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Abstract

Motivation: Huntington’s disease (HD) may evolve through gene deregulation. However, the im-

pact of gene deregulation on the dynamics of genetic cooperativity in HD remains poorly under-

stood. Here, we built a multi-layer network model of temporal dynamics of genetic cooperativity in

the brain of HD knock-in mice (allelic series of Hdh mice). To enhance biological precision and gene

prioritization, we integrated three complementary families of source networks, all inferred from the

same RNA-seq time series data in Hdh mice, into weighted-edge networks where an edge recapitu-

lates path-length variation across source-networks and age-points.

Results: Weighted edge networks identify two consecutive waves of tight genetic cooperativity

enriched in deregulated genes (critical phases), pre-symptomatically in the cortex, implicating

neurotransmission, and symptomatically in the striatum, implicating cell survival (e.g. Hipk4) inter-

twined with cell proliferation (e.g. Scn4b) and cellular senescence (e.g. Cdkn2a products)

responses. Top striatal weighted edges are enriched in modulators of defective behavior in inverte-

brate models of HD pathogenesis, validating their relevance to neuronal dysfunction in vivo.

Collectively, these findings reveal highly dynamic temporal features of genetic cooperativity in the

brain of Hdh mice where a 2-step logic highlights the importance of cellular maintenance and sen-

escence in the striatum of symptomatic mice, providing highly prioritized targets.

Availability and implementation: Weighted edge network analysis (WENA) data and source codes

for performing spectral decomposition of the signal (SDS) and WENA analysis, both written using

Python, are available at http://www.broca.inserm.fr/HD-WENA/.

Contact: christian.neri@inserm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

VC The Author(s) 2019. Published by Oxford University Press. 186

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(1), 2020, 186–196

doi: 10.1093/bioinformatics/btz514

Advance Access Publication Date: 22 June 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/1/186/5522008 by guest on 02 February 2024

http://www.broca.inserm.fr/HD-WENA/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz514#supplementary-data
https://academic.oup.com/


1 Introduction

Understanding the progression of neurodegenerative diseases (NDs)

on a molecular genetic system level may enhance therapeutic innov-

ation through rule discovery and gene prioritization. The problems

in question include those about the role of specific gene targets in

modulating selective phases of ND processes and about the relations

between these targets and the brain regions or cell types in which

they may operate. In particular, the temporal order in which select-

ive genes may come together into tight interaction (genetic coopera-

tivity) for the purpose of responding to a specific phase of a ND

process in a specific tissue is of high interest as this information

might elucidate the rules underpinning the temporal remodeling of

signaling networks in the course of ND progression, fostering a

strong level of target prioritization. Inherited forms of neurodegen-

eration such as Huntington’s disease (HD) provide useful models in

which to investigate these questions. HD is a neurodegenerative dis-

order associated with CAG expansion in huntingtin (HTT) (Zuccato

et al., 2010). HD may arise from the cytotoxicity of misfolded, poly-

glutamine (polyQ)-expanded huntingtin (mHTT) in conjunction

with production of misfolded HTT mRNAs and disruption of

mRNA processing (Rue et al., 2016), mostly affecting the cortex

and caudate nucleus through alteration of key regulatory mecha-

nisms such as transcriptional regulation (Labbadia and Morimoto,

2013; Zuccato et al., 2010). Transcriptomic data obtained in models

of HD pathogenesis have been analyzed using various network-

based approaches such as spectral decomposition of the signal (SDS)

against bio-networks (Rapaport et al., 2007; Tourette et al., 2014)

and Weighted Gene Co-expression Network Analysis (WGCNA)

