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Historically, the resolution of optical imaging systems was dictated by diffraction, and the Rayleigh criterion was long
considered an unsurpassable limit. In superresolution microscopy, this limit is overcome by manipulating the emission
properties of the object. However, in passive imaging, when sources are uncontrolled, reaching sub-Rayleigh resolu-
tion remains a challenge. Here, we implement a quantum-metrology-inspired approach for estimating the separation
between two incoherent sources, achieving a sensitivity five orders of magnitude beyond the Rayleigh limit. Using a
spatial mode demultiplexer, we examine scenes with bright and faint sources, through intensity measurements in the
Hermite–Gauss basis. Analyzing sensitivity and accuracy over an extensive range of separations, we demonstrate the
remarkable effectiveness of demultiplexing for sub-Rayleigh separation estimation. These results effectively render
the Rayleigh limit obsolete for passive imaging. © 2024 Optica Publishing Group under the terms of the Optica Open Access

Publishing Agreement

https://doi.org/10.1364/OPTICA.500039

1. INTRODUCTION

The sensitivity and resolution of optical imaging systems play
a crucial role in numerous fields ranging from microscopy to
astronomy [1–5]. The core challenge, often used as a performance
benchmark, is how precisely the separation between two incoher-
ent point sources can be resolved. This key problem dates back to
the late 19th century: the technological advances in microscopy
and astronomy enabled scientists to observe objects at higher
magnifications and with unprecedented levels of detail, but limited
by diffraction. Understanding the fundamental principles that
govern the behavior of light was essential to improve the resolution
and accuracy of instruments. Thus, some of the leading optical
physicists of the time turned their attention to this problem: Abbe
[6], Rayleigh [7], and later Sparrow [8] proposed criteria based on
visual benchmarks and diffraction properties of light. We know
today that diffraction alone does not set a fundamental limit, but
combined with detector characteristics and noise sources defines
practical boundaries [9]. Super-resolution techniques that cir-
cumvent the diffraction limit have emerged over the last decades
[10–14]. However, these domain-specific techniques are hitherto
limited to certain types of microscopy. They require either intricate
control over the light source [10,12] or manipulations of the illu-
minated sample [11,13]. Thus, these techniques are incompatible
with passive imaging, where one does not control the properties of
the light incoming from the scene to be imaged.

Passive imaging with spatially resolved intensity measurement,
a strategy known as direct imaging (DI) that makes use of high-
performance cameras, provides only a limited improvement and
prevents substantial advancement beyond the limit imposed by
the Rayleigh criterion [15]. However, recently, Tsang et al. [16]
approached the historical problem of estimating the separation
between two incoherent point sources by adopting the frame-
work of quantum metrology. They demonstrated that the use of
spatial-mode demultiplexing (SPADE) combined with intensity
measurements is optimal, in the sense that it saturates the ultimate
limit imposed by the laws of physics—the quantum Cramér–Rao
bound [17–19]. SPADE provides a scaling advantage for the mini-
mal resolvable distance compared with DI in an ideal scenario. This
advantage is preserved in the presence of experimental noise even
if the scaling is degraded [20–23]. The advantages provided by this
metrology-inspired approach have been extended to optical imag-
ing [24,25] and other related problems such as discrimination tasks
[26,27] and multiparameter estimation [28–30], also including
more general photon statistics [31,32], as well as entangled photon
pairs [33], a context distinct from the setting under investigation in
this study.

Early experiments used interferometric schemes to implement
a simplified version of the demultiplexing approach [34–41],
emulating the incoherence of the sources and restricting the esti-
mation to short separations by accessing only two modes. Recently,
multi-plane light conversion [42] has emerged as a promising tech-
nique for estimating separation, enabling a multimodal approach
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Fig. 1. Spatial-mode demultiplexing for separation estimation.
SPADE consists of decomposing the incident light over the Hermite–
Gaussian mode basis. Measuring the intensity corresponding to each
mode was demonstrated to be an optimal measurement for transverse
separation estimation. It gives a significant advantage with a gain of some
orders of magnitude, compared to direct imaging, on the sensitivity of
the estimation of close incoherent sources imaged through a diffraction-
limited optical system. The numbers presented in this figure are typical
results obtained with our experimental setup, where d is the transverse
separation of two beams in the image plane, and w0 is the waist of the
beams in the same plane.

with the potential to reach the ultimate sensitivity at any separa-
tion. Two recent experiments explored this approach in different
regimes: Boucher et al. [43] with equal-brightness sources and
Santamaria et al. [44] with a strong brightness imbalance. They
demonstrated that this technique is potentially efficient, but did
not achieve an ultra-sensitive separation estimation.

