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Abstract

The need to Fourier transform data sets with irregular sampling is shared by various domains
of science. This is the case for example in astronomy or sismology. Iterative methods have been
developed that allow to reach approximate solutions. Here an exact solution to the problem for
band-limited periodic signals is presented. The exact spectrum can be deduced from the spectrum
of the non-equispaced data through the inversion of a Toeplitz matrix. The result applies to data of
any dimension. This method also provides an excellent approximation for non-periodic band-limit
signals. The method allows to reach very high dynamic ranges (1013 with double-float precision)
which depend on the regularity of the samples.
Keywords: Fourier Transform, Irregular sampling, Nonequispaced data, Band-limited functions,
Toeplitz matrices

1 Introduction

The issue of nonuniform sampling is quite common in various fields of science or engineering. It arises
for example in the study of variable astronomical sources because they are not observable all year round
or their observability may be impaired by adverse weather conditions. It is also a common problem
in aperture synthesis with non-uniformly filled spatial frequency planes. Other examples can be found
in sismology, tomography, . . . . In some cases, the scientific measurement is derived from the Fourier
spectrum. Several issues are the consequence of the nonuniform sampling of the signal. First, the
efficient algorithms to compute discrete Fourier spectra as the Fast Fourier Transform cannot be used.
Second, spurious features are produced in the reconstructed spectrum that lead to a reduction of signal-
to-noise ratio and plague the detection of faint signals. Solutions have been proposed to efficiently and
directly compute the spectrum of non-equispaced data [1]. The reconstruction of spectra is equivalent
to the reconstruction of the signal as one is deduced from the other by a Fourier transform. Iterative
algorithms are known to converge to the exact signal in the band-limited case with excellent accuracy
[2]. Other methods are based on linear combinations of interpolating functions without the need for
iterations [3]. These methods can be exact in the case of regular sampling or for periodic functions or
for recurrent irregular sampling following the Generalized Sampling Expansion scheme for the latter [4].
But extra informations (this is the case for the Multi-Channel Interpolation method) or a high sampling
rate are required to reach high accuracies in the general case.

Here we propose a direct method to recover the spectrum of a band-limited function. The method
is exact in the case of a periodic and band-limited signal and is an approximation if the function is not
periodic. It was first skectched in 1996 [5] and is developed in more details here.

The paper is organized as follows. The formalism of irregular sampling and the link between the
spectrum of the nonequispaced data and the Fourier spectrum are established in Section 2. The exact
solution of the Fourier transform of nonuniform samples is presented in Section 3 for periodic band-limited
functions while the approximated solution for non-periodic but band-limited functions is discussed in
Section 4. The complexity and accuracy of the algorithm is detailed in Section 5. The method is
compared with other algorithms in Section 6. Last, the extension of the method to dimensions higher
than 1 is derived in Section 7 before conclusions are given in Section 8.
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2 Irregular sampling

2.1 Definitions

S is a band-limited signal and depends on the variable x defined over R. S takes values in C and it is
assumed that S ∈ L2(R). Its spectrum is noted Ŝ and is the Fourier transform of S where we choose
the form of the Fourier transform where the variable conjugated to x is the associated frequency σ. If x
is time then σ is the temporal frequency expressed in Hertz. If x is the optical path difference then σ is
the wavenumber classically expressed in cm−1 by spectroscopists. Ŝ writes:

Ŝ(σ) =

∫ +∞

−∞
S(x) e−2iπσx dx (1)

Ŝ takes values in C and is zero outside the interval [−fmax,+fmax]. We assume S is sampled over the
grid Γ = {x0, . . . , xN−1} with x0 < . . . < xN−1. The sampled version of S is noted SΓ. It is the sum of
Dirac distributions centered on the points of the grid. In this paper, distributions are noted as functions
rather than as linear forms over the space of functions. Following this principle, SΓ writes:

SΓ(x) =

N−1∑
k=0

S(xk) δ(x− xk) (2)

The Fourier transform of SΓ writes:

ŜΓ(σ) =

N−1∑
k=0

S(xk) e
−2iπσxk (3)

Let us define the average sampling interval δx:

δx =
xN−1 − x0

N − 1
(4)

We associate the width ∆x to the sampling grid Γ:

∆x = N δx (5)

We define a regularly sampled version SReg of S using the grid of equispaced samples Reg = {x0, x0 +
δx, . . . , x0 + (N − 1)δx}. SΓ and SReg share the same first and last samples, the same sampling interval
and the same width.

Remark 1: case of periodic signals. In case the underlying function of signal S is P−periodic it is
necessary to choose ∆x as a multiple of P so that the exact inversion of Section 3 holds. We then simply
choose ∆x = P × (xN−1 − x0)//P and define δx = ∆x

N .