(Langfelder et al., 2016). However, single network analysis may

show limitations. For instance, methods such as WGCNA

(Langfelder et al., 2016) generate gene co-expression networks but

could lack the biological precision of SDS (e.g. protein–protein inter-

actions) (Rapaport et al., 2007). However, the use of prior network

knowledge in SDS could miss some of the correlations detected by

WGCNA. Both SDS and WGCNA analysis generates undirected

networks. In contrast, Bayesian causal inference (Hayete et al.,

2017) generates causal networks, however with a bias towards gen-

erating a large number of predictions around strongly deregulated

genes (Gligorijevic and Przulj, 2015) and with no insight provided

into the biochemistry of causal relationships. Thus, taking advan-

tage of the complementarity and consistency of edge data across net-

work layers (Yan et al., 2017) could enrich the basis for modeling

HD on a system level. Here, we hypothesized that applying a multi-

layer network approach might reduce data complexity in robust

ways while providing biologically precise information on how the

architecture of genetic cooperativity may evolve in the course of

HD. To test for this hypothesis, we applied weighted edge network

analysis (WENA) for reconstructing the dynamics of genetic cooper-

ativity in HD based on the integration of source network families

into dense weighted networks, quantification of the temporal dy-

namics of shortest path lengths in weighted edges and assessment of

robustness using randomization tests. We used WENA for integrat-

ing HD networks that describe the RNA-Seq time series data in the

striatum and cortex of the allelic series of HD knock-in mice (Hdh

mice), currently the largest dataset available for modeling molecular

pathogenesis in HD (six CAG-repeat lengths, three age-points, sev-

eral tissues) (Langfelder et al., 2016). These HD mice networks in-

clude causal networks obtained by using Bayesian causal inference

(Hayete et al., 2017), WGCNA networks generated using settings

similar to those defined by Langfelder et al. (2016) and deregulated

bio-networks obtained by using SDS against probabilistic functional

networks (Lejeune et al., 2012; Tourette et al., 2014). The resulting

model identifies critical (i.e. tight interaction network enriched in

HD-deregulated genes) and functionally distinct phases of genetic

cooperativity in the brain of Hdh mice, pre-symptomatically in cor-

tex and symptomatically in striatum. Noticeably, WENA analysis

identifies highly prioritized targets that are known to regulate cell

maintenance, cell proliferation, DNA damage repair and cellular

senescence and that may be central to striatal homeostasis in Hdh

mice as they show major symptoms. Moreover, top striatal

weighted-edges are enriched in suppressors and enhancers of neur-

onal dysfunction and defective behavior in C.elegans (Lejeune et al.,

2012) and Drosophila (Al-Ramahi et al., 2018) models of HD

pathogenesis, validating their relevance to neuronal dysfunction

in vivo.

2 Materials and methods

2.1 Source data
The RNA-Seq data analyzed herein originate from the striatum and

cortex of the allelic series of Hdh knock-in mice (Q20, Q80, Q92,

Q111, Q140 and Q175 at 2, 6 and 10 months of age, encompassing

the presymptomatic to symptomatic phases of HD in these mice,

with four males and four females per point) as previously reported

(Langfelder et al., 2016).

2.2 Construction of source network families
2.2.1 Causal networks

Causal networks generated by GNS Healthcare using a Bayesian ap-

proach for analysis of RNA-Seq data in Hdh mice were kindly pro-

vided by the CHDI Foundation. Causal networks are available for

three age points (2, 6, 10 months) for the striatum and for two age

points (6 and 10 months) for the cortex. For integration with other

families of source networks (see below), we removed edges involving

phenotypic information, miRNAs and targets, mitochondrial genes,

pseudogenes and genes whose name was not in the Ensembl mus

musculus gene symbol list. To ensure homogeneity of network-data

integration, we did not take information on the direction of gene–

gene interactions into account. The resulting networks are herein

referred to as GNS networks. Data on the direction of gene–gene or

gene-phenotype interactions were re-introduced at the stage of data

interpretation as a bona fide information that could help with rea-

soning on target prioritization.

2.2.2 WGCNA networks

The WGCNA package in R (https://www.r-project.org) was used to

generate WGCNA modules (WGCNA package) from RNA-Seq data

in the allelic series of Hdh mice at 2, 6 and 10 months of age, for the

striatum and cortex. Before performing WGCNA analysis we used

multidimensional scaling analysis in order to remove outlier samples

in the 18 data points defined by tissue and age, retaining 256 sam-

ples out of a total of 289 samples. We then computed the correlation

coefficient across the various CAG-repeat lengths, and only retain-

ing gene pairs having a correlation higher than 0.25 in absolute

value (ignoring the correlation sign), similarly to previous WGCNA

analyses (Langfelder et al., 2016). For comparison with the net-

works obtained by using spectral decomposition of the signal (see

below) which only involves genes, we removed edges involving non

coding RNAs and pseudogenes, as well as genes whose name was

not in the Ensembl Mus musculus gene symbol list.
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2.2.3 Spectral decomposition networks

These networks were generated by using an adapted version of the

SDS analysis (Rapaport et al., 2007) as previously described

(Lejeune et al., 2012; Tourette et al., 2014). This analysis was per-

formed against Mousenet v2 (Kim et al., 2016). SDS is part of the

BioGemix (BGM) framework that we developed for modeling ND

datasets. Briefly, mRNA read-count data as available in the RNA-

Seq data in the allelic series of Hdh mice was fed into DESeq2

1.14.1 in order to generate log-fold-change (LFC) values (given age

and CAG-repeat length). The dataset at 2 months of age in Hdh/

Q20 mice was used as a reference. This analysis was performed on

the samples retained upon removal of outlier samples as above men-

tioned (see Section 2.2.2). Spectral decomposition was then used to

remove noise from the LFCs, using prior knowledge in Mousenet

v2, filtering out the 25% highest frequencies of the spectral decom-

position. Edges of Mousenet v2, which contains signed only co-

expression edges, involving any two such deregulated genes were

retained to generate one network per condition considered (CAG-re-

peat length and age point). A normalized Hamming distance metric

was then used to aggregate the 17 conditions (six CAG-repeat

lengths x three age-points, minus the Q20/2-month reference) in the

form of three clusters corresponding a long, intermediate and short

time-to-(major)symptoms. For a given cluster, the resulting network

was taken as the union of networks corresponding to the conditions

unified by this cluster. The resulting networks are herein referred to

as BioGemix (BGM) networks.

2.3 Construction, biological annotation, target

prioritization and functional relevance of weighted edge

networks
The cross-integration of source networks was performed by using

weighted edge network analysis (WENA), which is part of the

BioGemix framework. WENA analysis may be used for modeling

any type of disease and integrating any type of network families.

