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Energy conservation law in strong-field photoionization by circularly polarized light
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We establish an energy conservation law for tunneling electrons driven by a circularly polarized light in a
rotationally invariant potential. This conservation law emerges from the adiabaticity of the ionization process
when described in the frame rotating with the laser field. It offers a clear picture of nonlinear phenomena
observed in strong fields for initial states carrying a magnetic quantum number. It provides unambiguous sets of
trajectories to model and interpret cutting-edge experiments using semiclassical approaches.
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I. INTRODUCTION

Tunnel ionization is a fundamental quantum process which
plays a key role in advanced probing techniques for mea-
suring the real-time motion of electrons inside atoms and
molecules [1–5]. In order to experimentally explore these
dynamics on an attosecond timescale, infrared and near-
infrared laser pulses are most commonly employed. When
the laser intensity is strong enough [6–8], its field com-
bined with the atomic or molecular potential creates a barrier
through which a valence electron can tunnel ionize. The
subsequent photoelectron dynamics, governed by field-driven
rescattering [9], leads to highly nonlinear phenomena such
as above-threshold ionization [10] or high-harmonic gen-
eration [11]. The latter has been subsequently developed
to design “self-probing” spectroscopies with unprecedented
time and space resolutions [12,13]. Controlling the con-
ditions under which ionization occurs, modeling the rates
and the phase-space configuration of the photoelectron wave
packet at the exit are essential theoretical steps for inter-
preting and decoding the experimental measurements which
allow one to retrieve attosecond-resolved information on the
probed system.

The essence of tunnel ionization is efficiently captured
by adiabatic, quasistatic theories such as Ammosov-Delone-
Krainov (ADK) [6,14,15]. However, in this regime, the
electron dynamics and the infrared laser period pertain to
the same timescale, such that the energy of the electron dur-
ing tunneling is significantly affected by subcycle couplings
[16–19], with gains of the order of the electron volt [20–22].
These are nonadiabatic effects [19] and the energy of the
electron right after ionization is hard to assess. In atoms, these
difficulties are circumvented by neglecting the interaction
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between the electron and the ion [16–18,20] in the framework
of the so-called strong-field approximation [23,24] (SFA). The
SFA provides analytic formulas for ionization phenomena and
unravels the classical behavior of the electron subjected to
strong-laser fields. It is thus an essential ingredient for the
design and interpretation of time-resolved experiments using
intense laser fields.

While the essentials of strong-field physics can be ad-
dressed by considering linearly polarized pulses, circularly
polarized (CP) fields valuably offer additional experimental
ways of probing ultrafast dynamics in atoms and molecules,
including chiral species [25], as demonstrated with the “at-
toclock” setup [26,27]. In this context, the semiclassical
treatment of strong-field ionization has raised passionate de-
bates regarding the time spent by the electron under the
potential barrier [28–31]. There, it was established that the
electron-ion interaction plays a crucial role and cannot be
overlooked in attempts to interpret the phase-space con-
figuration of the electron [30,32,33]. From the modeling
perspective, while perturbative approaches are valuable [28],
a major bottleneck comes from the complexity of fully taking
into account the Coulomb effects and the nonadiabatic ones
all at once during and after tunneling [31,32,34].

In this article, we show that tunnel ionization of electrons
by time-dependent CP fields obeys an energy conservation
law using analytical developments supported by numerical
simulations. In Sec. II, we evidence, with numerical simula-
tions on model atoms, the essential features of the electron
energy distribution upon tunneling in CP fields and their de-
pendency with respect to the initial-state magnetic orientation.
In Sec. III, we derive a rigorous photoelectron energy conser-
vation law emerging in the rotating frame (RF) by fully taking
into account the ion-electron interaction and disentangling
nonadiabatic effects occurring on short and long timescales
in the laboratory frame (LF). In Sec. IV, we show that the
conservation law in the RF translates into the conversion of
angular momentum into energy in the LF. We illustrate the
relevance of our findings to applied strong-field physics by
further analyzing the observable outcomes of the numerical
simulations in the light of this conservation law.
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II. ENERGY DISTRIBUTIONS UPON TUNNELING

We consider a single active electron in a two-dimensional
(2D) atom interacting with a classical electric field in the
dipole approximation within the length gauge. The Hamilto-
nian governing the electron dynamics is