Remark 2: case of decimated samples. In case the sampled distribution is a decimated version of equi-
spaced samples, the regular samples are the undecimated samples limited to N samples. In this case
δx = δx. As for regular sampling, ∆x must be strictly larger than (xN−1 − x0) to allow the periodic
replication of the samples to sample the spectrum (see equation (19)). Let us define the door function

Π of width ∆x as the indicator function of the interval [x0 − δx
2 , x0 +∆x− δx

2 ]:

Π(x) =

{
1 if x ∈ [x0 − δx

2 , x0 +∆x− δx
2 ]

0 otherwise
(6)

Last, XP is the Dirac comb of step P , with P > 0 :

XP (x) =
∑
n∈Z

δ(x− nP ) (7)

whose Fourier Transform writes:

X̂P (σ) =
1

P

∑
n∈Z

δ(σ − n

P
) =

1

P
X 1

P
(σ) (8)

2
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2.2 The spectrum of the sampled signal

Let us define the sampling distribution GΓ derived from the grid Γ:

GΓ(x) =
∑
n∈Z

δ(x− x̃n) (9)

where:

x̃n =

{
xn for n ∈ [0, .., N − 1]

xrn + (n− rn) δx otherwise
(10)

with rn the remainder of the division of n by N . We call ŜΓ the signal S sampled over the extended
grid {x̃n}n∈Z. The extended grid is the combination of N interleaved regular grids each of step ∆x
which constitute a scheme of recurrent irregular sampling. We know from the generalized sampling the-
orem of Papoulis [4] that S can be reconstructed from the samples ŜΓ if ∆x

N ⩽ 1
2fmax

which is equivalent

to δx has to check the Nyquist sampling criterion as in the classical case of regular sampling: δx ⩽ 1
2fmax

.

The extended grid infinite sum can be reorganized into a finite sum of interleaved infinite grids of step
∆x:

GΓ(x) =

N−1∑
k=0

[∑
n∈Z

δ(x− xk − n∆x)

]
(11)

This expression can be simplified using the Dirac comb:

GΓ(x) =

N−1∑
k=0

X∆x(x− xk) (12)

The sampling grid GΓ is therefore a finite sum of Dirac combs whose Fourier transforms are defined. It is
the underlying principle of the method: connect the irregular sampling grid to a set of periodic sampling
grids. The Fourier transform of GΓ writes:

ĜΓ(σ) =
1

∆x

[
N−1∑
k=0

e−2iπσxk

]
Xδσ(σ) (13)

with:
∆xδσ = 1 (14)

We now define the function CΓ as:

CΓ(σ) =
1

∆x

N−1∑
k=0

e−2iπσxk (15)

The Fourier transform of the sampling function G can be rewritten:

ĜΓ(σ) =
∑
n∈Z

CΓ(nδσ)δ(σ − nδσ) (16)

The sampled signal SΓ can be written using the sampling function GΓ:

SΓ(x) = S(x)Π(x)GΓ(x) (17)

We note S = SΠ, the signal S multiplied by the door function Π, the truncated version of S over the
width ∆x. Though S is a band-limited function, S is not band-limited anymore in the general case. Its

sprectrum is the convolution of Ŝ by a sinc function sin(πσ∆x)
πσ∆x of width 1

∆x . The spectrum of the signal

sampled with the grid Γ is the convolution of Ŝ by the Fourier transform of the sampling function GΓ:

ŜΓ(σ) = Ŝ (σ) ⋆ ĜΓ(σ) =
∑
n∈Z

CΓ(σn)Ŝ (σ − σn) (18)

where σn = nδσ for n ∈ Z. Defining N0 = −N
2 if N is even and −N−1

2 if N is odd, we call

X̂ = [X̂(σN0
), . . . , X̂(σN0+N−1)] the vector associated to the spectrum X̂. The effect of irregular sam-

pling is to introduce a linear relation between the frequency components of the spectrum. The goal of

3
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the paper is to recover the spectrum of S sampled over a regular grid, ŜReg, from ŜΓ. The periodic and
non-periodic cases are respectively addressed in Section 3 and in Section 4.

Lemma: relation between the spectrum of the irregular samples and the spectrum of the regularly sampled
signal. There exists a matrix A such that: ŜΓ = A.ŜReg+R, where the elements of R depend on samples

of the spectrum of the truncated signal Ŝ (σn) for n outside the interval [N0, . . . , N0 +N − 1].