The current version of WENA may be applied to the cross-

integration (CI) of up to three layers of networks across up to three

conditions, e.g. time points (WENA-CI). WENA-CI (Supplementary

Fig. S1) is able to quantify all types of weighted-edge dynamics, i.e.

linear and non-linear changes of edge dynamics across conditions.

WENA analysis, randomization tests, biological content analysis,

comparison to WGCNA data, target prioritization and comparison

to functional datasets are fully described in the Supplemental

Information in the context of integrating the three above mentioned

families of HD networks across three time points.

3 Results

We applied WENA to the cross-integration of three families of net-

works that describe RNA-seq time series data in Hdh mice, includ-

ing networks generated by spectral decomposition of the RNA-seq

signal (BioGemix or ‘BGM’ networks), WGCNA analysis and

Bayesian causal inference.

3.1 Construction of BioGemix networks
To generate bio-networks that describe (CAG)n-dependent gene ex-

pression for each phase of the disease in the cortex and striatum of

Hdh mice, we performed spectral decomposition of the signal

against Mousenet v2 (Kim et al., 2016). Settings were similar to

those we previously reported for modeling RNAi and microarray

data in human HTT exon-1 nematodes (Lejeune et al., 2012;

Tourette et al., 2014) (see Section 2). We identified three clusters of

bio-networks for cortex or striatum, including one cluster for pre-

symptomatic Hdh mice or Hdh mice with a long time-to-symptoms,

one cluster for Hdh mice with an intermediary time-to-symptoms

and one cluster for symptomatic mice or mice with a short time-to-

symptoms (Supplementary Fig. S2, Tables S1 and S2).

3.2 Construction of WGCNA networks
To generate WGCNA edges that describe (CAG)n-dependent gene

expression in the cortex and striatum of Hdh mice at 2, 6 and

10 months of age, we used settings similar to those previously

reported (Langfelder et al., 2016) (see also Section 2)

(Supplementary Tables S3 and S4).

3.3 Construction of dense weighted networks
Next, we used WENA analysis to integrate BGM, WGCNA and

causal networks. The latter class of networks was generated by GNS

Healthcare using Bayesian causal inference and data are fully avail-

able in the HDinHD database (https://www.hdinhd.org/gns-biologic

al-networks/). To ensure data homogeneity, we removed informa-

tion on directionality from causal networks, generating data herein

referred to as GNS networks (Supplementary Tables S5 and S6).

After transformation of these sparse networks into dense weighted

networks, that is weighted networks sharing a significant number of

edges (see Supplementary Methods, Section S1.1), WENA identified

weighted edges that are common to source networks including 4.6

millions edges for striatum and 33 724 edges for cortex

(Supplementary Fig. S3, Table S7; see http://www.broca.inserm.fr/

HD-WENA/ for the lists of weighted edges).

3.4 Construction of WENA meta-networks
Weighted edges are characterized by the WENA score (product-P:

see Section 2), which measures the change of shortest path length

(SPL) across conditions (time-points), indicating the direction (ex-

pansion or contraction) and magnitude (or strength) of SPL vari-

ation. Weighted edges characterized by product-P values greater

than 0.15 are rather dynamic over time, as illustrated for cortex.

Weighted edges with an absolute product-P value above the inflex-

ion point (here 0.26) of the log logistic curve describing the cumula-

tive distribution of most dynamic edges are of primary interest

(Fig. 1), as illustrated for the striatum. We used a threshold set at

0.3 to select for striatal weighted edges of high interest in terms of

gene prioritization (Fig. 1).

3.5 Robustness of weighted edge ranking in WENA
To evaluate the robustness of edge and gene prioritization in

WENA, we performed randomization tests (see Section 2 and

Supplementary Methods) on source networks. This analysis was per-

formed for the striatum, a brain area where gene deregulation may

be the most pronounced (Langfelder et al., 2016) and node degree in

source networks may be high. Node degree distribution in the source

networks was preserved while permutating gene node neighbors.

We observed that, on a global level, product-P based ranking of

edges in striatal meta-networks upon randomization is statistically

different from that in meta-networks before randomization

(Supplementary Fig. S4A). This observation strongly applies to the

top 25 weighted edges (product-P>0.3) retained by WENA ana-

lysis, where 17 edges did not categorize as top edges upon random-

ization, 7 edges remained top edges in 1/10 trials and 1 edge

(containing nodes super-connected in source networks) remained a

top edge in 3/10 trials (Supplementary Fig. S4B). The same applies

to edges with lower product-P values, i.e. values between 0.15 and
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0.3 (see edge groups outside the red line squares, Supplementary Fig.

S4A). As expected, significant numbers of edges retained the same

ranking when they have a product-P value below 0.15 (see edge

groups within the red line squares, Supplementary Fig. S4A).

These observations suggest that weighted edge ranking and gene

prioritization in WENA analysis is robust, generating top edges that

are specific to the data contained in the source networks.

