cannot
use a symplectic integrator. Because we also expect many close
encounters, an integrator with a variable time step is preferred.
The integrator RADAU order 15 meets these two demands
(Everhart 1985). The INPOP planetary ephemerides are used
(Fienga et al. 2009). The NGFs taken into account are the
Poynting–Robertson drag and the solar radiation pressure
(Vaubaillon et al. 2005).

Each particle is described by its state vector (position and
velocity) at time t and its radius. We assumed a density of
ρ = 1000 kg m−3 in order to compute the mass. We chose dif-
ferent initial conditions for each meteoroid stream. We set the
initial time t0 to 1901 AD for the Draconids and 1334 AD for
the Leonids. The trail ejected at those times are known to be
responsible for meteor outbursts on Earth in 1946 and 1998,
respectively (McNaught & Asher 1999; Vaubaillon et al. 2011).

For each particle, the initial state vector was selected from
the ranges of orbital elements described in Table 1 for the
Draconids and Table 2 for the Leonids. The chosen ranges of
orbital elements encompass a broad array of orbits characterising

Table 1. Range of heliocentric orbital elements of the Draconids.

Element Min Max

a (au) 2.8 4
e 0.66 0.81

i (◦) 28 32
ω (◦) 168 173
Ω (◦) 196 200

Notes. The Draconids are integrated during 1000 years from these
ranges of elements.

Table 2. Range of heliocentric orbital elements of the Leonids.

Element Min Max

a (au) 9.8 11
e 0.83 0.98

i (◦) 165 169
ω (◦) 226 230
Ω (◦) 168 172

Notes. The Leonids are integrated during 2000 years from these ranges
of elements.

those streams and, specifically, the orbits resulting from simu-
lations using the model developed by Vaubaillon et al. (2005).
More precisely, for each particle, the orbital elements were
picked randomly in those ranges, and the initial state vector was
computed. We decided on a random selection based on our expe-
rience with the Geminids (see Courtot et al. 2023). The mean
anomaly is not described in the tables because we chose to cover
the whole range of possible values (0–360◦).

We also chose the radius of our particles. We created a first
set of particles with a radius randomly chosen between 10 and
100 mm, which we called BIN10100. Then we created three other
sets with the same constraints but with different bins of radii: 1–
10 mm (BIN110), 0.1–1 mm (BIN011), and finally 0.01 to 0.1 mm
(BIN00101). We did not consider other sets of smaller particles
because the NGFs would be heavily modified for such small
particles and the radiation-matter interaction would pass into
another regime. The sizes described in the various sets encom-
pass most of what is observed in meteor showers. Each of the
sets contains 100 080 particles.

We then integrated the Draconids for 1000 years (about 170
periods) and the Leonids for 2000 years (about 60 periods)
to study short- and mid-term behaviour of the streams with-
out modelling their entire lifetime. In the integrations, a close
encounter between a particle and a planet is detected when the
particle is closer to the planet than its Hill radius. The param-
eters of the encounters are then recorded. The particle is not
removed from the integration, no matter its distance from the
planet. When a particle is closer than 0.02 au to the Sun or farther
than 1000 au, it is removed from the integration. Such particles
have not been plotted in the maps, and the number of them is
sufficiently low that they do not pose a problem.

3. Computation of resonance widths

The orbital dynamics of meteoroid streams are shaped by MMRs
with planets. On the chaos maps previously computed by Courtot
et al. (2023) for the Geminids, resonances appear as chaotic belts
(the resonance ‘separatrices’) surrounding stable zones. Because
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we expected MMRs to also play a decisive role in the dynamics
of the Draconids and Leonids, we needed to locate the relevant
resonances and determine their widths.

The traditional description of MMRs relies on the expansion
of the disturbing potential in a series of eccentricity e and incli-
nation i (see e.g. Laskar & Robutel 1995; Murray & Dermott
1999). For a given resonance, the leading-order term of the aver-
aged series defines the ‘resonance angle’, whose behaviour sets
the global dynamics of the system. This classical approach is
only valid within the limit of low eccentricities and low mutual
inclinations. In the case of meteoroid streams, eccentricities and
inclinations can reach any value, including regions where the
classical series expansion diverges (for instance e ≈ 0.7 and
i ≈ 30◦ for the Draconids and e ≈ 0.9 and i ≈ 167◦ for the
Leonids; see Tables 1 and 2). Even though the disturbing poten-
tial can in theory be expanded around arbitrary values (see
e.g. Lei 2019; Namouni & Morais 2020), this approach still
requires correctly identifying the relevant resonant harmonics in
the truncated series. This process can be cumbersome for high-
eccentricity and high-inclination orbits, since many harmonics
simultaneously play a strong role, and their relative importance
depends on the varying orbital elements of the particle.