Proof
The sampling of the spectrum of equation (18) with the sampling interval δσ defined in equation (14)
is equivalent to replicating the sampled function of equation (17) with the period ∆x leading to the
∆x-periodic distribution:

SΓ(x) ⋆∆xX∆x(x) (19)

The spectrum of the above signal now equates the sampled version of the spectrum of the irregularly
sampled S of equation (18) with sampling interval δσ:

ŜΓ(σn) =
∑
k∈Z

CΓ(σn−k)Ŝ (σk) (20)

It is ∆σ-periodic with ∆σ = Nδσ. We rewrite equation (20) by grouping terms every multiples of N :

ŜΓ(σn) =
∑
k∈Z

CΓ(σn−k)Ŝ (σk)

=
∑
k∈Z

N0+N−1∑
p=N0

CΓ(σn−kN−p)Ŝ (σkN+p)

 (21)

The samples ŜReg(σn) of the spectrum of the regularly sampled signal S write:

ŜReg(σn) = N∆x−1
∑
k∈Z

Ŝ (σkN+n)

= N∆x−1Ŝ (σn) +N∆x−1
∑
k∈Z⋆

Ŝ (σkN+n)

= N∆x−1Ŝ (σn) + EReg(σn)

(22)

In this case, CReg(σn) = N∆x−1 if n is a multiple of N and 0 otherwise. The definition of EReg(σn)
in the above expression will become obvious when discussing the case of periodic signals sampled over
a multiple of the period. At this stage it accounts for the leakage of frequencies other than σn. In the
general case, ŜΓ writes likewise:

ŜΓ(σn) =

N0+N−1∑
p=N0

CΓ(σn−p)Ŝ (σp) +

N0+N−1∑
p=N0

(∑
k∈Z⋆

CΓ(σn−kN−p)Ŝ (σkN+p)

)

=

N0+N−1∑
p=N0

CΓ(σn−p)Ŝ (σp) + EΓ(σn)

(23)

where EΓ(σn) is the leakage in [N0δσ, . . . , (N0 +N − 1)δσ] from frequency samples outside this interval.
Substituting S in equation (23) using equation (22) and switching to the vectorial form yields:

ŜΓ = N−1∆x CΓ.
[
ŜReg − EReg

]
+ EΓ (24)

where CΓ is the Toeplitz matrix:

CΓ =


CΓ,0 CΓ,−1 . . . CΓ,−N+1

CΓ,1 CΓ,0 . . . CΓ,−N+2

...
...

. . .
...

CΓ,N−1 CΓ,N−2 . . . CΓ,0

 (25)

4
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whose coefficients are the values of the function CΓ sampled with steps of δσ:

CΓ,k = CΓ(σk) = ∆x−1
N−1∑
j=0

e−2iπkδσxj (26)

Hence the result and the proof of the lemma with A = N−1∆x CΓ and R = EΓ −N−1∆x CΓ.EReg.

This important lemma now leads to a method to retrieve the spectrum of the regularly sampled signal
from the spectrum of the irregularly sampled signal.

Theorem 1: inversion formula to recover the spectrum of the regularly sampled signal. The vector of
the spectrum of the regularly sampled signal can be obtained from the spectrum of the irregular samples
through the formula: ŜReg = N∆x−1 C−1

Γ ŜΓ + Eth with Eth = EReg −N∆x−1 C−1
Γ EΓ.

Proof
Given the result of the lemma, the proof consists in proving that the Toeplitz matrix is invertible. The
matrix CΓ can be factored into the product of a Vandermonde matrix VΓ by its conjugate transpose:

CΓ = ∆x−1 VΓ.V⋆
Γ (27)

with:

VΓ =


1 1 . . . 1
e−2iπδσx0 e−2iπδσx1 . . . e−2iπδσxN−1

...
...

. . .
...

e−2iπ(N−1)δσx0 e−2iπ(N−1)δσx1 . . . e−2iπ(N−1)δσxN−1

 (28)

whose determinant is equal to:

det(VΓ) =
∏

N−1⩾m>n⩾0

(e−2iπδσxm − e−2iπδσxn) (29)

yielding for the determinant of CΓ:

det(CΓ) = (∆x)−N
∏

N−1⩾m>n⩾0

|1− e2iπδσ(xm−xn)|2 (30)

Since for all N − 1 ⩾ m > n ⩾ 0, xm − xn < ∆x and δσ(xm − xn) < 1 by definition of ∆x and δσ, the
determinant of CΓ is non zero and equation (24) can be inverted yielding a method to recover the exact
spectrum of the regularly sampled signal S from the non-equispaced samples of SΓ through the relation:

ŜReg = N∆x−1 C−1
Γ ŜΓ + Eth (31)

with Eth = EReg −N∆x−1 C−1
Γ EΓ, thus proving theorem 1.