3.6 Weighted networks identify critical phases of

genetic cooperativity in Hdh mice
In Hdh mice, WENA scores (see Fig. 1) enable to distinguish

weighted edges with SPL increase, meaning genetic cooperativity is

relaxed over time (Class-I edges and genes) and those with SPL de-

crease, meaning genetic cooperativity is reinforced (Class-II edges

and genes). Depending on data richness, WENA also detects Class-

III genes, i.e. those involved in both Class-I and Class-II edges. In

Hdh mice, this means Class-III genes preferentially cooperate with

different partners at 2 months versus 10 months of age

(Supplementary Tables S8 and S9), documenting node rewiring. The

discriminative power of this model is increased by integrating infor-

mation from WENA meta-networks (subset of genes cooperating

the most in a specific condition) and information about gene deregu-

lation. In HD, the genes of particular interest are those deregulated

in a (CAG)n length- and age-dependent manner, herein referred to as

HD-and age-filtered (HDAF) genes. To test whether WENA meta-

networks are enriched in HDAF genes, we calculated the log-fold-

change (LFC) value between Q175 mice at 10 months of age and

Q20 mice at 2 months of age. This provides a good estimate of HD-

and age-dependence as, overall, there is no or little change of gene

expression at 6–10 months of age in Q20 mice (see Supplementary

Methods). Interestingly, in the cortex, Class-I genes are enriched for

HDAF genes, a feature not shown by Class-II genes (Fig. 2A),

whereas in the striatum enrichment for HDAF genes is true for

Class-II genes and not for Class-I genes (Fig. 2B). Regarding Class-

III genes, WENA did not retain any such genes for cortex due to the

lower level of gene deregulation compared to striatum (Langfelder

et al., 2016). For striatum, Class-III genes show some enrichment

for HDAF genes, however to a lower extent compared to Class-II

genes (Fig. 2B, lower panel). These results highlight two critical

phases of genetic cooperativity in which HDAF genes cooperate first

in the cortex of pre-symptomatic Hdh mice, then in the striatum of

symptomatic Hdh mice. As developed below, these two critical

phases are biologically distinct.

3.7 Key regulators of cell stress response tightly

cooperate in the striatum of Hdh mice synchronous to

symptoms
Next, we assessed the biological significance of the WENA model of

genetic-cooperativity in Hdh mice. To this end, we tested meta-

networks for enrichment in biological annotations. Additionally, we

used WENA scores (product-P), network concepts and source-

network data (see Supplementary Methods: edge-based feature se-

lection) to enhance biological precision. Disease relevance was

assessed for Class-II meta-networks only, i.e. those in which genes

come together for tight interaction in symptomatic Hdh mice (see

Supplementary Methods). Together, these analyses showed the

added value of WENA for modeling the dynamics of genetic cooper-

ativity at high resolution, indicating when the tightness of a gene–

gene interaction is maximal (temporal precision) and whether this is

biologically homogeneous, involving selective pathways (biological

precision).

In the cortex, we kept all weighted edges as their number is lim-

ited. Top annotations for the Class-I meta-network (recruiting 34

genes; critical phase of genetic cooperativity as shown in Fig. 2A)

correspond to GPCR signaling and synaptic (e.g. glutamatergic) ac-

tivity (Fig. 3, Supplementary Tables S10 and S11). Edge-based fea-

ture selection highlights cooperation between carboxypeptidase

Cpa6 and double-C2 protein Doc2g, which also involves Doc2b and

oxysterol 7-a-hydroxylase 2 Cyp39a1 (BGM-network data), as the

interaction most dynamically and centrally associated to the re-

sponse of the cortex to HD at 2 months of age for putative regula-

tion of synaptic vesicle trafficking (see legend of Fig. 3). Top

annotations for the Class-II meta-network (recruiting 86 genes) cor-

respond to proteasome and to mRNA processing (Fig. 3,

Supplementary Tables S10 and S11). However, edge-based feature

selection highlights cooperation between tjp3 (Zonula occludens-3)

and claudin Cldn1 (a component of tight junctions), also involving

Cybrd1 and Lppr1 (BGM-network data), as the interaction most dy-

namically and centrally associated with the response of the cortex to

HD at 2 months of age for putative regulation of synaptic plasticity

(see legend of Fig. 3). Gene-phenotype interactions in causal net-

works (Supplementary Table S10) indicate WENA node acyl-CoA

oxidase 2 (Acox2) may negatively influence locomotion bouts and

duration of locomotion, predicting that the variation of Acox2 ex-

pression levels may be relevant to motor phenotypes.

In the striatum, weighted edges show a wide range of loose to

tight levels of genetic cooperativity (Fig. 1B). To select for most dy-

namic edges, we applied a threshold of 0.3 on product-P values.