As an alternative to series expansions, one can compute the
resonant disturbing potential numerically (see e.g. Gomes et al.
2005; Gallardo 2006b,a; Gallardo et al. 2012). In this case, the
resulting potential is exact, but the drawback is that we cannot
solve the equations of motion explicitly. Yet a semi-analytical
model of the long-term dynamics is still possible by using
the so-called adiabatic invariant approximation (Lenard 1959;
Henrard 1982; Wisdom 1985). The adiabatic approximation is
commonly used in celestial mechanics to reduce a system with
two well-separated timescales into a system with fewer degrees
of freedom. Of particular interest are systems reducing to only
one degree of freedom, as trajectories can be represented by the
level curves of a conserved quantity. This is the case of the pla-
nar dynamics of small bodies in MMR with a planet (see e.g.
Wisdom 1985; Beust & Morbidelli 1996; Beust 2016; Pichierri
et al. 2017), or the spatial dynamics of small bodies perturbed by
planets on coplanar circular orbits (see e.g. Gallardo et al. 2012;
Saillenfest et al. 2016; Efimov & Sidorenko 2020; Saillenfest
2020; Lei et al. 2022). In this work, we are not interested in
obtaining a fully integrable model for the long-term resonant
dynamics but only computing the resonance widths. Therefore,
a large number of degrees of freedom is not an issue as long as
their variations are ‘slow’ (see below). Consequently, we may
consider arbitrary orbits for both the small body and the planets.

Writing ε the characteristic size of planetary perturbations,
the adiabatic approximation consists of taking advantage of the
large separation of timescales between the oscillation of the
small body inside a MMR (frequency proportional to ε1/2) and
the orbital precession of the small body and the planets (fre-
quencies proportional to ε1). We outline in this section the
semi-analytical method of Gallardo (2019, 2020), which we
adapted to the motion of a small body under the influence of
any number of possibly inclined and eccentric planets. The back-
ground of the equations is given in Appendix A, where we show
that this method neglects terms of order ε3/2 (and not ε2, as is
the case of a standard non-resonant secular theory).

3.1. Basic equations

We consider a small body perturbed by N planets and a near
MMR kp:k with a given planet p. We designate µ as the gravita-
tional parameter of the Sun and λ and λp respectively as the mean

longitudes of the small body and the planet p. The resonance
widths can be computed by studying the one-degree-of-freedom
simplified Hamiltonian function:

K(Σ, σ) = −
1
2
α(Σ − Σ0)2 + εW(σ), (1)

where Σ =
√
µa/k and σ = kλ − kpλp are conjugate coordi-

nates. We define the resonance centre as Σ0 =
√
µa0/k, where

the central semi-major axis of the resonance is:

a3/2
0 =

k
kp

√
µ

np

1 + 2
∑
j∈I

εµ j

µ

 . (2)

Here, np is the mean-motion of planet p, and εµ j is the gravita-
tional parameter2 of planet j. The sum in Eq. (2) is made over
the subset I of planets whose orbits are inside the orbit of the
small body. This small corrector term accounts for the constant
shift of the resonance centre due to the presence of other planets
in the system (see Appendix A). The constant factor α in Eq. (1)
is equal to:

α = 3
k2

a2
0

1 + 2
∑
j∈I

εµ j

µ

 . (3)

If one would expand εW(σ) in Eq. (1) using the classical series
in eccentricities and inclinations, an infinity of resonance angles
featuring σ would appear, and they would verify the D’Alembert
rules (see e.g. Murray & Dermott 1999). In this work, we avoid
this kind of expansion and keep all these angles at once in
the Hamiltonian function. This requires computing the function
εW(σ) numerically as:
εW = −

∑
j,p

εµ j

4π2

∫ 2π

0

∫ 2π

0

1
∥r − r j∥

dλ dλ j

−
εµp

2πk

∫ 2πk

0

(
1

∥r − rp∥
− r ·

rp

∥rp∥
3

)
dλp .

(4)

In this expression, r j is the heliocentric position vector of
planet j, and r is the heliocentric position vector of the small
body evaluated at a semi-major axi a = a0. The first integral in
Eq. (4) is performed over the mean longitudes λ and λ j taken sep-
arately. The second integral in Eq. (4) is performed over λp only,
while expressing λ as λ = (σ + kpλp)/k. Other orbital elements
are taken as constants.

As stressed in Appendix A, the constant orbital elements of
the planets to be used in these formulas – including the mean-
motion np in Eq. (2) – are secular variables that incorporate the
effects of mutual perturbations among all planets. In practice,
we can take them from an existing analytical theory (see e.g.
Bretagnon 1982, or Duriez & Vienne 1991 in the satellite case)
or compute them from a preliminary numerical integration of the
planetary system (see e.g. Lei et al. 2022). Likewise, the orbital
elements (e, i, ω,Ω) of the small body must be interpreted as
mean variables. Using these mean variables as fixed parameters,
εW can be studied as a mere function of σ.

One can note that the first term in Eq. (4) does not depend
on σ and is therefore constant. This is true on the resonant
2 The factor ε has no explicit definition; it is only used here to highlight
the smallness of εµ j with respect to µ.
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Fig. 1. Phase portrait of the resonance 2:3 with the Earth for a small
body with e = 0.6, i = 22◦, ω = 322◦, and Ω = 265◦. The bottom panel
shows the level curves of the Hamiltonian function in Eq. (1). The cen-
tral semi-major axis of the resonance is a0 = 1.31038 au (horizontal
line). Coloured dots show the equilibrium points. The definition of the
widths of resonance islands and sub-islands are represented by arrows.
The top panel shows the behaviour of εW as a function of σ (i.e. this is
a cut of the bottom panel along the horizontal line).

timescale used to define the resonance widths but not on the sec-
ular timescale, over which the orbital elements (e, i, ω,Ω) of the
small body vary. The first term in Eq. (4) must therefore be kept
if one wants to build upon this method to perform semi-averaged
integrations of the system (see e.g. Saillenfest & Lari 2017) or
develop a secular theory.