It is to be noted that in the particular case of regular sampling CReg = N∆x−1IN where IN is the

identity matrix of size N × N and Eth = 0, and therefore ŜReg = ŜΓ. The possibility to recover the
spectrum depends on the estimate of Eth. This is discussed in the next two sections in which the cases
of periodic and non-periodic signals are addressed.

3 Computation of the spectrum for periodic band-limited sig-
nals

In this section, S is periodic and we assume that ∆x is a multiple of the period.

Theorem 2: exact solution for the spectrum with non-equispaced data in the periodic band-limited case.
In the particular case of a periodic band-limited signal sampled over a multiple of the period with the

5
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Figure 1: Example of periodic band-limited signal: a mix of 4 frequencies (67, 100, 200 and 400 Hz)
with respective amplitudes 1, 2, 1, 1. (a) Equispaced (black dots) and non-equispaced samples (red dots)
plotted over theoretical signal; 1/8th of the temporal window is displayed here. The amplitude of the
sampling error in units of regular sampling interval is 2. (b) Amplitude of the spectrum ŜReg of the

signal with equispaced samples (green), amplitude of the direct DFT ŜΓ of the non-equispaced samples
(red) and amplitude of the spectrum ŜSol reconstructed with the method of this paper (blue-dashed line).
The condition number is 5.50 × 108. (c) Histogram of the normalized sampling errors. (d) Log of the
spectrum. The black line is the amplitude of the difference ŜSol − ŜReg.

average sampling interval δ̄x ⩽ 1
2fmax

, the spectrum of the regularly sampled signal is exactely deduced
from the spectrum of the irregularly sampled signal through the inverse of a Toeplitz matrix:

ŜSol = ŜReg = N∆x−1 C−1
Γ ŜΓ (32)

Proof
Given the result of theorem 1, proving theorem 2 is equivalent to showing that Eth = 0 in the particular
case of a periodic signal sampled over a multiple of the period. In this case, the samples of the discrete
Fourier transform of S are proportional to the samples of the discrete Fourier transform of S as there
is no frequency leakage [6]. S is therefore also band limited and its spectrum is equal to 0 outside the

interval [−fmax,+fmax], implying that Ŝ (σk) is zero for k outside the interval [N0, N0 + N − 1]. As a
consequence, the sum in equation (20) has a limited number of terms and writes:

ŜΓ(σn) =

N0+N−1∑
k=N0

CΓ(σn−k)Ŝ (σk) (33)

with EΓ(σn) = 0 for all n between N0 and N0 +N − 1. Likewise, in the regular sampling case and for n
in the same interval, equation (22) becomes:

ŜReg(σn) = N∆x−1Ŝ (σn) (34)

6
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with EReg(σn) = 0. For all n in the interval above we therefore have:

ŜΓ(σn) = N−1∆x

N0+N−1∑
k=N0

CΓ(σn−k)ŜReg(σk) (35)

and the column vector Eth is equal to 0, hence the result of theorem 2.

Remark 3: similar or identical results were found for the reconstruction of periodic functions from
non-uniform samples [3, 7].

Fig. 1 shows an example of a spectrum of a periodic signal ŜSol reconstructed with the method
presented in this paper. The theoretical function is the sum of four cosine functions whose frequencies
are harmonics of 100

3 Hz:

S(t) = cos

(
2πt

0.0025 s

)
+ cos

(
2πt

0.005 s

)
+ 2 cos

(
2πt

0.01 s

)
+ cos

(
2πt

0.015 s

)
(36)

The comparison with the spectrum of the regular grid samples ŜReg and with the result of the direct

Discrete Fourier Transform ŜΓ are also plotted. 1024 samples have been used between -0.72 and +0.72 s
(only the central 0.1 s is plotted). The irregular samples have been derived from the set of regular samples
by adding randomly distributed sampling errors between -2δx and +2δx, with δx the sampling interval
before the errors were added. The histogram of the normalized sampling errors is shown with sampling
errors in units of δx. Other than the method, one finding of this paper is that the condition number of
the Toeplitz matrix plays a critical role in the accuracy of the result (see 5). For this particular example
the condition number is 5.50×108. The condition number is dependent on the realization of the sampling
errors and is not constant for a given statistics of the errors. The condition number therefore varies for a
fixed distribution law. In the example presented here, the dynamic range of the reconstructed spectrum
is a few 107 compared to a few 10 with the direct Discrete Fourier Transform, hence an improvement of
the order of 106 in dynamic range with the method proposed in this paper.