Fig. 1. Quantification of age-dependent strength of gene cooperativity in dense weighted networks. (A) Cumulative distribution of the number of Class-I or Class-

II weighted edges as a function of product-P where product-P ¼ DwGNS x DwWGCNA x DwBGM, for the cortex. (B) Cumulative distribution of the number of Class-I

or Class-II weighted edges (left panel) and of the number of most dynamic weighted edges (right panel) as a function of product-P, for the striatum. Most dynamic

edges are edges for which Dw¼1 in at least 2 dense weighted networks where Dw¼1 means a direct edge at 2 months and no edge at 10 months, and vice versa

(see Supplementary Methods). The choice of threshold for product-P is based on the inflection point e of the log logistic cumulative distribution curve for most

dynamic edges, here 0.26 and above (e.g. 0.3)
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This significantly reduces the number of weighted edges (Fig. 4,

Supplementary Tables S12 and S13) and translates into a SPL value

of 1 (direct edge) in at least one of the source networks (see Section

2 and Supplementary Methods). The outcome of a threshold set at

�0.25 is also shown to provide a larger view of genetic cooperativity

(Supplementary Fig. S5). Top annotations for the Class-I meta-net-

work with threshold set at 0.3 (9 genes) correspond to metabolism

of neurotransmitters (Fig. 4). Edge-based feature selection further

indicates this meta-network may correspond to a glial response tar-

geting axonal integrity as supported by key regulators of myelin-

ation, also involving regulators of cell movement (see legend of

Fig. 4). Top annotations for the Class-II meta-network (17 genes;

critical phase of genetic cooperativity as shown in Fig. 2B) almost

uniquely correspond to regulation of cell cycle arrest, DNA repair

and cell division by regulatory proteins in the p16INK4a and p19ARF

(Cdkn2a products), p53 and FOXO signaling pathways (Fig. 4).

This could be relevant to the proliferation of striatal dividing cells as

well as stress response (e.g. DNA repair, autophagy) of post-mitotic

striatal neurons. Another outcome may be the modulation of axonal

transport of mitochondria (via Mgarp). Edge-based feature selection

indicates this is primarily achieved through genetic cooperativity

centered onto cAMP-regulated phosphoproteins Arpp21 and

Arpp19, the sodium voltage-gated channel beta subunit and metas-

tasis suppressor Scn4b, and the homeodomain-interacting (HIP) kin-

ase Hipk4. Interestingly, this also involves the Cdkn2a locus, and

regulators of splicing and translation as indicated by BGM network

data (see legend of Fig. 4). Gene-phenotype interaction data in

causal networks (Supplementary Table S12) link Arpp19 and

Arpp21 to disease phenotypes, predicting that the variation of Arpp

expression levels may be relevant to behavioral phenotypes.

3.8 WENA documents node-rewiring between waves of

genetic cooperativity
Class-III nodes are connected to both Class-I and Class-II nodes.

WENA detected Class-III genes in the striatum (Supplementary

Tables S8 and S9). These genes may participate into different bio-

logical processes over time because they change neighbors (node-

rewiring) or because their most-proximal Class-I neighbors belong

to the wave of genetic cooperativity (i.e. group of genes linked by

edges with the most dynamic change of SPL over time) that is

Fig. 2. Distribution of log fold change values in Q175 Hdh mice at 10 months for gene nodes retained in WENA meta-networks. Shown is the distribution of log-

fold-change (LFC) at 10 months in Q175 mice versus 2 months in Q20 mice (Q175/10 mo-LFC) for Class-I and Class-II genes in cortex and for Class-I, Class-II and

Class-III genes in striatum. In all cases, the reference is the distribution of LFC (Q175, 10 months/Q20, 2 months) values for all genes with a statistically significant

deregulation as inferred using DESeq2. (A) In the cortex (unfiltered dense weighted networks), the distribution of Q175/10 mo-LFCs for Class-I genes is statistically

different (upper panel: P¼5.67 � 10�13) from that for reference genes whereas the LFC distribution for Class-II genes is similar to the reference (lower panel). Bin

size is 0.05. There are 34 Class-I genes, 86 Class-II genes and 18948 reference genes in the LFC distributions. (B) In the striatum (unfiltered dense weighted net-

works), the Q175/10 mo-LFC distribution for Class-I genes is similar to the reference (upper panel) whereas the LFC distribution is statistically different for Class-II

genes (middle panel: P¼1.01 � 10�4) compared to the reference. The distribution of Q175/10 mo-LFCs for Class-III genes (as instructed by unfiltered dense

weighted networks) is statistically different (P¼6.35 � 10�3) compared to the reference (lower panel). Bin size is 0.1 for the Class-I, Class-II and Class-III meta-net-

works. There are 306 Class-I genes, 1103 Class-II genes, 26 Class-III and 19051 reference genes in the LFC distributions
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relaxed over time while most-proximal Class-II neighbors belong to

the wave that is reinforced (role changing). Striatal Class-III genes

are engaged into weighted edges that, overall, are poorly dynamic

over time. Nonetheless, retaining this information (neighbors gained

or lost regardless of product-P value, proximal neighbors with prod-

uct-P>0.1) delineates a group of highly connected Class-III nodes

(8 genes) associated with lipid metabolism, cell projection, mem-

brane dynamics and stress response (see Legend of Fig. 5).