3.2. The resonance widths

For fixed values of (e, i, ω,Ω) and of the planets’ mean orbital
elements, the system has only one degree of freedom. Therefore,
it is integrable, and any possible trajectory can be represented as
a level curve of the Hamiltonian function in the plane (Σ, σ).

Thanks to the simple form of the Hamiltonian in Eq. (1),
the fixed points can be found easily. All equilibria are located at
Σ = Σ0, stable equilibria are the maxima of εW as a function of
σ, and saddle points are its minima. As εW is a complex function
ofσ defined by integrals, its maxima and minima as a function of
σ need to be found numerically (e.g. using Brent’s method; see
Press et al. 2007). For substantial eccentricities and/or inclina-
tions, many local maxima and minima can be found, resulting in
a complex nested structure of the resonance island, as illustrated
in Fig. 1. This picture strongly differs from the low-eccentricity,
low-inclination paradigm (see e.g. Murray & Dermott 1999) for
which a single cosine term dominates the dynamics with a single
critical argument for the resonance.

Once the maxima and minima of εW have been found numer-
ically, the Hamiltonian function in Eq. (1) directly gives the
widths of all islands and sub-islands of the resonance. In par-
ticular, the outermost separatrix determines the overall width
of the kp:k resonance. If we write εWmax, the global maxi-
mum of εW, as a function of σ and εWmin, its global minimum
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Fig. 2. Width of all resonance islands and sub-islands as a function
of eccentricity for the 2:3 commensurability with the Earth. The small
body has i = 22◦, ω = 322◦, andΩ = 265◦, similar to the Geminids (see
Courtot et al. 2023). Horizontal lines show the locations where the orbit
of the small body crosses the orbit of the resonant planet. See Fig. 1 for
an illustration of the different islands at e = 0.6.

(red and black dots in Fig. 1), the overall half-width of the
resonance is

∆Σ =

√
2
α

(εWmax − εWmin), (5)

which is illustrated by the green arrow in Fig. 1. In terms
of the semi-major axis a, the corresponding upper and lower
boundaries of the resonance are a = (

√
µa0 ± k∆Σ)2/µ. The

same formula can be applied on the local minima and max-
ima of εW in order to compute the widths of the sub-islands
of resonance.

Figures 2–4 show the widths of the islands and sub-islands of
resonance as a function of eccentricity for different commensu-
rabilities kp:k with the Earth and Jupiter. These diagrams reveal
various bifurcations where a sub-island shrinks and vanishes,
leading to the disappearance of an inner separatrix. Similar dia-
grams have been described by Gallardo (2019) and Namouni &
Morais (2020) in the Solar System, by Gallardo et al. (2021) in
the non-restricted two-planet case, and by Malhotra & Zhang
(2020), Malhotra & Chen (2023) in the planar case using a
non-perturbative approach.

4. Results

All maps are drawn as a function of initial orbital elements and
final OFLI. We only present maps drawn in function of an ini-
tial semi-major axis and initial eccentricity or in function of an
initial semi-major axis and initial mean anomaly. These orbital
elements are representative of the short-term dynamics of the
particles (see e.g. Appendix A); hence, they directly reflect the
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Fig. 3. Same as Fig. 2 but for the 2:1 commensurability with Jupiter.
The small body has i = 30◦, ω = 171◦, and Ω = 198◦, similar to the
Draconids (see Table 1).
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Fig. 4. Same as Fig. 2 but for the 1:3 commensurability with Jupiter.
The small body has i = 167◦, ω = 228◦, and Ω = 170◦, similar to the
Leonids (see Table 2).

level of short-term chaoticity that we are looking for in this arti-
cle. We use the names ‘mean anomaly map’ and ‘eccentricity
map’ to describe the two maps for ease of reference even though
they are also drawn as a function of initial semi-major axis and
final OFLI.

Fig. 5. Eccentricity and mean anomaly maps drawn from the dataset
Draconids BIN10100 after the 1000 years of integration. The lines rep-
resent the resonances we identified (see text).

4.1. Draconids

4.1.1. Mean-motion resonances and close encounters

Maps from the BIN10100 set are presented in the Fig. 5. In this
subsection, the NGFs are negligible because they do not play a
role for such large particles (see also Courtot et al. 2023). We
identified seven resonances with Jupiter in the mean anomaly
map (see Table 3). Only the largest (2:1) is undoubtedly visible in
the eccentricity map. The resonances are easily identified thanks
to the number of lobes, which reveals the value of the denom-
inator. For the largest resonance in particular, the separatrix
around the resonance is characterised by highly chaotic trajec-
tories (bright pink dots; high values of OFLI). It is indeed well
known that chaos first appears at the separatrix in Hamiltonian
dynamics (Poincaré 1890).

One may be tempted to relate the large width of the 2:1
resonance to its low ‘order’ (which is traditionally defined as
2− 1 = 1). However, strictly speaking, this definition of the reso-
nance order is only valid in the low-eccentricity, low-inclination
paradigm. Both the Draconids and Leonids have very large
eccentricities and inclinations, so the traditional notion of res-
onance order loses its meaning and should be redefined (see
e.g. Morais & Namouni 2013; Namouni & Morais 2017; Morais
& Giuppone 2012). Therefore, we avoid using this notion and
instead focus on the width of the MMRs as visible in the maps
or as computed semi-analytically.