Here, we implement separation estimation of two incoherent
equally bright sources using spatial-mode demultiplexing over five
spatial modes, combined with intensity measurements (see Fig.
1). For bright sources we directly measure a sensitivity up to five
orders of magnitude beyond the Rayleigh criterion (in practice
20 nm sensitivity with 1 µm accuracy for a 1 mm beam size). For
faint sources, we show performances unreachable with even ideal
direct imaging (infinite resolution camera, no noise, equivalent
losses) and demonstrate 20µm precision for a 1 mm beam size and
approximately 200 measured photons in the selected mode. Our
experiment is the first practical demonstration of passive imaging
going significantly beyond the Rayleigh limit, using a simple setup
adaptable to standard passive imaging systems and with high-speed
performance.

2. EXPERIMENTAL SETUP

The experimental setup is detailed in Fig. 2. The spatial-mode
demultiplexing system is a multi-plane light converter (MPLC,
Proteus-C from Cailabs). It decomposes an input light beam on
the Hermite–Gaussian (HG) mode basis, each mode being sub-
sequently coupled to a single-mode fiber. It allows for intensity
measurements on several HG modes simultaneously. We use five
MPLC outputs (out of 10) corresponding to the modes HG00,
HG01, HG10, HG02, and HG20. At the detection stage we use
either photodiodes or single-photon avalanche-photodiodes
depending on the input light flux.

Two incoherent optical sources are generated as follows: the
light from a single fibered-telecom CW laser is split into two paths
and goes through independent electro-optical modulators that
apply random phases with high frequencies (see Supplement 1).
The two incoherent guided modes are free-space coupled by col-
limators and combined on a beam splitter, thus mimicking the

Fig. 2. Experimental setup. The two incoherent sources are generated
from one continuous-wave fibered laser. The light is split into two paths
that are modulated independently with two phase modulators (PM). The
beams are then coupled into free space with collimators (CL) fixed either
on a translation stage (TS) or on a motorized translation stage (MTS),
which are used to set the separation between the two beams. The waist
at the output of the collimators is 1.135 mm. The multiplexed beam
is finally coupled into the multi-plane light converter (MPLC), whose
intrinsic waist is around 320 µm, and the optical powers corresponding
to HG modes (HG00, HG01, HG10, HG02, HG20) are measured with
photodetectors (PD00, PD01 . . .). The reference separation is estimated
by determining the position of each beam on a quadrant detector (QD),
when the other source is turned off. An external photodiode (PD) is used
for normalization in the high-flux regime.

images of two point sources separated by a set separation. They are
mounted on independent translation stages so that the transverse
separation between the two beams is adjustable. The two beams
are Gaussian with similar sizes given by a waist of w0 ≈ 1.135 mm.
The combined beam is imaged at the input of the MPLC, and
mode-matched to its waist w1 ≈ 320 µm. A photodiode mon-
itors the power stability, and half-wave plates combined with a
polarizing beam splitter allow to balance the brightness of the two
sources.

The measurement device is calibrated using only one source,
with a position reference that is a quadrant detector in our case.
Note that for single-source-position estimation the quadrant
detector allows for close-to-Cramér–Rao-bound-limited esti-
mation, and is thus a trustable reference [45]. The single beam
is aligned and centered on the MPLC using the five HG modes
intensities. Usage of all these modes, delivering information on
both the centroid and mode-matching [46], is critical for the
robustness and repeatability of the procedure. To proceed with
calibration, the beam is translated in discrete steps whose position
is determined with the quadrant detector (see Supplement 1), and
the HG01-mode output intensity is measured. This mode carries
all the information necessary to estimate small transverse displace-
ments (.w0) [47], which is the regime we consider in this paper.
Thanks to this precise procedure, this calibration can be done once
and for all, and used for every estimation. It becomes a specification
of the apparatus that does not need to be checked on a daily basis.