Interestingly, Class-I and Class-II neighbors suggest that these Class-

III genes are initially involved in synaptic vesicle cycle and phagocyt-

osis and that they proximally interact with Class-I central nodes

such as the constituent of the myelin sheath Mbp (Fig. 5). These

Class-III genes then become more closely involved in stress resist-

ance and cell survival, proximally interacting with highly deregu-

lated Class-II nodes such as cyclin-dependent-kinase inhibitors

encoded by Cdkn2a (Fig. 5; see also Fig. 4). Information from causal

networks suggests that (i) Class-I neighbors may act upstream to

Class-III genes (Supplementary Table S9) and (ii) that Inadl, a Class-

III gene encoding a tight junction protein, modulates several gait

phenotypes at 2 months of age (Supplementary Table S8), illustrat-

ing the phenotypic relevance of Class-III genes. However, causal

gene–gene interaction data were not available for Class-II neighbors

(Fig. 5). In contrast, BGM network data identify additional genes

that may participate into interactions between Class-III genes and

their neighbors, including for Class-II neighbors (see Supplementary

Table S9, last two columns). Together, these results further highlight

the value of WENA for characterizing the dynamics of genetic coop-

erativity as a sum of effects, showing how successive phases of mo-

lecular genetic response may be established over time.

The left panel shows 11 striatal Class-III genes (green nodes)

involved in weighted class-I (blue nodes) and Class-II (red nodes)

edges for jproduct-Pj > 0.1. A total of 26 Class-III genes were

detected regardless of product-P values (see Supplementary Table

S8). The legend of nodes and edges and method for inference of bio-

logical annotations are the same as in Figure 3, except that we

allowed information from ‘Text mining’ to be used by STRING for

assessing the biological content of Class-II neighbors. Yellow circles

indicate the Class-I or Class-II genes connected to all of the Class-III

genes in their respective sub-network. Neighbors with a yellow cir-

cle are also found in either the Class-I or Class-II striatal meta-

networks (see Fig. 4). A specific color code is provided for the dy-

namics of the edges over time in which nodes lost or gained at

10 months indicate node-rewiring. The larger sub-network contains

8 genes associated with alpha lipid metabolism (enpp6), cell projec-

tion (cntn2: GPI-anchored protein contactin-2), stress response (sir-

tuin Sirt2, plexin plxnb3, glycosyltransferase Galnt6), membrane

dynamics (tetraspanins Tspan15 and CD82) and innate immunity

Fig. 3. Temporal dynamics of genetic cooperativity in the cortex of Hdh mice.

Shown are the unfiltered Class-I meta-network (blue nodes) containing 162

weighted edges and Class-II meta-network (red nodes) containing 271

weighted edges such that jproduct-Pj > 0. Node size is scaled with node de-

gree (number of neighbors). Edge thickness is scaled with product-P value.

Dark (red or blue) colors indicate up-regulated genes. Light (red or blue) col-

ors indicate down-regulated genes. Purple borders indicate genes with jLFCj
> 0.5, i.e. the LFC value that distinguishes critical from non-critical phases of

genetic cooperativity (see Fig. 2). Squared nodes are druggable genes. Black

edges indicate that the edge is direct in at least one the source network fami-

lies. Corresponding information in causal networks shows edge orientation

as predicted by Bayesian causal inference with indication of the effect (blue:

decrease; red: increase) of mRNA abundance of the upstream gene on that of

the downstream gene. Gene-phenotype interactions are also indicated for

Class-II genes, i.e. the genes associated with the most symptomatic phase of

the disease process. Biological annotations (n> 10 genes, P< 1 � 10�4) are

inferred from STRING analysis, using high-confidence neighbors (see

Supplementary Methods for settings). In the Class-I meta-network, the direct

weighted edge with the highest combined values for product-P and between-

ness involves Cpa6 (also the hub gene with the highest degree: see

Supplementary Table S10), a carboxypeptidase that processes several neuro-

peptides, and Doc2g, a double-C2 protein involved in synaptic vesicle exocyt-

osis (Yao et al., 2011). Gene–gene interaction data in causal networks

(Supplementary Table S11) indicates that Doc2g may act upstream of most of

the other nodes in this meta-network, including Cpa6. Consistently with the

outcome of WENA, this prediction is true for Hdh mice at 6 months of age and

was not detected for mice at 10 months of age. WENA further indicates that

the tightness of genetic cooperativity between Doc2g and Cpa6 is maximal at

2 months of age, then is relaxed. The same applies to the other causal gene-

to-gene relationships relevant to cortex at 6 months of age. Although the

Cpa6-Doc2g edge is direct as predicted by WGCNA and Bayesian network

analysis, BGM network data indicate that the path linking these two genes

could involve Cyp39a1 and Doc2b. In the Class-II meta-network, the direct

weighted edge with the highest combined values for product-P and between-

ness recruits Tjp3 (also known as Zonula occludens-3; hub gene with the third

highest degree value), a tight junction protein that interacts with connexins,

Fig. 3. Continued

and claudin Cldn1, a component of tight junctions, suggesting this meta-net-

work might also regulate the plasticity of electrical synapses (Flores et al.,

2008). Gene–gene interaction data in causal networks (Supplementary Table

S11) indicates that Cldn1 may act upstream of Tjp3. Consistently with the

WENA model, this prediction was only detected for Hdh mice at 10 months of

age. WENA further indicates that cooperativity between these two genes is

loose at 2 months of age, becoming tight at 10 months of age. WENA also

indicates that the path linking these two genes may involve cytochrome B re-

ductase Cybrd1 and phospholipid phosphatase Lppr1 as provided in BGM

networks (see Supplementary Table S11). Gene-phenotype interactions in

causal networks (see Supplementary Table S10) indicate that acyl-CoA oxi-

dase 2 (Acox2) may negatively influence two disease phenotypes at

10 months, including locomotion bouts and the duration of locomotion
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(interleukin Il33). The histone deacetylase Sirt2 is a target of cyclin-