H (t ) = p2

2
+ V (r) + r · F(t ), (1)

where r is the electron position (r its distance to the nu-
cleus), V (r) is the ion-electron energy potential, and p is
the momentum operator. Hamiltonian (1) is expressed in the
LF, i.e., the frame in which the electrons are detected in ex-
periments. We consider ion-electron energy potentials which
are invariant under rotations, which typically corresponds to
atomic potentials [35] (and, to some extent, to molecules
modeled by a continuous potential such as benzene [36]
and buckminsterfullerene [37]). To address the specificities
of CP driven dynamics, we performed 2D simulations for
He initially in its 1s (m = 0) state (with ionization potential
Ip = 24.3 eV), H is initially in its 1s (m = 0) state (Ip =
13.6 eV) or Ne initially in either of its 2p± (m = ±1) states
(Ip = 21.6 eV). We used model potentials with the generic
form [35]

V (r) = −1 + b exp(−r2)√
r2 + a2

, (2)

where the parameters are adapted to each model atom (a =
0.26, b = 0 for He [38], a = 1.7, b = 9 for Ne [39], a =
0.7977, b = 0 for H). Numerically, the initial-state wave
function ψ0(r) and Ip for each model atom were obtained
using imaginary-time propagation [40]. The time-dependent
CP laser electric field is defined as F(t ) = −∂t A(t ), where
A(t ) is the associated vector potential,

A(t ) = A0 f (t )[ex cos(ωt ) + ey sin(ωt )], (3)

with A0 = F0/ω, ω the laser frequency and F0 the peak field
amplitude leading to a peak intensity I = 2F 2

0 . We use an
infrared pulse of 800 nm wavelength and a 2-cycle sin4 en-
velope given as f (t ) = cos(πt/τ )4 for |t | � τ/2 and zero
otherwise, with τ = 4×2π/ω. Considering ez (orthogonal to
the polarization plane) as the quantization axis, a m = +1 or
m = −1 electron is therefore co- or counter-rotating with the
laser field, respectively.

The (r, p) phase-space distributions, right after tunneling
and fully taking into account the ion-electron interaction, are
obtained using the backpropagation method. This approach,
detailed in [22,29], can be summarized in four steps: (i) The
wave function ψ (r, t ), starting from the initial state ψ0(r),
is propagated forward quantum mechanically using the time-
dependent Schrödinger equation (TDSE),

i∂tψ (r, t ) = H (t ) ψ (r, t ), (4)

until one cycle after the end of the laser pulse, i.e., T =
3×2π/ω. (ii) From ψ (r, T ), we extract the classical phase-
space distribution at T , which is then (iii) propagated
backward, using Hamilton’s equations, until (iv) we match
the tunneling condition, corresponding to the vanishing of the
longitudinal momentum. These equations are defined from
the classical analog of H (t ) [Eq. (1)], hereafter referred to as

TABLE I. Statistical quantities characterizing the energy and
angular distributions of the electron after tunneling in the laboratory
frame and in the rotating frame (see Fig. 1 and text). In the former,
the distribution of E + Ip is fitted by a Gaussian with mean value e
and width �e. In the latter, the distribution of Ẽ + (Ip + mω) is fitted
by a Gaussian with mean value ẽ and width �ẽ. The distribution of
�(−r, F(t )) is fitted by a Gaussian with mean value θ and width �θ .

Atom He 1s Ne 2p− Ne 2p+

e (eV) 1.642 2.362 0.958
�e (eV) 2.064 1.839 2.070

ẽ (eV) −0.032 0.048 −0.013
�ẽ (eV) 0.113 0.102 0.120
θ (deg) 0.452 1.331 0.205

�θ (deg) 6.728 7.561 6.632

H(r, p, t ) (throughout the text, calligraphic letters stand for
classical analogs).

Figure 1 displays the reconstructed energy distributions in
the He case [Figs. 1(a), red] and in the Ne cases [Figs. 1(c),
green (m = −1) and blue (m = +1)]. Five main features
emerge from this figure. First, we clearly see in Fig. 1(c1)
that the ionization probability is larger for an initially counter-
rotating electron than for a co-rotating one, in agreement
with [20,27,41]. Second, Figs. 1(a1) and 1(c1) show that
starting from a δ-function at −Ip, the energy distribution
shifts towards higher energies (by around 1 eV) and gains
a width of about 2 eV during the process. This is a clear
signature of nonadiabatic effects and was also observed in
[22]. Third, Fig. 1(c1) also shows that for oriented initial
states, the photoelectron peak shifts towards higher energies
roughly twice more, and with a smaller width, for m = −1
than for m = +1. These three first features are supported by
the quantitative data reported in the first two lines of Table I.
Fourth, in Figs. 1(a2) and 1(c2), we observe that the obtained
comma-shaped electron distributions in the energy-position
plane lie close to the potential barrier at the peak amplitude of
the laser field (the classically forbidden regions are indicated
by gray areas), regardless of its initial energy and its magnetic
quantum number. Finally, Figs. 1(a2) and 1(c2) also show
that counter-rotating electrons, on average, ionize closer to the
origin than co-rotating ones.

