Supplementary Information

⁴³Ca MAS-DNP NMR of frozen solutions for the investigation of calcium ion complexation

Tristan Georges¹, Romain Chèvre², Samuel Cousin,² Christel Gervais¹, Pierre Thureau², Giulia Mollica^{2*} and Thierry Azaïs^{1*}

¹Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France

²Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France.

*Corresponding author: giulia.mollica@univ-amu.fr; thierry.azais@sorbonne-universite.fr

Table of Content.

Figure S1. Optimization of LP and HP Hartman and Hahn conditions.

Figure S2. Contact time optimization for Ca-H₂O, Ca-EDTA and Ca-Asp100 using HP CP DNP MAS NMR at 100K. Contact time optimization for Ca-H₂O using LP CP DNP MAS NMR at 100K.

Figure S3. ⁴³Ca MAS-DNP NMR spectra of ⁴³Ca-labelled hydroxyapatite sample acquired with HP and LP CP conditions.

Figure S4. Best fit of the central transition line shape of ⁴³Ca-labelled hydroxyapatite sample acquired with LP CP conditions.

Table S1. Best fit parameters of the central transition line shape of ⁴³Ca-labelled hydroxyapatite

Figure S5. Theoretical acquisition time of a 1D ⁴³Ca MAS-DNP NMR spectrum.

Figure S6. ⁴³Ca hyperbolic secant spectra of Ca- H_2O sample at 100K recorded with (top) and without (bottom) MW.

Figure S7. 43 Ca CPHP DNP MAS NMR spectra of Ca-LAsp-100 and Ca-H₂O samples.

Figure S8. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for Ca²⁺ complexed with water molecules.

Figure S9. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for Ca²⁺ in interaction with EDTA and water molecules.

Figure S10. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for L-Asp in interaction through C_1OO^- with Ca^{2+} .

Figure S11. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for L-Asp in interaction through C_4OO^- with Ca^{2+} .

Figure S1. Optimization of LP (A) and HP (B) Hartman and Hahn conditions by varying the ¹H RF field during CP. ⁴³Ca RF fields were respectively set to 0.8 and 32 kHz.

Figure S2. Contact time optimization for (A) Ca-H₂O, (B) Ca-EDTA-50 and (C) Ca-LAsp-100 using HP CP DNP MAS NMR at 100K. (D) Contact time optimization for Ca-H₂O using LP CP DNP MAS NMR at 100K

Figure S3. ⁴³Ca MAS-DNP NMR normalized spectra of ⁴³Ca-labelled hydroxyapatite sample acquired with HP (32 scans) and LP (160 scans) CP conditions. ⁴³Ca-labelled hydroxyapatite was prepared according to Wang et al. (*Nat. Mater.* volume 12, pages 1144–1153 (2013); DOI: 10.1038/nmat3787) and the corresponding powder impregnated with Glycerol-d8/D₂O/H₂O (volume ratio 2/3/5) containing 15 mM of Amupol.

1

Figure S4. ⁴³Ca MAS-DNP NMR spectrum of the CT line shape of ⁴³Ca-labelled hydroxyapatite sample acquired with LP CP conditions (blue curve) and its best fitting: total spectrum (black dotted curve) and individual sites Ca(I)(red) and Ca(II) (green). Good quality fitting could only be obtained after including 2 Ca sites, in agreement with previous studies (Lee, D. *et al. Nat Commun* 8, 14104 (2017). DOI : 10.1038/ncomms14104 and Laurencin et al. *Magnetic Resonance in Chemistry* 2008, *46*(4), 347-350. DOI: 10.1002/mrc.2117). The best-fitting parameters for the two Ca sites are displayed in Table S1. The ⁴³Ca chemical shift was referenced by setting the center of gravity of the ⁴³Ca signal of HA at 9.4 T to 0 ppm (see main text for discussion).

HA CT best fit parameters	δ _{iso} ⁴³ Ca (ppm)	C _Q (MHz)	η _Q
Ca(I)	2±3	2.3±0.2	0.5±0.1
	11±9ª	2.6±0.4ª	0.4±0.3ª
	4.5±0.8 ^b	2.6±0.4 ^b	0.4±0.2 ^b
Ca(II)	26±3	2.7±0.2	0.2±0.1
	25±5ª	2.6±0.4ª;	0.4±0.1ª
	17.5±0.8 ^b	2.6±0.4 ^b	0.6±0.2 ^b

Table S1. Best fit parameters obtained for the CT line shape of of ⁴³Ca-labelled hydroxyapatite sample. The fit was realized using ssNake (Van Meerten et al. *Journal of Magnetic Resonance* 2019, *301*, 56-66 ; DOI: 10.1016/j.jmr.2019.02.006).

^a Lee et al. Nat. Comm. 2017, 8(1), 14104. DOI : 10.1038/ncomms14104

^b Laurencin and Smith Progress Nucl. Magn. Reson. 2013, 68, 1-40. DOI :

10.1016/j.pnmrs.2012.05.001

Figure S5. Theoretical acquisition time of a 1D ⁴³Ca MAS-DNP NMR spectrum for SNR = 20 (red squares) and SNR = 5 (blue squares) in HP CP conditions depending on the Ca²⁺ concentration (for 62,2% ⁴³Ca-labelled samples). For physiological concentrations of ⁴³Ca (*i.e.* between 10 and 2.5 mM), the acquisition of 1D spectrum with a SNR = 20 (*i.e.* allowing to further record 2D spectra) would take from 46 min. to 3 days, while a 1D spectrum with a SNR=5 (*i.e.* allowing a straightforward analysis of 1D spectra) would require from 3 min. to 4 hours. This simple calculation shows that analysis of Ca²⁺ complex solutions at natural abundance would be feasible at high concentrations but extremely difficult in physiological concentration. As an example, a SNR = 5 for 1D ⁴³Ca NMR spectrum of 300 mM Ca²⁺ solutions would be obtained in 12h at natural abundance, in our conditions. Whereas the same SNR for a 10 mM Ca²⁺ solutions would be obtained after more than 1 year, justifying ⁴³Ca-labelling approach.

Figure S6. ⁴³Ca hyperbolic secant spectra of Ca-H₂O sample at 100K recorded with (top) and without (bottom) MW. Enhancement factor: $\varepsilon_{43Ca HS}$ = 5.5.

Interestingly, the HS experiment provides a significant DNP enhancement factor. Such ⁴³Ca enhancement probably arises from direct ⁴³Ca excitation that might be due to the large EPR linewidth of the AMUPol radical used here, which guarantees efficient polarization transfer over a broad range of nuclear Larmor frequencies.

Figure S7. ⁴³Ca CPHP DNP MAS NMR spectra of Ca-Asp100 (top) and Ca-H₂O samples (bottom).

Figure S8. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for Ca²⁺ complexed with water molecules. Characteristic distances around Ca²⁺ are shown.

Figure S9. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for Ca²⁺ in interaction with EDTA and water molecules. Characteristic distances around Ca²⁺ are shown.

Figure S10. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for L-Asp in interaction through C_1OO^- with Ca^{2+} . Characteristic distances around Ca^{2+} are shown.

Figure S11. Low energy configurations obtained by DFT and corresponding calculated ⁴³Ca quadrupolar parameters for L-Asp in interaction through C_4OO^- with Ca^{2+} . Characteristic distances around Ca^{2+} are shown.