dependent kinase inhibitors (Pandithage et al., 2008) that are

encoded by Cdkn2a and found in the Class-II striatal meta-network

(see Fig. 4). The right panel shows data from causal networks, which

is available for Class-I neighbors and not for Class-II neighbors,

including (i) edge orientation as predicted by Bayesian causal infer-

ence with indication of the effect (blue: decrease; red: increase) of

mRNA abundance of the upstream gene on that of downstream

gene(s) and (ii) data available on gene-phenotype interactions.

3.9. WENA multimodal information narrows and

complements WGCNA information
To provide a comparison of WENA- and WGCNA-generated data,

we performed overlap analyses between gene nodes in WENA net-

works (this study) and those previously identified in CAG-repeat

and age-dependent WGCNA modules (Langfelder et al., 2016), fol-

lowed by pathway enrichment analysis. As expected, these analyses

indicate that WENA narrows the mouse gene space associated by

WGCNA with the temporal dynamics of HD, especially in the stri-

atum (Supplementary Fig. S6). These analyses also indicate that

WENA may put forth target genes not prioritized by WGCNA ana-

lysis (Supplementary Fig. S6).

3.10 WENA multimodal information enhances target

prioritization
WENA allowed to select a manageable number of genes (n¼100)

that are central to the dynamics of genetic cooperativity in Hdh

Fig. 4. Temporal dynamics of genetic cooperativity in the striatum of Hdh

mice. Shown are the Class-I meta-network (blue nodes) containing 15

weighted edges and Class-II meta-network (red nodes) containing 44

weighted edges such that jproduct-Pj > 0.3, which selects for highly dynamic

weighted edges in which there is a direct gene-to-gene interaction (SPL value

of 1) in at least one of the source networks. The legend of nodes and edges

and method for inference of biological annotations are the same as in

Figure 3. Meta-networks are also shown for jproduct-Pj > 0.25, providing a

larger though less-selective model of the temporal dynamics of genetic coop-

erativity (see Supplementary Fig. S4). In the Class-I meta-network, the direct

weighted edges with the highest product-P values involve two hub genes

including (i) phosphodiesterase Cnp in direct interaction with four genes

[mitochondrial glycine amidinotransferase Gatm, Na(þ)/K(þ)-transporting

ATPase subunit Beta-1-interacting protein Nkain1, fatty acid elongase elov1

and transmembrane BAX inhibitor motif-containing protein Tmbim1] and (ii)

myelin basic protein MBP in direct interaction with glial fibrillary acidic pro-

tein Gfap, the latter a marker of astrocytes. Cnp is an important regulator of

myelination (Aguirre et al., 2007) and Mbp is a well-known and major con-

stituent of the myelin sheath of oligodendrocytes. Gene–gene interaction

data in causal networks indicate that Cnp and Mbp may act upstream of most

of the other nodes in this meta-network. Consistently with the outcome of

WENA, this prediction is only detected for Hdh mice at 6 months of age.

WENA further indicates that the tightness of genetic cooperativity between

Cnp, Mbp and their neighbors is maximal at 2 months of age then relaxed,

and that causal relationships such as the one between Mbp and Cnp or be-

tween Mbp and Tmbim1 are poorly dynamic over time (product-P value less

than 0.25). Finally, BGM networks indicate that this response may involve

genes associated to RNA degradation and cell projection morphogenesis

(see Supplementary Table S13). In the Class-II meta-network, the direct

weighted edges with the highest product-P values and gene nodes with the

highest degree suggest this may be primarily achieved through genetic coop-

erativity centered onto cAMP-regulated phosphoproteins Arpp21 and

Arpp19, the sodium voltage-gated channel beta subunit Scn4b, a protein that

may act as a metastasis suppressor (Bon et al., 2016) and Hipk4, a member of

Fig. 4. Continued

the homeodomain interacting kinase family, the latter a class of kinases that

are associated with DNA damage response (Kuwano et al., 2016) and that is

involved in cellular proliferation, differentiation and apoptosis (Kovacs et al.,