We will demonstrate now that these features can be nat-
urally assessed in the frame rotating with the laser field.
The fast carrier oscillations at frequency ω present in the
LF disappear in the RF, which was the motivation to use
it in strong-field physics classically [42,43] or quantum me-
chanically in the context of high-harmonic generation by
bicircularly polarized pulses [44] and ionization by mi-
crowaves [45]. In the next section, we will use the RF to
analytically identify the effects of subcycle dynamics by com-
paring observables in the LF and the RF.

III. ROTATING FRAME AND ENERGY
CONSERVATION LAW

Switching to the RF is formally achieved by means of the
time-dependent matrix Rω(t ) associated with the rotation of
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FIG. 1. Phase-space configuration of the electron after ionization obtained from quantum simulations analyzed using the backpropagation
method. (a),(c) The distributions in the LF; (b),(d) their counterparts in the RF. Left panels: Distributions of the energy after ionization
(normalized with respect to their probability). Right panels: Distributions in energy and in position along the field direction [F(t ) or F̃(t )]. The
gray regions indicate the classically forbidden region at the peak amplitude of the laser field (i.e., at time t = 0). Upper panels: For He, for the
initial state 1s (red), for I = 8 × 1014 W cm−2. Lower panels: For Ne, for the initial state 2p− (green) and 2p+ (blue), for I = 6 × 1014 W cm−2.
The open triangles indicate the minimum tunneling distance rmin and associated energies in the LF and in the RF. The dotted lines are complex
trajectories from the SFA [23] with initial (colored dots) and final (crosses) conditions (see Appendix B 4). The colored dashed lines and open
circles are initial conditions defined by the conservation law (7) (see text).

angle ωt around ez. The vector potential and the electric field,
respectively, become

Ã(t ) = Rω(t )A(t ) = A0 f (t )ex, (5a)

F̃(t ) = Rω(t )F(t ) = −A0[ ḟ (t )ex + f (t )ωey]. (5b)

Wave functions ψ̃ in the RF are related to ψ in the LF by the
unitary transformation [44–46]

ψ̃ (r, t ) = exp(i ωt Lz )ψ (r, t ) ≡ ψ
(
R−1

ω (t )r, t
)
, (5c)

where Lz = r×p·ez is the angular momentum component nor-
mal to the polarization plane and ψ̃ is the wave function in the
RF. In the RF, the TDSE [Eq. (4)] becomes i∂t ψ̃ = H̃ (t )ψ̃ ,
with the Hamiltonian

H̃ (t ) = p2

2
+ V (r) − ωLz + r · F̃(t ), (6)

where the Coriolis term ωLz results from the time-dependent
rotation operator [Eq. (5c)]. Note that the explicit time de-
pendence in the transformation given by Eq. (5c) allows one
to assess energy changes, in contrast to time-independent
transformations [32]. Due to the rotational invariance of (1)
and (6) in the absence of a laser field, the RF Hamiltonian H̃
shares the same field-free eigenstates as the LF Hamiltonian
H , but with shifted eigenenergies due to the Coriolis term.
Thus, the ionization potential in the RF is Ĩp = Ip + mω with

H̃ (−∞)ψ0 = −Ĩpψ0; see Appendix A 1. The classical Hamil-
tonian in the RF is denoted H̃(̃r, p̃, t ), where r̃ and p̃ are the
phase-space variables of the electron in the RF. Hamiltonian
H̃ is obtained either by using the classical analogy of Eq. (6)
or, equivalently, by performing the time-dependent canonical
transformation r̃ = Rω(t )r and p̃ = Rω(t )p from H.