4 Computation of the spectrum for non-periodic band-limited
signals

If S is band-limited but not periodic then S is not band-limited, whatever the length of the sampling
range. The exact spectrum cannot be deduced from the spectrum of the non-equispaced samples as
shown in equation (31). An approximated solution ŜSol can be obtained ignoring the error term and
directly using the result for the periodic case of theorem 2. Doing so, a theoretical error of Eth is made
on the spectral samples. The magnitude of the error Eth depends on the amount of frequency leakage
which depends on the properties of the truncated function. Leakage can be reduced by apodizing the
raw signal [6]. Some functions are naturally apodized and have very low leakage. An example is shown
in Fig. 2 which is equivalent to Fig. 1 but with the non-periodic function:

S(t) = cos

(
2πt

0, 005 s

)
× sinc

(
t

0, 023 s

)
(37)

where sinc (x) = sin(πx)/(πx). The spectrum of the untruncated signal S is a pure door function of width
44Hz centered on 200Hz. It is the intensity of an interferogram recorded with a Michelson interferometer
with a scanning mirror on a source with a finite and flat spectral bandwidth. The effect of leakage is
visible in the bottom right panel of Fig. 2 with wings showing up in the logarithmic scale. Leakage
has been reduced in this example by multiplying the sequence by a Hann window [8]. The use of the
Hann window also reduces the effect of ringing due to the sharp edges in the spectral domain in this
particular case. The difference between the spectrum of the truncated regularly sampled signal ŜReg

and the spectrum reconstructed with the method of this paper ŜSol is shown in black. Contrary to the
example of the periodic function, the direct Discrete Fourier Transform of the irregular samples ŜΓ gives
a very poor result with a dynamic range of order 2 while the dynamic range in ŜSol is of the order of a
few 106. The same statistics of the sampling error has been used as for the periodic function in Section 3

7
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Figure 2: Example of non-periodic band-limited function: a fringe pattern with 200Hz temporal fre-
quency and width 44Hz. (a) Equispaced (black dots) and non-equispaced samples (red dots) plotted
over theoretical signal. The amplitude of the sampling error in units of regular sampling interval is 2. (b)
Amplitude of the spectrum ŜReg of the signal with equispaced samples (green), amplitude of the direct

DFT ŜΓ of the non-equispaced samples (red) and amplitude of the spectrum ŜSol reconstructed with
the method of this paper (blue-dashed line). The condition number is 4.43× 1010. (c) Histogram of the
normalized sampling errors. (d) Log of the spectrum. The black line is the amplitude of the difference
ŜSol − ŜReg.

with a condition number for the particular realization presented here of 4.43× 1010. The example shows
how accurate the method can be, even for non-periodic band-limited functions. We have tried another
non-periodic function and applied the method to the Ricker wavelet as in [9]:

S(t) = exp

(
−
(
πt

1 s

)2
)

∗

(
1− 2

(
πt

1 s

)2
)

(38)

The Ricker function is naturally apodized because of the Gaussian envelope and no filtering with the
Hann window or an equivalent was necessary. The results obtained with this particular function are
discussed in Section 5.

5 Complexity and accuracy of the algorithm

The computation of the spectra has been coded in python. The solve toeplitz routine from the linear
algebra scipy.linalg has been used to solve for ŜSol in equation (32). It is based on the Levinson-
Durbin recursion and runs in O(N2) [10]. In the case of positive-definite Toeplitz matrixes as here,
the algorithm can be optimized to run in O(N log2 N) [11] and even in O(N logN) [12] with the the
preconditioned conjugate gradient method.
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Figure 3: Plot of the normalized errors on the reconstructed spectra vs. the condition number of the
Toeplitz matrix for various realizations of sampling grids for the periodic signal of Section 3 (green) and
the non-periodic signals of Section 4 (interferogram in orange, interferogram with Hann windowing in
blue and Ricker wavelet in yellow). The errors have been normalized by the maximum of the spectrum
amplitude to compare the impact of relative machine rounding errors on the reconstructed spectra. The
continuous lines are the errors ∥ŜSol − ŜReg∥ normalized by the maximum of |ŜReg|. The red-dotted line
is a model of the trend of the error due to machine precision as explained in Section 5. The dotted
lines with open circles are the theoretical errors Eth of equation (31). Note that the computation of the
theoretical errors is also subject to machine precision beyond condition number 1015.