The least visible resonance is the 9:4 resonance, perhaps
because of its closeness to the largest resonance as well as
the fact that the resonance is very thin itself. All resonances
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Table 3. Mean-motion resonances with Jupiter found in the Draconids
maps.

MMR a (au)

5:2 2.82364
7:3 2.95655
9:4 3.02911
2:1 3.27655
7:4 3.58161
5:3 3.70002
3:2 3.96926

Notes. The central semi-major axis values of the resonances were com-
puted using Eq. (2). No other MMRs with Jupiter were found visually
in the Draconids maps.

identified in this work were already detected in previous works,
such as Fernández et al. (2014).

Even though we detected close encounters with Mercury
(three particles), Venus (1031), Earth (1445), Mars (106),
Saturn (19), Uranus (two), and Neptune (one), by far the most
encounters happened with Jupiter (30 397 particles). For this rea-
son, as well as the interplay with the MMRs, our analysis below
focuses only on close encounters with Jupiter.

Figure 6 presents maps for BIN10100 once again, but this
time only particles that encountered Jupiter during the integra-
tion are plotted. The mean anomaly map clearly shows the effect
of the MMRs combined with the close encounters: particles
trapped inside the MMRs do not meet with Jupiter. Only the
leftmost and rightmost MMRs (5:2 and 3:2) do not present such
obvious features. There seems to be fewer close encounters in
general for these semi-major axes, which means the effect of the
capture is less visible.

As for the eccentricity map, as before, the only resonance
undoubtedly visible is the 2:1 resonance, but there are encoun-
ters with Jupiter even inside this resonance. This is in fact the
effect of the separatrix, as the only encounters inside the reso-
nance are linked with an initial mean anomaly close to 0◦ [2π],
where the separatrix lays. To verify this assumption, we drew
another eccentricity map in Fig. 7 based on particles that meet
Jupiter, but the colour bar represents the value of the initial mean
anomaly instead of the OFLI.

We were also able to verify that the position of the sep-
aratrix is linked with the initial position of Jupiter, in mean
longitude. For initial conditions taken a few years earlier or later,
the resonance islands on the mean anomaly maps appear shifted
vertically.

4.1.2. Effect of non-gravitational forces

In order to investigate the effect of NGFs, we studied the datasets
with smaller radii. We drew maps from BIN110 and BIN011 but
found no notable difference from the previous maps. We had to
use the dataset BIN00101 to visualise the effect of NGFs, and
only the mean anomaly map revealed it (see Fig. 8). The lobes are
all fuzzier, especially for the 5:2, 7:3, and 9:4 MMRs. The main
lobe (2:1 MMR) is also slightly distorted, losing its symmetry,
and more chaos is visible on the right side of the separatrix than
on its left side (compare with Fig. 5). The NGFs make the parti-
cles diffuse towards a smaller semi-major axis, which means that
particles initially on the left side of the separatrix can leave this
chaotic zone thanks to the NGFs and reach zones where encoun-
ters with Jupiter will be less chaotic. On the other hand, particles

Fig. 6. Same as Fig. 5 but only showing particles that encountered
Jupiter during the integration. The white area shows the initial phase
space that does not lead to a close encounter with Jupiter.

Fig. 7. Same as Fig. 6 except that the colour scale shows the initial mean
anomaly for each particle.

on the right side of the separatrix are blocked from diffusing to
the left because of the separatrix itself. Particles trapped on this
right side of the separatrix will experience more chaos and more
chaotic encounters with Jupiter.

These differences are much subtler than what we could have
expected from our previous work on the Geminids, where the
map from BIN011 revealed the destruction of the resonances
involved because of the NGFs (Courtot et al. 2023). However,
two parameters might play a role in this difference: the type of
orbit and the width of the resonances.

According to Liou & Zook (1997), only the Poynting-
Robertson drag could be responsible for the escape of the
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Fig. 8. Mean anomaly map from the dataset Draconids BIN00101.

particles from the MMRs, if it happens. Geminids are charac-
terised by a smaller perihelion distance, a smaller semi-major
axis and thus a greater velocity than the Draconids. Therefore,
we can expect a highly different effect of the Poynting-Robertson
drag, namely, it will probably be too weak to make the small
Draconids diffuse out of the MMR.

Liou & Zook (1997) showed that the drift rate in the semi-
major axis due to this force can be written:(

da
dt

)
PR
=
−1.35βµ⊙

c
2 + 3e2

a(1 − e2)3/2 , (6)

with β as the ratio of the radiation pressure force and the Sun
gravitational force, µ⊙ as the gravitational constant of the Sun,
and c as the speed of light. We also have (Burns et al. 1979):

β =
3
4

S 0R2
0

µ⊙c
1
ρr
, (7)

with ρ as the density of the particle, r as its radius, and S 0
as the solar flux at R0 = 1 au; its value is S 0 = 1.37 kW m−2

(Cox 2000). We chose a radius of 0.3 mm, which corresponds
to the largest radius at which a Geminid particle can escape
the MMR through diffusion from Poynting-Robertson (Courtot
et al. 2023).