In the RF, the time dependence of the electric field is
reduced to its envelope f (t ), which (i) varies on timescales
longer than a laser cycle and (ii) can play the role of an
adiabatic parameter. Since ionization occurs on timescales
much shorter than the pulse duration, standard quasistatic
approaches [6,7,14] suggest an electron energy approximately
conserved during tunneling. Hence, we expect, at the exit, the
RF energy

Ẽ = −(Ip + mω). (7)

This is indeed confirmed by the results displayed in Fig. 2,
where we show the distribution of energy gained by the elec-
tron during ionization in the RF, i.e., �Ẽ = Ẽ+(Ip+mω).
These distributions (filled curves) are indeed narrow and cen-
tered around 0, whereas their LF counterparts (solid lines) are
significantly broadened and shifted. More quantitatively, we
report in Table I, for all the considered systems, a shift of
the photoelectron peak position in the RF (̃e) of a few tens
of meV, i.e., two orders of magnitude lower than in the LF
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FIG. 2. Distributions of the energy change in the rotating frame
�Ẽ = Ẽ + (Ip + mω) (filled lines), in the laboratory frame �E =
E + Ip (solid lines) and distribution of the inertial energy change
ω�Lz = ω(Lz − m) (dashed lines), corresponding to the distribu-
tions of Fig. 1 shifted by their initial energy. All the data were
obtained by the backpropagation method and normalized to unity.
The Gaussian fit parameters of �E and �Ẽ are given in Table I.

(e). The peak width in the RF (�ẽ) is around 100 meV, i.e.,
one order of magnitude lower than in the LF (�e). We have
checked that the conservation law given in Eq. (7) is robust
with respect to field intensities and frequencies. This confirms
that tunnel ionization in the RF occurs adiabatically on the
energy isosurface,

H̃(̃r, p̃, t ) = Ẽ , (8)

in phase space, where Ẽ results from the m- and ω-dependent
electron-ion coupling and laser interactions; see Eq. (7). We
have, moreover, found that this conservation law [Eq. (7)] can
also be established within the SFA (see Appendix B).

IV. OBSERVABLE SIGNATURES AND APPLICATIONS

In this section, we further analyze the results of the numeri-
cal simulations presented in Sec. II and illustrate the relevance
of the RF conservation law [Eq. (7)] to deepen our understand-
ing of the mechanisms behind the different outcomes observed
in the LF.

First, in the RF, the electron feels the dressed effective
potential (see Appendix A 2),

Ṽeff (r, t ) = V (r) − ω2

2
(ez × r)2 + r · F̃(t ), (9a)

with kinetic energy

K̃ (r, p) = 1

2
(p − ω ez × r)2, (9b)

such that H̃ (t ) = K̃ + Ṽeff (t ). The classically forbidden re-
gions at the peak of the pulse envelope (t = 0, gray areas
in Figs. 1(b) and 1(d)] are bounded by Ṽeff (r, 0) and dictate
the tunneling dynamics. As observed in Fig. 1(d), both the
width and height of the effective barrier through which the
electron tunnels in the RF are smaller for a 2p+ (smaller

FIG. 3. Distributions of the distance of birth of the electron from
the origin obtained by the backpropagation method and normalized
to unity corresponding to a projection of the distributions of Fig. 1 on
the x axis. The vertical dotted lines are the position of the effective
potential barrier rmin computed from Ṽeff (−rminn‖(0), 0) = −Ĩp [see
Eq. (9a)] with tunneling exit at the peak amplitude of the laser field.

Ĩp) than for a 2p− (larger Ĩp) initial state. Since tunneling is
strongly suppressed with increasing the classically forbidden
area, the ionization probability for a counter-rotating electron
(P−) is larger than it is for a co-rotating one (P+) in strong CP
fields in this typical regime, in agreement with the SFA [20],
numerical simulations [39], and experimental measurements
[27,41]. Furthermore, as the initial energy difference increases
for increasing frequencies, the ratio P−/P+ also increases, in
agreement with the results of numerical simulations [39].

Second, the last two lines of Table I reveal that the elec-
tron ionizes mainly along the instantaneous laser electric field
direction n‖(t ) = F̃(t )/|̃F(t )| (small θ angles), as predicted
from tunneling theories [16–18,20,21,47]. Hence, the position
of the electron, which is released into the continuum at t0,
can then be written as r̃ = −r0n‖(t0). For each t0, there is
a well-defined tunneling distance rmin, corresponding to the
minimum exit distance [48] that is given by the outermost
intersection between the effective potential and the initial en-
ergy, i.e., the solution of Ṽeff (−rminn‖(t0), t0) = −Ĩp [49]. For
each case considered, rmin at the peak of the envelope (t0 = 0)
is indicated by an open triangle in Fig. 1 and by a vertical dot-
ted line in Fig. 3: it quantitatively matches the minimum exit
distance in the distributions obtained by the backpropagation.
Furthermore, in the RF, the momentum of the electron “on
Ṽeff ” [zero kinetic energy; see Eq. (9b)] is p̃ = ωez×̃r (see,
also, [50]) with p = pminn⊥(t0), and therefore pmin = −ωrmin.
It is therefore perpendicular to the electric field and nonzero,
in agreement with, e.g., Refs. [16–18,20].