This calibration curve is used to perform parameter estimation.
In our case, we make the hypothesis that the scene is composed of
two identical incoherent sources and that the centroid is known.
This information is used to compute a “two-source” calibration
curve from the symmetrization of the apparatus calibration curve
(see Supplement 1). It allows to infer the separation between two
sources from the knowledge of the optical power in mode HG01.

https://doi.org/10.6084/m9.figshare.24546040
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Then both optical sources are turned on; the beams are aligned
and centered on the MPLC in an identical manner using the five
HG output intensities and the quadrant detector. We perform a
measurement as follows. First, the two beams are displaced sym-
metrically by a certain distance, keeping the centroid unchanged
(the symmetry is guaranteed by the quadrant photodiode, but
in this configuration, this photodiode is unable to deliver any
information on the separation—see Supplement 1). Then the
optical power at the output of the HG01 fiber is measured over a
specific integration time. Finally, the separation is estimated using
the “two-source” calibration curve. For each optical setting, this
measurement is repeated 200 times in order to evaluate the statisti-
cal error of the measurement (the estimated separation is then the
average of the 200 estimations, and the error on this value is given
by the statistical standard deviation).

We estimated several separations in two intensity regimes (3500
and 1013 detected photons per integration time).

3. LOW-FLUX REGIME

We first present our results for the separation estimation between
two faint sources, where the total incident power on the MPLC is
around 50 fW during an integration time of 100 ms (resulting in
3500 detected photons). In Fig. 3, we plot the estimated separation
as a function of the reference separation dref, for separations going
from 400 µm up to 860 µm. We see a perfect linear trend and
agreement between the measurement performed with the MPLC
and the reference separation (obtained by measuring independ-
ently the position of each source with the quadrant detector—see
Supplement 1).

Fig. 3. Low-flux measurements. The separation estimation is realized
with faint sources (3500 photons detected during 100 ms), using the
mean value of the measured intensity corresponding to HG01 and the
calibration curve. The estimated separations are plotted as a function of
the reference separations determined with the quadrant detector. Both
axes are presented with absolute values and values relative to the size
of the beam. Error bars due to statistical uncertainty on the reference
separation and the estimation, determined with 200 measurements
(each during one integration time of 100 ms), are displayed as well as
the unbiased estimation line (black line). The quantum Cramér–Rao
bound—QCRB—(light blue) and the Cramér–Rao bound for ideal
direct imaging (red) are also plotted as shaded areas for comparison. In the
inset, we plot the sensitivity of the SPADE measurement as a function of
the separation, along with the quantum Cramér–Rao bound (dashed blue
line) and the Cramér–Rao bound for perfect direct imaging (red line),
calculated for the same number of detected photons.

In order to benchmark the performance of the estimation we
compute the statistical standard deviation, as explained in Section
2, and represent it as error bars on the experimental points in Fig. 3.
We also plot this measurement sensitivity as a function of the sepa-
ration in the inset of this figure. The measured sensitivity (around
33 µm) is very close to the quantum Cramér–Rao bound (19 µm
when calculated for the same number of measured photons), the
discrepancy arising from the level of dark counts of the detectors.
As a matter of comparison, we also compute the classical Cramér–
Rao bound for separation estimation with ideal direct imaging,
considering infinitely small pixels, no noise, and the same detector
quantum efficiency as for our experiment (see Supplement 1).
Remarkably, our scheme outperforms this idealized DI setting
for small separations (<500 µm). Furthermore, DI requires the
measurement of all the photons (3500 in our case), increasing
the influence of experimental noise, while modal decomposition
allows to route the photons that carry information into a specific
output of the MPLC (corresponding to the HG01 mode) and
perform the detection on only 200 photons with a single detector
to deliver an efficient estimator.

4. HIGH-FLUX REGIME

We consider now bright optical sources, which correspond to an
incident power on the MPLC of around 650µW for an integration
time of 5 ms (or 1013 detected photons). Due to the scaling of the
sensitivity versus the number of detected photons, we expect a
much better sensitivity in this regime.

Similarly to the low-flux regime, we plot the estimated sep-
aration as a function of the reference separation in Fig. 4(a), for
separations ranging from 20µm to 160µm. Once again, we note a
perfect linear agreement between the measured separations and the
reference ones. The reported error bars are computed from statisti-
cal error estimation. We can see in the inset of Fig. 4(a) that while
these error bars are barely visible, the estimated separation deviates
on average by approximately 1 µm from the reference separation.
This deviation from unbiased estimation limits the accuracy of our
system in the high-flux regime. This limitation can be traced back
to the small differences between the two sources, because the two-
source separation estimator is constructed from the single-source
calibration under the hypothesis that both sources are identical.
In practice the images of the sources have slightly different spa-
tial shapes, which originates from how we generate them. This
deviation amounts for the 1 µm limit (see Supplement 1). This is
consistent with such an ultra-sensitive apparatus and is not due the
detection system itself. In realistic scenarios, like microscopy or
astronomy setups, this accuracy value will depend on the optical
imaging device and the type of sources, and can eventually be
largely improved.