We applied this equation to the Geminids (a = 1.275 au,
e = 0.875), and we obtained −1.53 × 10−12au s−1, and for the
Draconids (a = 3.4 au, e = 0.735), we obtained −1.75 ×
10−13au s−1. This would mean that over 1000 years, the drift
in the semi-major axis due to Poynting-Robertson would be of
−0.048 au for the Geminids and of −0.006 au for the Draconids.

Furthermore, the widest MMR for the Geminids is 2:3 with
the Earth, which is much thinner than the widest MMR for the
Draconids. We computed the width of both of these MMRs using
the method described in Sect. 3. We used typical values of the
orbital elements of both meteoroid streams as parameters (see
Figs. 2 and 3). Figure 9 shows the comparison we obtained. For
the range in eccentricity considered, the maximum width for the
Geminds main MMR is 6.54 × 10−3 au, compared to 0.37 au for
the Draconids main MMR.

In summary, not only is the Poynting-Robertson drag more
efficient for the Geminids, but more importantly, the width of
the MMR that can trap Geminid particles is much smaller than
the width of the MMR that can trap Draconids. This explains
why, even at a low radius, Draconids tend to stay captured in
the MMR, which contrasts with what we observed with the
Geminids.

Fig. 9. Width of the MMR for the Geminids (2:3 with the Earth;
top) and for the Draconids (2:1 with Jupiter; bottom). The first map
is adapted from Courtot et al. (2023); we only added the newly com-
puted width of the MMR on a map presented therein (radius between 10
and 100 mm, integration during 1000 years, all particles plotted encoun-
tered the Earth). In the second case, we added the eccentricity map from
BIN10100 with only particles that meet with Jupiter. The resonance is
between the two dark lines.

4.2. Leonids

4.2.1. Mean-motion resonances and close encounters

As with the Draconids, we first drew maps from the BIN10100
dataset. In the Fig. 10, an MMR with Jupiter is detected: the 1:3
at 10.83681 au. This MMR is visible in both eccentricity and
mean anomaly maps, with the three lobes present in the latter.

A similar mechanism to the one presented for the Draconids
takes place, where the majority of close encounters with Jupiter
occur for particles either outside the MMR or on the separa-
trix. This is proven in Fig. 11 by drawing maps from particles
that underwent at least one close encounter with Jupiter dur-
ing the integration. The eccentricity map shows there are fewer
encounters with Jupiter at high eccentricity, even outside the
MMR, and inside the MMR, there are more encounters for lower
eccentricities.

In contrast to the Draconids, there are some close encounters
with Jupiter for particles inside the lobes. Those particles either
come from the separatrix region or have a relatively lower initial
eccentricity (≲0.87), as can be seen in Fig. 12.

Amongst particles that do encounter Jupiter from inside the
lobes, with a relatively small initial eccentricity, most met with
Saturn during the integration before meeting Jupiter. It seems
those close encounters shifted their orbits enough to get them
out of the lobes and were therefore able to meet with Jupiter.
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Fig. 10. Eccentricity and mean anomaly maps from the dataset Leonids
BIN10100 after the 2000 years of integration. The white line represents
the position of the 1:3 MMR with Jupiter.

Fig. 11. Eccentricity and mean anomaly maps from the dataset
BIN10100. We only plot the particles that met with Jupiter at least once
during the 2000 years of integration. On the eccentricity map, we plot
the width of the MMR (1:3 with Jupiter). The resonance is too wide for
our set of initial conditions. The black line represents the limit of the
MMR on its left side (see Fig. 4 for the full resonance width).

Fig. 12. Map in mean anomaly and in eccentricity from the BIN10100
dataset. We only plot the particles that encountered Jupiter. The eccen-
tricity map presents two colours: red for particles from inside the lobes
and blue for the rest. The colour bar from the mean anomaly map gives
the value of the eccentricity.

Close encounters with Saturn are shown in Fig. 13, where
we drew our maps from particles that had a close encounter
with Saturn. As expected, the eccentricity map reveals that most
close encounters with Saturn happen for particles with initially
relatively low eccentricity, as these particles only need minimal
orbital variations to reach an orbit-crossing configuration.

The mean anomaly map, on the other hand, shows some
interesting characteristics: lines unlike any other features seen
so far. We were able to confirm that each line is created as time
passes, when the orbits shift enough to create a new line (see
the legend of Fig. 13). In other words, these lines represent the
evolving relation between semi-major axis and mean anomaly
necessary to encounter Saturn.

We also studied close encounters with the planets from the
inner solar system in Fig. 14. Those encounters happen mostly
above a limit in mean anomaly, which depends on the planet
considered, and is linear as a function of semi-major axis. These
lines are very visible inside the MMR but get disturbed outside
of it, most probably by close encounters with Jupiter.