Third, because H(r, p, t ) = H̃(̃r, p̃, t )+ωLz and accord-
ing to Eq. (7), the electron angular momentum changes under
the barrier are directly converted into energy in the LF.
Thus, the conservation law given by Eq. (7) in the RF be-
comes, in the LF,

�E = ω �Lz, (10)

with �E = E + Ip and �Lz = Lz − m the energy and angu-
lar momentum changes induced by tunneling. Figure 2 shows
a comparison between �E and ω�Lz. The perfect agreement
between the two curves confirms our findings. Estimations of
the angular momentum changes can be further assessed using
the tunneling condition established above on the effective
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FIG. 4. Photoelectron momentum distributions with (a)–(c) the
same parameters as Figs. 1 and 2, and (d) for H with initial
state 1s and I = 1014 W cm−2. In each frame, the colored line is
the asymptotic momenta obtained with our fully classical proce-
dure (upon tunneling): The trajectories are obtained from Hamilton’s
equations with initial conditions given by the conservation law (7)
for varying initial transverse momenta. The colored dot indicates the
asymptotic momentum for pmax

0 and its associated polar angle θA is
indicated in the bottom-left corner [the value in parentheses is the
one obtained from the TDSE (4)].

barrier Ṽeff , leading to Lz = ωr2
min. Accordingly, the energy in

the LF upon tunneling for m = −1 is larger than for m = +1,
in fair agreement with the results in Figs. 1 and 2.

Fourth, as we have established that rmin is smaller for m =
−1 than for m = +1, we expect that counter-rotating electrons
are subject to stronger Coulomb effects than co-rotating ones.
For instance, Coulomb asymmetry [47] can be quantitatively
assessed by the attoclock angle θA, corresponding to the angle
between −A(0) and the asymptotic momentum for which the
photoelectron momentum distribution reaches its maximum
value [26,30]. In Fig. 4, we observe that θA is indeed larger
for the Ne(2p−) case [Fig. 4(b)] than for Ne(2p+) [Fig. 4(c)],
confirming our statements.

Fifth, the conservation law in the RF [Eq. (7)] provides the
initial conditions for classical trajectory Monte Carlo methods
[26,32,34,51]. It constrains r0 for a given initial transverse
momentum p0 such that H̃(−r0n‖(t0), p0n⊥(t0), t0) = −Ĩp

with n⊥(t ) = ez×n‖(t ) (see, also, Appendix A 1 for the de-
termination of the initial conditions with the LF coordinates).
To illustrate this, we consider p0 ∈ A0[−1, 0.5] (correspond-
ing to typical values of p0 [34,51]), which defines a set of
initial conditions (colored dashed lines in Fig. 1 [52]), that we
integrate with Hamilton’s equations. The resulting asymptotic
momenta appear as a colored line in each frame of Fig. 4.
An estimation of θA, indicated in the bottom-left corner of
Fig. 4, is deduced from the most probable initial momentum,

TABLE II. Values of positions, momenta, and energy changes
for the specific initial conditions considered in the main text. All the
r0 and p0 (therefore including rmin, pmin and rmax

0 , pmax
0 ) are related

through the conservation law H̃(−r0n⊥(0), p0n⊥(0), 0) = −Ĩp and
�E = ω�Lz with Lz = −r0 p0, i.e., �E = −ω(r0 p0 + m). In addi-
tion, pmin = −ωrmin. The last line is the energy e from the first line
of Table I.