The errors on the reconstructed spectra ∥ŜSol − ŜReg∥ normalized by the maximum of |ŜReg|, where ∥x∥
is the 2-norm or Euclidian norm of x, are plotted in Fig. 3. It is remarkable that the various signals
lead to similar behaviors. First of all, above a certain threshold, the errors scale with the condition
number. Below this threshold, the errors tend to stick to a minimum floor. This can be understood from
equation (31) where the first term is the exact solution for periodic signals and the approximate solution
for non-periodic signals while the second term Eth is the theoretical error for non-periodic functions,
equal to zero in the periodic case. At low condition number, the second term dominates while at high
condition number, the error on the first term due to machine rounding errors prevails.
For the periodic function, and in absence of rounding errors, the solution is exact as Eth = 0 and
ŜSol = ŜReg = N∆x−1 C−1

Γ ŜΓ. Limited machine precision however introduces rounding errors that
propagate in the computation of the solution even at low condition number with errors in computing
C−1
Γ and ŜΓ. This leads to the minimum relative error of order 1e-13 in Fig. 3 at very low condition

number. The theoretical error on the Ricker wavelet reconstructed spectrum (yellow dashed line and
open yellow circles in Fig. 3) being very close to this minimum error, both Ricker and periodic function
error curves have the same behavior at low condition number and the effect of the theoretical error is
not visible on the graph in this particular case. At high condition number, the error is dominated by the
ill-conditioned nature of the inversion of CΓ. An upper bound is obtained by applying the definition of
the condition number:

∥∆ŜSol∥
∥ŜSol∥

⩽ κ(CΓ)
∥∆ŜΓ∥
∥ŜΓ∥

(39)

From computation, we have numerically checked that ∥ŜSol∥ ≈ ∥ŜΓ∥ which implies that:

∥∆ŜSol∥ ⪅ κ(CΓ)∥∆ŜΓ∥ (40)

An accurate assessment of the propagation of the rounding errors goes beyond the scope of this paper.
The error analysis is limited here to get a trend. The machine error is assigned to macroscopic ensembles
of operations, not reaching the level of each individual operations of the computation of the spectra.
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The numerical error on ŜΓ is equal to ∥∆ŜΓ∥ =
√∑N−1

i=0 |∆ŜΓ,i|2. Each ŜΓ,i is the sum of N terms

leading to a real and an imaginary part with associated errors ∆Re(ŜΓ,i) and ∆Im(ŜΓ,i), respectively.
Each sample S(xk) contributes a rounding error proportional to the relative error ϵm in the computation
of the Discrete Fourier Transform ŜΓ,i. In the case of the periodic signal, the samples S(xk) can be
considered of equal strength of order 1 (it is not the case for the interferogram and the Ricker wavelet
which are localized close to t = 0 s with respectively ≃ 128 and 40 samples effectively building the error).
In the case of the periodic function the variance of rounding errors is therefore:

var(∆Re(ŜΓ,i)) = var(∆Im(ŜΓ,i)) = O(N)ϵ2m (41)

Assuming that the statistics of the rounding errors are Gaussian, then ∥∆ŜSol∥2 is a χ2 with 2N degrees

of freedom with average value 2N ×O(N)ϵ2m. Since ⟨∥∆ŜΓ∥⟩ ≤
√
⟨∥∆ŜΓ∥2⟩ we therefore get:

∥∆ŜSol∥ ⪅ κ(CΓ)O(N)× ϵm (42)

In the case of the periodic function, the normalization of the spectrum leads to dividing by the number
of samples N . Hence the approximation of the upper bound for the relative error which is proportional
to 2−53×κ(CΓ) for double-precision floats. This model is plotted on Fig. 3 as a red-dotted line and nicely
reproduces the trend of the relative error due to machine precision at high condition number.
For non-periodic functions, the minimum error is set by the theoretical error Eth of equation (31). The
theoretical error is plotted with open circles and dotted lines on Fig. 3. It matches quite well the
difference between the reconstructed spectrum and the spectrum directly obtained with regular samples
for the lowest range of condition numbers. The transition to the error set by the machine precision
clearly depends on the amount of apodization in the function. The error for the interferogram without
Hann filtering gets limited by machine precision only beyond a condition number of 1014 while it is as
early as 109 with a Hann window, showing the interest of this filtering to increase the accuracy of the
method. As seen above, the Ricker wavelet is naturally more apodized due to the Gaussian component
with a much lower theoretical error and a transition at 103 if rounding errors would not dominate with
double-precision floats at low condition number. The computation of the theoretical error Eth is also
prone to rounding errors which explains why the trend beyond 1015 gets parallel to the red dotted line
in the Log-Log graph. All cut-off condition numbers would be shifted to higher values with increased
machine precision (by ×2048 for extended precision and by ×260 for quadruple precision). In the latter
case, none of the examples shown here would be affected by machine precision with condition numbers
limited to 1016 and Hann filtering would allow to reach dynamic ranges as high as 107 with the method.
An alternative method to the direct inversion of the Toeplitz system is worth investigating though to
improve the accuracy of the method but goes beyond the scope of this paper.