4.2.2. Effect of non-gravitational forces

As with the Draconids, we had to use the dataset with the small-
est particles (BIN00101) in order to investigate the impact of the
NGFs. Even then, the only visible difference in Fig. 15 is a bar of
particles with high chaoticity at an initial mean anomaly around
0◦. In the same figure, we also drew a map from BIN00101
with only the particles that met with Jupiter during the integra-
tion. This second map shows the bar clearly comes from close
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Fig. 13. Eccentricity and mean anomaly maps from the BIN10100
dataset. We only plot the particles that encountered Saturn. On the right-
hand side of the mean anomaly map, the lobes are visible, while in the
left-hand side, several lines appear. The last figure shows the time at
which those lines appeared. Encounters outside the lines happened after
116 years of integration.

encounters with Jupiter. A combination of the initial position of
Jupiter and the effect of NGFs, which are particularly strong at
the perihelion, are probably the origin of this new bar.

Once again, we expected the weaker Poynting-Robertson
drag to be responsible for the difference in the dynamics of
the Geminids and Leonids at such small radii. We applied the
same Eq. (6) to the Leonids (using a = 10.4 au and e = 0.905),
and we obtained a velocity of drift in the semi-major axis
of −2.86 × 10−13au s−1 , which would translate to a drift of
−0.009 au over 1000 years. These values are very similar to those
previously obtained for the Draconids.

We also compared the width of the 1:3 MMR with Jupiter
which plays a role for the Leonids with that of the 2:3 MMR with
the Earth, which has an influence on the Geminids. Using repre-
sentative values of the orbital elements (see Fig. 4), we obtained

Fig. 14. Map in eccentricity from the dataset BIN10100. We plot the
particles that met with Venus (orange), the Earth (green), or Mars (red).
We also plot the particles that met both Venus and the Earth (light blue),
both Venus and Mars (brown), as well as both the Earth and Mars (dark
blue), although these three cases are not as common as the first three.
The OFLI (not visible here) reaches values similar to the general map,
with its maximum being only slightly smaller.

Fig. 15. Maps in semi-major axis and mean anomaly from the dataset
BIN00101. One map includes all the particles, while the other only
shows the particles that underwent a close encounter with Jupiter.

the eccentricity map of Fig. 11, where the computed width of
the MMR fits well with the detected MMR (for comparison of
widths, see Fig. 9.). The maximum width for the Leonids is
1.03 au in the considered range of eccentricity, which is much
greater than 6.54 × 10−3 au for the Geminids. Once again, the
combination of a weaker NGF and a larger MMR means that the
dynamics of small particles is very similar to the behaviour of
large particles.
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5. Conclusion

Amongst the meteor showers listed by the IAU, several are
contested. The tools available today are not always able to dis-
criminate between actual meteor showers and groups of meteors
seemingly coming from similar orbits. In order to contribute to
this discussion, we studied the influence of chaos on meteoroid
streams. We drew chaos maps on well-known meteoroid streams
that give rise to uncontested meteor showers. In future works, we
will compare those maps to others drawn from disputed meteor
showers. For this purpose, we need to study different types of
meteoroid streams.

After our first study of chaos on the Geminid meteoroid
stream, which allowed us to test our method while also yield-
ing interesting results, we tackled the JFC Draconid and the
HTC Leonid meteoroid streams in this work. Both their aphe-
lia and perihelia are much greater than the previously studied
Geminids, and we therefore expected different dynamics and a
different relationship to chaos compared to the Geminids.

For both streams, we proved that Jupiter is an important
driver of their dynamics. Saturn also plays an important role in
the Leonids stream. We detected several MMRs with Jupiter and
highlighted the phenomenon of particles being captured inside
the MMR, which prevents the particles from meeting Jupiter. In
the specific case of the Leonids, we showed how close encoun-
ters with Saturn inside the Jupiter MMR could sometimes lead
to the escape of the particles.

We also studied the effect of NGFs and noted that this effect
is much weaker for the Draconids and Leonids than for the
Geminids. In order to explain this, we analysed both the width
of the MMRs detected as well as the strength of the NGFs.
We showed that the MMRs involved in the Draconids and the
Leonids dynamics are much wider than the MMRs detected for
the Geminids. We also showed that the NGFs are much stronger
for the Geminids than for the Draconids or Leonids, due to the
shapes of their orbits.

The semi-analytical method presented in Sect. 3 revealed its
full utility when applied to orbits as inclined and eccentric as
those of the Draconids and Leonids. The detailed structure of
MMRs, including their overall widths, can be computed from a
few numerical methods. The agreement between the chaos maps
and the semi-analytical results is very encouraging because it
shows that the semi-analytical approach can be used in future
works to not only characterise resonances but to also study the
dynamical evolution of individual meteoroids, as NGFs make
them transition through the inner and outer separatrices of the
resonances (either as resonance captures or escapes, as small
particles gradually leak out of resonance).

From these results, we conclude that for the streams studied
here, the main differences (if any) in the dynamical behaviour
between large (>10 cm) and small (<100µm) meteoroids mainly
comes from their initial ejection velocity from the parent body,
but this is not related to chaos. All of this has been proven thanks
to chaos maps. Maps drawn from other colours are available by
request. In the future, we will dive deeper into the relationship
between chaoticity and meteor showers whose existence might
be questionable.
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Appendix A: Computation of the semi-averaged
resonant Hamiltonian function

In Section 3, we compute the widths of MMRs by a semi-
analytical approach valid for arbitrary eccentricities and incli-
nations. Here in the appendix, we detail the methodology used
to average the Hamiltonian function and express it in a form that
naturally leads to the adiabatic approximation.