Atom He 1s Ne 2p− Ne 2p+

rmin (a.u.) 6.281 5.558 6.838
pmin (a.u.) −0.358 −0.316 −0.389

�Emin (eV) 3.480 4.266 2.569

rmax
0 (a.u.) 6.527 5.945 7.016

pmax
0 (a.u.) −0.147 −0.082 −0.215

�Emax (eV) 1.485 2.302 0.787
e (eV) 1.642 2.362 0.958

pmax
0 , obtained from an extension of the Perelomov-Perentev-

Tretenov (PPT) prediction [17,53]. A closed formula for pmax
0

is provided in Appendix B 4. Its initial condition is indicated
by an open circle in Fig. 1 and its asymptotic momentum by
a colored circle in Fig. 4. It shows that the attoclock angle
depends sharply on the ionization potential and the magnetic
quantum number, as observed in experimental measurements
on Kr and Ar [54], even when considering t0 = 0. The
comparison with the TDSE calculations for different atomic
species and laser parameters clearly supports the qualitative
and quantitative predictability character, and the robustness of
the results. Furthermore, from Lz = −rmax

0 pmax
0 and Eq. (10),

we obtain energy gains �Emax of 1.485 eV for He, 2.302 eV
for Ne 2p−, and 0.787 eV for Ne 2p+ (see Table II), in
excellent agreement with e in Table I, and Figs. 1 and 2. We
observe an excellent agreement between �Emax and e, and a
fair agreement between �Emin and e. This mainly comes from
the difference between pmin and pmax

0 , while rmin and rmax
0 are

roughly the same.
As a final remark, we would like to add that the present

scheme of adiabatic time-dependent motion in the RF can be
extended to potentials which are not rotationally symmetric,
as long as the resulting time dependence of the potential in
the RF is slow. Generally speaking, this will be the case for
potentials smoothly varying in space, which is the typical case
for molecules and more complex chemical species.

V. CONCLUSIONS

To summarize, we have shown that tunnel ionization driven
by strong CP laser pulses obeys a classical energy conserva-
tion law which translates into intuitive expressions both in
the RF [see Eq. (7)] and in the LF [Eq. (10)], and is also
accounted for within the SFA (Appendix B). By choosing a
proper reference frame and by fully taking into account the
ion-electron interaction, we have disentangled nonadiabatic
effects occurring on short and long timescales in the labora-
tory frame. The former is transformed into adiabatic effects
where the envelope plays the role of the adiabatic parameter.

In practice, the resultant energy conservation law (7) al-
lows a substantial and accurate reduction of the effective
active space when simulating continuum electron dynamics
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in strong fields. In addition, it offers a promising avenue for
predicting and controlling the phase-space configuration of
the electron for more complex systems, such as molecules
[55].

This energy conservation law unravels the intrinsic link
between the angular momentum of the electron and its energy
changes in CP fields. We have used it to characterize nonlinear
phenomena from initial states carrying a nonvanishing mag-
netic quantum number, that can be prepared in diverse ways in
experiments [27,41,56], and to resolve the initial conditions in
attoclock setups [26,30]. This puts forward the rotating frame
coordinates as an alternative “natural” set of coordinates for
the attoclock [32].
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APPENDIX A: HAMILTONIAN IN THE ROTATING FRAME

1. Ionization potential in the RF

The initial energy in the LF in the absence of a laser field
is given by the eigenvalue problem

H0ψ0(r) = −Ipψ0(r), H0 = p2

2
+ V (r). (A1)

Due to the time dependence of the unitary transformation from
the LF to the RF, the Hamiltonian in the RF is given by

H̃0 = H0 − ω Lz. (A2)

The initial state is such that Lzψ0 = mψ0, where m is the
magnetic quantum number. As a consequence, the eigenvalue
problem in the RF becomes

H̃0ψ0 = −(Ip + mω)ψ0, Ĩp = Ip + mω, (A3)

with ionization potential of the electron in the RF of Ĩp. It
explicitly depends on the magnetic quantum number and the
frequency of the circularly polarized laser field.

2. Kinetic and potential energies in the RF

The Hamiltonian in the RF is given by

H̃ (t ) = p2

2
+ V (r) − ωLz + r · F̃(t ), (A4)

where Lz = r × p · ez reads also as

H̃ (t ) = K̃ + Ṽeff (t ), (A5a)

with kinetic term and effective potentials

K̃ = 1

2
(p − ωez × r)2, (A5b)

Ṽeff (t ) = V (r) − ω2

2
(ez × r)2 + r · F̃(t ), (A5c)

respectively.