6 Comparison with other methods

The performance of the method presented in this paper can be compared to the other methods cited
in the introduction in Section 1. The iterative methods allow to reconstruct the samples/spectra with
accuracies comparable to what is achieved in this paper. The multichannel method requires additional
data like samples of the derivative of the signal to achieve accurate reconstructions. Some iterative
methods are designed for some specific cases of non-regular sampling like in [13] for periodic nonuniform
sampling. In practice, only the iterative methods based or derived from the iterative methods by means of
the frame operators of [14] that reconstruct the signal from the samples of the signal only and are applied
to the general case of nonuniform sampling can be compared to the results of this paper. Comparisons
of iteratives methods are discussed for example in [2, 7]. All methods require the maximum interval
between two samples to be less than the Nyquist interval to get an estimate of the rate of convergence
and therefore to ensure convergence. It is not the case of the method of this paper for which the
consequence of gaps larger than the Nyquist interval is to increase the condition number of the Toeplitz
matrix and reduce precision but not necessarily to prevent reconstruction. The adaptive weights method
of [2] and the improved versions with acceleration by the conjugated gradients method allow to reach
relative accuracies of 10−13 in 20-40 iterations depending on the method [7]. It would be necessary to
compute the condition number of the Toeplitz matrix for the particular example of the sampled signal
in this paper to make a direct comparison. However, one may take the two cases of Fig. 1 and Fig. 2 of
the present paper for which accuracies of order 10−7 and 10−5 are respectively achieved with condition
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numbers of 5.5 × 108 and 4.4 × 1010. Such accuracies would require of the order of 12 and 8 iterations
with the best algorithm (PACT, see below) according to Fig. 3 of [7]. Although the convergence rate
of the iterative algorithms cannot be predicted when the maximum gap exceeds the Nyquist interval, [7]
show that the adaptive weight method with congugated gradients (ACT) and the version upgraded with
the use of a preconditioner (PACT) can be successful to reconstruct signals in this case though, at least
in the instance presented in Fig. 5 of their paper. A similar case could be approached with the statistics
of the samples for the interferogram of Section 4 with about 10% of the gaps between samples being
larger than the Nyquist interval. For this particular realization of the samples, this yielded a condition
number of 7.3× 1012 and a relative error for the reconstructed spectrum of the order of 10−3. According
to Fig. 5 of their paper, such precision requires more than 230 iterations with the ACT method and is
reached in 130 iterations with the PACT method.
As far as complexity is concerned, as the iterative algorithms also require to solve a Toeplitz system, their
complexity is therefore the same as in this paper except that they need several iterations to converge
while a single step is required here. But their accuracy is not limited by the theoretical error Eth of
equation (31) and signals can be a priori reconstructed with an accuracy limited by machine precision
only. One may therefore contemplate to combine the two methods by performing the first iteration with
the method presented in this paper and iterating from there on with the iterative methods. Depending
on the characteristics of the signal and on the sampling sequence, it may reduce the number of steps by
a significant factor. A more comprehensive comparison of the methods is necessary at this stage to reach
further conclusions.

7 Generalization to higher dimensions

The method can be easily generalized to any dimension d ⩾ 1. Sampling points are now vectors x =
[x1, · · · , xd] of Rd (vectors are in bold face). The grid of samples writes Γ = {x0, . . . ,xNd−1} where we
choose to sort the points in lexicographic order. For the sake of simplicity, we have assumed that the
number of points is Nd with N points in average per dimension. The sampled function writes:

SΓ(x) =

Nd−1∑
i=0

S(xi)δ(x− xi) (43)

and the spectrum:

ŜΓ(σ) =

Nd−1∑
i=0

S(xi)e
−2iπσ.xi (44)

where σ = [σ1, · · · , σd] is the d-frequency conjugated to x. The average sampling interval is also a
d-vector of components:

δxi =
maxm,n |xi,m − xi,n|

N − 1
(45)

with the sampling width ∆x = [Nδx1, · · · , Nδxd]. As in dimension 1, the spectral sampling interval
is: δσ = [(∆x1)

−1, · · · , (∆xd)
−1]. With these notations, all relations derived in dimension 1 can be

generalized to any dimension d by replacing the product of x by the associated frequency σ by a scalar
product. The grid function becomes:

GΓ(x) =

Nd−1∑
i=0

∑
n∈Zd

δ(x− xi − n •∆x)

 (46)

where n is a d-index of components [n1, n2, ..., nd] and A •B is the Hadamard product of vectors A and
B. The Fourier transform of the grid distribution is equal to:

ĜΓ(σ) = (∆x1 . . .∆xd)
−1

Nd−1∑
i=0

e−2iπσ.xi

Xδσ1...δσd
(σ1, . . . , σd) (47)

with Xδσ1...δσd
the d-dimension Dirac Comb of steps δσ1 . . . δσd. Hence the CΓ function:

CΓ(σ) = (∆x1 . . .∆xd)
−1

Nd−1∑
i=0

e−2iπσ.xi

 (48)
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and the spectrum of the grid distribution:

ĜΓ(σ) =

+∞∑
n1,n2,...,nd=−∞

CΓ(n • δσ)δ(σ − n • δσ) (49)

The sampled signal writes:

SΓ(x) = SΓ(x).Π(x)GΓ(x) = S (x)GΓ(x) (50)

The sampled spectrum writes:

ŜΓ(n • δσ) = ŜΓ(σn) =
∑
k∈Zd

CΓ(σn−k)Ŝ (σk) (51)

where k is a d-index. It is assumed that the signal is at least Nyquist sampled, ie δxi ⩽ 1
2fmax,i

for all

i = 1, . . . , d. The components of the sampled frequencies are in the range [N0δσ, . . . , (N0 +N − 1)δσ].
Like in equations (22) and (23), the above expression can be split in two parts, yielding for the spectrum
on a regular grid:

ŜReg(σn) = Nd(∆x1 · · ·∆xd)
−1Ŝ (σn) +Nd(∆x1 · · ·∆xd)

−1
∑

k∈Z⋆d

Ŝ (σNk+n)

= Nd(∆x1 · · ·∆xd)
−1Ŝ (σn) + EReg(σn)

(52)

and for an irregular grid:

ŜΓ(σn) =

N0+N−1∑
p1···pd=N0

CΓ(σn−p)Ŝ (σp) +

N0+N−1∑
p1···pd=N0

∑
k∈Z⋆d

CΓ(σn−Nk−p)Ŝ (σNk+p)

=

N0+N−1∑
p1···pd=N0

CΓ(σn−p)Ŝ (σp) + EΓ(σn)

(53)

One recognizes in the above formula a linear relation between the regularly sampled spectrum, the
spectrum of the samples on the grid Γ and an error term. One can therefore write the equivalent of
equation (31) and define the solution spectrum as:

ŜSol = Nd(∆x1 · · ·∆xd)
−1 C−1

Γ ŜΓ (54)

the theoretical error being Eth = EReg−Nd(∆x1 · · ·∆xd)
−1 C−1

Γ EΓ. Sorting the d-indices in lexicographic
order, the Toeplitz matrix CΓ writes:

CΓ =


CΓ,[0,··· ,0] CΓ,[−1,0,··· ,0] . . . CΓ,[−N+1,··· ,−N+1]

CΓ,1,[0,··· ,0] CΓ,[0,··· ,0] . . . CΓ,[−N+2,−N+1,··· ,−N+1]

...
...

. . .
...

CΓ,[N−1,··· ,N−1] CΓ,[N−2,N−1,··· ,N−1] . . . CΓ,[0,··· ,0]

 (55)

In the particular case of regular sampling CReg = Nd(∆x1 · · ·∆xd)
−1IdN where IdN is the identity matrix

of size Nd × Nd and Eth = 0. Similarly to the 1D case, the solution is exact for periodic functions
sampled over an integer number of periods and the theoretical error Eth = 0. All conclusions reached in
the 1D case in the previous sections are applicable to any dimension d.

8 Conclusion

A method has been presented in this paper to compute the discrete spectrum of a signal from N non-
equispaced samples. In the case of a periodic function sampled over a multiple of the period and respecting
the Nyquist criterion, the discrete spectrum is linearly linked to the direct DFT of the samples by an
N ×N Toeplitz matrix thereby providing an exact solution to the problem of computing the spectrum.
The Toeplitz matrix is positive-definite and can be inverted in O(N logN) operations. This same method
can be applied to non-periodic signals with an excellent approximation whose theoretical error is derived.
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The accuracy can be improved by a factor 103 by filtering the signal with a Hann window in the example
chosen in the paper. The inversion of the Toeplitz matrix is ill-conditioned leading to increasing errors
with increasing irregularity of the samples. It has been shown that the error on the reconstructed
spectrum is limited by machine precision beyond a certain threshold of condition number which depends
on the nature of the signal. Spectra can be reconstructed with dynamic ranges as high as 1013 with
double-float precision. The method has been compared to iterative methods. The complexity is similar
albeit with a single iteration. High up to very high relative accuracies for the reconstructed spectrum can
be reached in a single step, but iterative methods may reach higher accuracies as they are not limited by
the theoretical error derived in this paper for non-periodic signals. If higher precisions are necessary, this
method could be used as the first step of iterative methods to speed up convergence. Last the method
has been extended to any dimension d and amounts to inverting an Nd × Nd Toeplitz matrix. The
method can in particular be applied to images.
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