To elucidate the full potential of our ultra-sensitive appara-
tus, we now focus on the statistical errors. To do so, we perform
differential measurements: from a scene with a given separation
between the two sources, for instance, 50 µm, only one source is
displaced by a series of very small steps, of approximately 200 nm
each. At each step, both separation and sensitivity estimations are
performed. The results are displayed in the inset of Fig. 4(b), where
we plotted the experimental points along with a linear fit as a guide
for the eye. We observe in this case statistical errors of about 20 nm,
and a linear trend consistent with the error bars. The slope of the
linear fit is not equal to one, due to the limited accuracy; however,
this demonstrates that our apparatus displays the unprecedented
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Fig. 4. High-flux measurements. The separation estimation is realized with bright sources (1013 photons detected during 5 ms), using the mean value of
the measured intensity corresponding to HG01 and the calibration curve. (a) The estimated separations are plotted as a function of the reference separations
determined with the quadrant detector. Both axes are presented with absolute values and values relative to the size of the beam. Error bars due to statistical
uncertainty on the reference separation and the estimation, determined with 200 measurements (each during one integration time of 5 ms), are displayed
as well as the unbiased estimation line (black line). (b) The quantum Cramér–Rao bound (dashed blue line), which is 0.4 nm for 1013 detected photons,
and the sensitivity for the SPADE measurement taking into account the detection noise (black line) are also plotted for comparison. In the inset, we plot the
estimated separations versus the reference separations when performing a differential measurement. A separation of around 50 µm is fixed, and one source
was displaced by several steps, each of approximately 200 nm. For each point, 200 measurements (each during one integration time of 5 ms) were realized to
determine the statistical errors. The experimental points follow a linear tendency (green line).

ability to distinguish between two scenes with a difference in sepa-
ration of the order of 20 nm. Note that some slight deviations from
the estimated separation and the linear fit can be observed; this is
to be expected in such an ultra-sensitive measurement where the
actual scene is dependent on any mechanical or electronic noise
(see Supplement 1).

Finally, we plot in Fig. 4(b) the sensitivity of source separation
estimation versus the value of the separation and compare it to
theoretical calculations. We demonstrate sensitivities ranging from
97 nm for our shortest separation of 20 µm to as low as 20 nm for
larger separations. This corresponds to five orders of magnitude
beyond the beam size. This feature is unique to our system, whose
practicality is ensured by the single-source independent calibra-
tion (made possible by the information from multimode MPLC
outputs). We compare these values to the quantum Cramér–Rao
bound, which is 0.4 nm for 1013 detected photons. The differ-
ence is quantitatively reproduced by our theoretical model (see
Supplement 1) taking into account the electronic noise of the
detection apparatus, demonstrating that this is the limiting fac-
tor in our experiment. Note that this sensitivity corresponds to
≈ 5 nm at the input plane of the MPLC due to magnification 1/4
of the mode-matching telescope.

5. CONCLUSION

We realized a proof-of-principle experiment that demonstrates the
practicability of modal decomposition for sub-diffraction separa-
tion estimation. We achieved a groundbreaking sensitivity in the
estimation of the separation between two incoherent point sources
for high and low brightness—beating the diffraction limit by five
orders of magnitude and outperforming ideal direct imaging,
respectively—thus setting a new standard in optical resolution. By
leveraging the multimode nature of our experiment, we accom-
plished a robust calibration that led to this unprecedented level of
sensitivity. Our system is simple to implement and can be adapted
to advanced imaging systems, is fast and requires few detectors
thus adaptable to any input light flux. Notably, reducing noise
sources—particularly at the detection stage—could enhance the

separation-estimation sensitivity even further, eventually reaching
the ultimate quantum limit.

Moreover, our singular scheme allows to explore more complex
scenes. The source-phase modulation opens a new avenue for
the study of tunable coherence situations [41]. In addition, an
immediate extension of this work is the exploitation of the MPLC
higher-order modes to estimate larger separations [48], but also for
multi-parameter estimations [28,49], leading to a more complete
scheme of passive imaging [24]. Finally, given the versatility of
our approach and setup, we believe this framework can be further
developed for applications in microscopy and astronomy within
the near future.
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