3. Initial conditions in the laboratory frame
using the conservation law (7)

Figure 4 shows the photoelectron momentum distributions
obtained from the two-dimensional TDSE. Below, we show
the detailed derivation to obtain the initial conditions from the
conservation law (7). At the tunnel exit at ionization time t0,
we assume that the position is along the laser electric field
direction and that the longitudinal momentum vanishes,

r0 = −r0 n‖(0), p0 = p0 n⊥(0), (A6a)

with

n‖(t0) = F(t0)

|F(t0)| , (A6b)

n⊥(t0) = ex[−n‖(t0) · ey] + ey[n‖(t0) · ex]. (A6c)

The unitary vectors are defined such that n‖(t0)×n⊥(t0)=1.
The angular momentum at the tunnel exit is given by Lz =
−r0 p0. The distance r0 and momentum p0 are unknowns. We
now use the conservation law [see Eq. (7)], i.e., H̃ (r0, p0, 0) =
−Ĩp, that is valid after tunnel ionization, that explicitly reads
as

−(Ip + mω) = p2
0

2
+ V (r0) − ωr0 × p0 · ez + r0 · F(t0).

(A7)

We substitute the tunneling assumptions [Eq. (A6a)] and ob-
tain

−(Ip + mω) = p2
0

2
+ V (r0) + ωr0 p0 − r0|F(t0)|. (A8)

This equation imposes one constraint on the phase-space con-
figuration of the electron after tunnel exit, and therefore r0 is
fixed by p0 such that r0 = r0(p0). The dashed lines in Fig. 1
are the resulting initial positions and energies displayed at
t0 = 0 (peak amplitude of the laser electric field) for varying
p0. The solid lines in Fig. 4 are the asymptotic momenta of
the trajectories obtained from Hamilton’s equations with those
initial conditions.

APPENDIX B: GREEN FUNCTION IN THE LABORATORY
FRAME AND IN THE ROTATING FRAME

1. Strong-field approximation

We show how the classical conservation law emerges nat-
urally from quantum mechanics within the commonly used
SFA approach [23]. We start in the LF from the Hamiltonian
(1). Within SFA, one uses an ansatz for the electronic wave
function as the sum of the initial bound state ψ0 and an ionized
wave packet ϕ, i.e.,

ψ (r, t ) = exp(iIpt )ψ0(r) + ϕ(r, t ). (B1)

After substituting this ansatz in the TDSE and using the SFA
assumptions, we obtain[

i ∂t − p2

2
− r · F(t )

]
ϕ(r, t ) = s(r, t ), (B2)

where the ion-electron interaction on the ionizing wave packet
is neglected [23], with source term

s(r, t ) = [r · F(t )] exp(iIpt ) ψ0(r). (B3)
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Equation (B2) can be solved within the Green function for-
malism, for which we obtain the dynamics of the ionizing
wave packet governed by

ϕ(r, t ) =
∫ t

−∞
dt ′

∫
dr′ G(r, t ; r′, t ′) s(r′, t ′). (B4)

Notice that the SFA equations (B4) can be equivalently writ-
ten in the length gauge or velocity gauge, in the position
representation or momentum representation. The Green func-
tion G(r, t ; r′, t ′) can be exactly expressed in terms of the
classical action S (r, t ; r′, t ′) solution of the Hamilton-Jacobi
equation since H is linear in position for V = 0 [57],

G(r, t ; r′, t ′) = −i�(t − t ′)
[

det

(
1

2iπ

∂2S
∂r∂r′

)]1/2

× exp[iS (r, t ; r′, t ′)], (B5)

with � the Heaviside step function and S the classical action
of the electron explicitly given by

S (r, t ; r′, t ′) =
[
r − r′ − ∫ t

t ′ A(t ′′) dt ′′]2

2(t − t ′)

+r · A(t ) − r′ · A(t ′) − 1

2

∫ t

t ′
A(t ′′)2 dt ′′.

(B6)

2. Strong-field approximation in the RF

In the RF, the dynamics of ϕ is obtained by performing the
transformation [Eq. (5c)]. We obtain

ϕ̃(r, t ) =
∫ t

−∞
dt ′

∫
dr′ G̃(r, t ; r′, t ′) s̃(r′, t ′), (B7)

with the source term s̃(Rω(t )r, t ) = s(r, t ). There, the
initial state accumulates a time-dependent phase, i.e.,
ψ0(R−1

ω (t )r) = exp(imωt )ψ0(r). Hence the source term be-
comes

s̃(r, t ) = [r · F̃(t )] exp(iĨpt ) ψ0(r), (B8)

with Ĩp = Ip+mω. The Green function and the classical action
become

G̃(r, t ; r′, t ′) = G
(
R−1

ω (t )r, t ; R−1
ω (t ′)r′, t ′), (B9)