A.1. Hamiltonian function in osculating coordinates

Using the notations of Sect. 3, the Hamiltonian function describ-
ing the instantaneous dynamics of a small body perturbed by N
planets can be written asH = H0 + εH1 with
H0 = −

µ

2a
+

N∑
j=1

n jΛ j ,

εH1 = −ε

N∑
j=1

µ j

(
1

∥r − r j∥
− r ·

r j

∥r j∥
3

)
.

(A.1)

The variable Λ j is the momentum conjugate to the mean longi-
tude λ j of planet j. Using these notations, µ and µ j have the same
order of magnitude, while ε ≪ 1 is used to materialise the small
size of the perturbation. The vector r j depends on both λ j and
time t through the varying orbital elements of planet j.

The heliocentric Keplerian elements of the small body are
written (a, e, i, ω,Ω,M), with the associated canonical Delaunay
elements:
ℓ = M ,
g = ω ,

h = Ω ,


L =
√
µa ,

G =
√
µa(1 − e2) ,

H =
√
µa(1 − e2) cos i .

(A.2)

We considered a MMR kp:k between the small body and a given
planet with index j = p, where kp and k are co-prime integers.
At the vicinity of the resonance, the combination σ = kλ − kpλp
varies slowly, where λ = ℓ + g + h. The combination σ is taken
as a new canonical coordinate by a linear unimodular transfor-
mation (Milani & Baccili 1998). We used the following choice
of coordinates:
σ
γ
u
v

 =

k −kp k k
c −cp c c
0 0 1 0
0 0 0 1



ℓ
λp
g
h

 , (A.3)

which led to the new momenta
Σ
Γ
U
V

 =

−cp −c 0 0
kp k 0 0
−1 0 1 0
−1 0 0 1




L
Λp
G
H

 . (A.4)

In this expression, c and cp are integers chosen such that c kp −

cp k = 1; they always exist as gcd(k, kp) = 1.
This specific choice for the variable σ emphasises that we do

not presuppose any particular form for the resonance angle and
keep all resonant terms with combination kp:k in the Hamilto-
nian function. If we assumed that the small body is close to or
inside a resonance with combination kp:k, then the new coordi-
nates γ and {λ j,p} are fast angles (orbital timescale; frequency
∝ ε0); σ is a semi-slow angle (resonant timescale; frequency
∝ ε1/2); and (u, v) are slow angles (secular timescale; frequency
∝ ε1; see Sect. A.4 below).

A.2. The semi-secular system

We defined the semi-secular Hamiltonian function K by remov-
ing the fast angles from the Hamiltonian H in Eq. (A.1) using a
close-to-identity change of coordinates. Therefore, in the semi-
secular coordinates (that we write with the same symbols for
simplicity), the Hamiltonian function does not depend on γ and
{λ j,p}. As a consequence, the momenta Γ and {Λ j,p} are con-
stants of motion that have arbitrary values. We conveniently
chose them to be equal to zero such that our coordinates are
simply


σ = kλ − kpλp ,

u = ω ,
v = Ω ,


Σ =

√
µa
k
,

U =
√
µa

(√
1 − e2 − 1

)
,

V =
√
µa

(√
1 − e2 cos i − 1

)
.

(A.5)

Dropping constant terms, the semi-secular Hamiltonian function
is defined as

K = K0(Σ) + εK1(Σ,U,V, σ, u, v) + O(ε2) , (A.6)

where

K0 = −
µ2

2(kΣ)2 − npkpΣ ,

K1 = −
∑
j,p

µ j

4π2

∫ 2π

0

∫ 2π

0

1
∥r − r j∥

dℓ dλ j

−
µp

2π

∫ 2π

0

(
1

∥r − rp∥
− r ·

rp

∥rp∥
3

)
dγ .

(A.7)

For the planets with index j , p, the indirect part vanishes over
the average, so we omitted it in Eq. (A.7). Apart from λ j, the
orbital elements of planet j are slowly varying coordinates that
we keep constant while computing the integrals. We computed
the integrals numerically so that all resonant terms are included,
and our approach is valid for all eccentricities and inclina-
tions. When averaged, the orbital elements and mean-motions
of the planets used in Eq. (A.7) become secular variables that
incorporate the effects of mutual perturbations among planets.

A.3. Expansion around the resonance centre

Near the kp:k resonance with planet p, the conjugate pair (Σ, σ)
evolves with characteristic the frequency of order ε1/2, while the
secular precession of the orbits takes place with the frequency
of order ε. Hence, if ε is small enough, these two timescales are
well separated, and we can use the same averaging method as in
Sect. A.2 to remove the angle σ from the Hamiltonian function.
However, the two characteristic frequencies are only separated
by a factor ε1/2, so the neglected terms are of the order ε3/2 (and
not ε2 as in Eq. A.6).

In practice, this method consists of first studying the evolu-
tion of (Σ, σ) for fixed values of (U,V, u, v) and the planets’ mean
orbital elements. It is called the ‘adiabatic approximation’ and
was popularised notably by Wisdom (1985) and Henrard (1982,
1993). Here, we only need to compute the resonance widths,
which amounts to numerically finding the separatrices of the
resonance in the (Σ, σ) plane.