S̃ (r, t ; r′, t ′) = S
(
R−1

ω (t )r, t ; R−1
ω (t ′)r′, t ′), (B10)

with

Rω(t ) =
⎛⎝ cos(ωt ) sin(ωt ) 0

− sin(ωt ) cos(ωt ) 0
0 0 1

⎞⎠, (B11)

and therefore [using Rω(t )R−1
ω (t ′) = Rω(t−t ′)]

S̃ (r, t ; r′, t ′)

=
[
r − Rω(t − t ′)r′ − Rω(t )

∫ t
t ′ A(t ′′) dt ′′]2

2(t − t ′)

+ r · Ã(t ) − r′ · Ã(t ′) − 1

2

∫ t

t ′
Ã(t ′′)2 dt ′′, (B12)

where Ã(t ) = Rω(t )A(t ). Note that we have numerically veri-
fied that Eq. (B7) [or, equivalently, Eq. (B4)] reproduces, with
great fidelity, the ionization probabilities of Refs. [20] and
[39].

3. Constant laser envelope

On short timescales, around the peak amplitude of the laser
field, the pulse envelope is f (t ) = 1, and the vector potential
and electric field of the laser in the LF are

A(t ) = A0[ex cos(ωt ) + ey sin(ωt )], (B13)

F(t ) = F0[ex sin(ωt ) − ey cos(ωt )], (B14)

and therefore they are constant in the RF,

Ã = Rω(t )A(t ) = A0ex, (B15)

F̃ = Rω(t )F(t ) = −F0ey. (B16)

In addition, ∫ t

t ′
A(t ′′)dt ′′ = 1

ω2
[F(t ) − F(t ′)]. (B17)

Therefore,

Rω(t )
∫ t

t ′
A(t ′′)dt ′′ = 1

ω2
[I − Rω(t − t ′)]̃F, (B18)

where I is the identity. Finally, the classical action in the RF
for a circularly polarized pulse with a constant envelope is
given by

S̃ (r, t ; r′, t ′) =
[(

r − F̃
ω2

) − Rω(t − t ′)
(
r′ − F̃

ω2

)]2

2(t − t ′)

+ (r − r′) · Ã − Ã2

2
(t − t ′). (B19)

The classical action, and therefore the Green function,
are invariant under time translation, i.e., G̃(r, t ; r′, t ′) =
G̃(r, t−t ′; r′, 0), regardless of the interaction potential. This
clearly indicates that the energy of the ionizing wave packet
is conserved during tunnel ionization. The time integral in
Eq. (B7) can be substituted by the time-independent Green
function G̃(r, r′; −Ĩp) propagating the electron from r′ to r
on a constant energy level −Ĩp = −(Ip+mω) and therefore
validates the established conservation law (7).

4. Most probable transverse momentum
and tunneling trajectory

Equation (B4) can be solved using the saddle-point ap-
proximation on the phase of the integrand as described in
Refs. [17,23]. From the saddle-point approximation, we get a
tunneling rate for the initial transverse momentum p0, an ion-
ization time t0, and φ. From this rate is deduced that the most
probable trajectory ionizes at time t0 = 0, with a transverse
momentum

pmax
0 = A0

[
1 −

(
1 + mω

2Ip

)
sinh φ

φ

]
, (B20)
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where φ is related to the laser parameters through

γ 2 = sinh(2φ)

φ
−

(
sinh φ

φ

)2

− 1 + mω

Ip

[
1 −

(
sinh φ

φ

)2
]
,

(B21)

and Keldysh parameter γ = ω
√

2Ip/F . It corresponds to an
extension of the PPT results [17] for m other than zero. The
most probable distance, momentum, and associated energy
changes obtained from the conservation law are reported in
Table II. The SFA trajectories shown in Fig. 1 of the main
text are obtained from the classical action integrated from time

ωt ′ = iφ to time t = 0 along the imaginary axis of times with
position

Re r(t ) = − m
ez × [p − A(t ) + A(t ′)]
ez × [p − A(t ) + A(t ′)]2

+ [p − A(t )](t − t ′) +
∫ t

t ′
A(t ′′)dt ′′, (B22)

and energy

E (t ) = p2

2
+ r · F(t ), (B23)

with p = pmax
0 n⊥(0) the most probable momentum at the tun-

nel exit.

[1] M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavičić,
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