In order to find the resonance separatrices, it is convenient
to first expand the Hamiltonian function at the vicinity of the
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resonance centre3. In the restricted three-body problem, we usu-
ally estimate the resonance centre Σ0 from the Hamiltonian K0
taken alone. However, in a multi-planetary system as considered
here, there can be a constant shift between this value and the one
obtained by considering the whole Hamiltonian. This constant
shift is due to the zeroth-order term of the development of K1 in
Legendre polynomials. It can be taken into account by redefining
the splitting of the Hamiltonian:
K ′0 = K0(Σ) −

µ

(kΣ)2

∑
j∈I

εµ j ,

K ′1 = K1(Σ,U,V, σ, u, v) +
µ

(kΣ)2

∑
j∈I

µ j ,
(A.8)

where the additional term is the zeroth-order term in the Legen-
dre development of K1 that we transfer to K0 (and thus remove
from K1). Here, the summation is only realised over the sub-
set I of planets inner to the small body since the outer planets
have no zeroth-order dependence on the semi-major axis a (see
e.g. Laskar & Boué 2010). As defined from K ′0 taken alone, the
nominal semi-major axis at the centre of the resonance is

∂K ′0
∂Σ

(Σ0) = 0 ⇐⇒ Σ3
0 =

µ2

npkpk2

1 + 2ε
∑
j∈I

µ j

µ

 . (A.9)

From Eq. (A.5), Σ0 is equivalent to a semi-major axis a0 as
expressed in Eq. (2) of the main text. If we set ε = 0, we retrieve
the classical estimate of the resonance centre. We now expand
the Hamiltonian function around Σ0:

K = K ′0(Σ0) +
1
2

(Σ − Σ0)2 ∂
2K ′0

∂Σ2 (Σ0) + O
(
(Σ − Σ0)3

)
+ εK ′1(Σ0,U,V, σ, u, v) + O

(
ε(Σ − Σ0)

)
.

(A.10)

Considering that the small body is close to or inside the res-
onance, the distance |Σ − Σ0| is of the order of the resonance
width4, which goes as ε1/2 (this well-known property can be ver-
ified a posteriori; see Eq. 5 of the main text). As we neglect terms
of order ε3/2 when using the adiabatic approximation, it is unnec-
essary to keep them at this point. Therefore, omitting constant
parts, we obtain

K = −
1
2
α(Σ − Σ0)2 + εW(U,V, u, v, σ) + O

(
ε3/2

)
, (A.11)

where α = O(1) is a positive constant expressed in Eq. (3) of the
main text, and

W(U,V, u, v, σ) = K ′1(Σ0,U,V, σ, u, v) . (A.12)

The Hamiltonian function in Eq. (A.11) is given in a slightly
different form in Eqs. (1) and (4) of the main text.

3 This step is not compulsory; one can also directly study the Hamilto-
nian function K in Eq. (A.7) in the two-dimensional plane spanned by
(Σ, σ), as done by Saillenfest et al. (2016) and Lei et al. (2022). However,
this introduces an unnecessary complexity in the numerical algorithm.
4 This behaviour of the resonance width is not true for near-zero eccen-
tricities in first-order resonances. The shift of the resonance centre and
opening of the separatrices when e → 0 (see e.g. Henrard & Lemaitre
1983; Murray & Dermott 1999; Malhotra & Zhang 2020; Malhotra &
Chen 2023) are therefore not captured in the model presented here.

A.4. The adiabatic approximation

Writing down Hamilton’s equations of motion and using the
variable Φ = (Σ − Σ0)/

√
ε = O(1) instead of Σ, we get

σ̇ = −
√
ε αΦ ,

Φ̇ = −
√
ε
∂W
∂σ
,

u̇ = ε
∂W
∂U
,

U̇ = −ε
∂W
∂u
,

v̇ = ε
∂W
∂V
,

V̇ = −ε
∂W
∂v
.

(A.13)

As pointed out by Sidorenko (2006), the pair (Φ, σ) may be used
as conjugate coordinates if we divide the variables (U,V, u, v) by
ε1/4. In Eq. (A.13), the difference of timescale between the three
degrees of freedom clearly appears: (Φ, σ) are semi-slow (time-
derivatives of order

√
ε), whereas (U,V, u, v) are slow (time

derivatives of order ε). This leads to the adiabatic approxima-
tion, that is, solving for the semi-slow degree of freedom (Φ, σ)
while fixing the slow ones (U, u) and (V, v).

In practice, the coordinates U and V defined in Eq. (A.5) can
be replaced by equivalent variables ē and ī as

U =
√
µa0

(√
1 − ē2 − 1

)
,

V =
√
µa0

(√
1 − ē2 cos ī − 1

)
.

(A.14)

For a small body oscillating inside the resonance, ē and ī can
be directly interpreted as the mean eccentricity and inclination
of the small body over one libration cycle. For simplicity, we
dropped the ‘bar’ symbol in the main text and identified e and i
as ē and ī.

As K ′1 is evaluated at a = a0 in the definition of W (see
Eq. A.12), we can now perform the required integrals in Eq. (A.7)
using the standard Keplerian elements (a0, e, i, ω,Ω) and forget
about the canonical coordinates (U,V, u, v) taken as constants.
The Hamiltonian function in Eq. (A.11) can then be used to
compute the characteristics of the kp:k MMR, in particular, its
widths, as described in Sect. 3 of the main text.
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