2015), including in neurons (Chalazonitis et al., 2011). These four hub genes

may tightly cooperate with proximal interactors such as cyclin D2 (Ccnd2),

cell cycle regulators encoded by Cdkn2a (i.e. p16INK4a, p19ARF), phosphatase

Ptp4a2 (also known as Prl2) which regulates the proliferation of hematopoi-

etic stem cells (Kobayashi et al., 2014), fatty acid desaturase Fads1 which ex-

pression is modulated during neuronal differentiation (Park et al., 2012),

Mgarp which is a regulator of mitochondrial distribution and motility in neu-

rons and may contribute to dendritic atrophy when in excess (Jia et al., 2014),

Frat2 which is a member of canonical Wnt signaling, ectonucleotide pyro-

phosphatase/phosphodiesterase Enpp3 which achieves an enzymatic activity

(Gomez-Villafuertes et al., 2014) associated with neuronal differentiation and

two genes associated with inflammation including Tnip3 and Rag-1, the latter

an immunoglobulin recombination activation gene with a role in neuronal

death (Hirano et al., 2015). Causal networks (gene–gene interactions: see

Supplementary Table S13) indicate that hub genes Arpp 19, Arpp21, Hipk4

and Snc4b could act upstream to the other members in this Class-II meta-net-

work at 10 months of age. WENA analysis further indicates that the tightness

of cooperativity between these hub genes and neighbors such as Cdkn2a and

Prl2 becomes maximal at 10 months of age. BGM networks indicate this may

also involve regulators of splicing and (mitochondrial) translation and other

genes, such as for example cyclin D2 and ion channel Trpa1 in the Hipk4-

Cdkn2a path, PGC1ß and Host Cell Factor C1 Regulator 1 in the Hipk4-Mgarp

path and scaffold protein Pdlim1 (CLP36) and Acyl-CoA thioesterase 1 (Acot1)

in the Scn4b-Perl2 path (see Supplementary Table S13). Gene-phenotype

interactions data in causal networks (see Supplementary Table S12) indicate

that Arpp19 and Arpp21, two central nodes, modulate disease phenotypes at

6–10 months. Noticeably, Class-II nodes are not associated with mouse phe-

notypes at 2–6 months and Class-I nodes are not associated with mouse phe-

notypes at 10 months (see Supplementary Table S12), showing that WENA

can distinguish waves of gene cooperativity associated with specific phases

of disease, phenotypically. As indicated by randomization tests, the Frat2-

Scn4b weighted edge may have limited robustness (see Supplementary Fig.

S4B)
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mice (Supplementary Table S14). Applying additional criteria such

as druggability identifies 17 genes of high-interest (Table 1).

This notably highlights tight interaction between Hipk4 (down-

regulated: see the BioGemix-3D database at http://www.broca.

inserm.fr/webportal/Biogemix_3D.php or at www.hdinhd.org) and

Cdkn2a products (e.g. cell-senescence marker p16INK4a, up-

regulated: see BioGemix-3D) as gene pairs of interest for targeting

the critical phase of genetic cooperativity in the striatum. The same

applies to cooperation between Hipk4 and Mgarp (axonal transport

of mitochondria), where Hipk4 could act upstream of Mgarp as sug-

gested by causal networks, and to cooperation between Scn4b and

Mgarp, which involves the phosphodiesterase and candidate-target

in Alzheimer’s disease Pde2a (down-regulated: see BioGemix 3D) as

indicated by the BGM-network data. Regarding the critical phase of

genetic cooperativity in the cortex, this applies to phosphatase

Ptpn7, a member of MAPK signaling, where Ptpn7 may participate

in the interaction between Ptpro, a synaptic adhesion molecule, and

Frmd7, a key regulator of neuronal circuit asymmetry, as also indi-

cated by BGM networks. Thus, WENA multimodal information

greatly enriches the basis for target prioritization.

3.11 Striatal weighted edges are enriched in modulators

of neuronal dysfunction and defective behavior in

invertebrate models of HD pathogenesis
To test for the relevance of the WENA model of the dynamics of

genetic cooperativity in the brain of Hdh mice to diseased neuron

dysfunction in vivo, we tested for overlap between the list of (i) most

interesting genes retained by WENA analysis in the striatum (227

genes recruited in edges with a product-P value above 0.25 including

119 genes with an ortholog in C.elegans or Drosophila) or (ii) 120

genes recruited in all WENA edges for the cortex (including 69 genes

with an ortholog in C.elegans or Drosophila) and the modulators of

neuronal dysfunction and defective behavior in invertebrate models

of HD. Invertebrate data included data from a genome-scale gene

perturbation screen that we performed for modification of defective

touch response in C.elegans nematodes expressing human exon 1

huntingtin in touch receptor neurons (128Q nematodes) (Lejeune

et al., 2012) and data from a similar type of screen for modification

of motor impairment in flies expressing N-terminal human hunting-

tin in all neurons (Al-Ramahi et al., 2018). Overlap was not signifi-

cant for cortical WENA nodes (P<0.11), (Supplementary Fig. S7),

which is expected considering the small number of dynamic edges

retained by WENA for this tissue, which itself results from less gene

deregulation in the cortex compared to striatum of Hdh mice

(Langfelder et al., 2016). In contrast, overlap was significant for stri-

atal WENA nodes (P<0.03), involving 38/119 genes (31.9%)

Table 1. Druggable genes of high interest retained by WENA analysis of the dynamics of genetic cooperativity in the brain of Hdh mice

Gene name WENA node WENA edge Brain area Critical phase (age) Rewiring to

Class-II nodes (1)

Intra-node in BGM

paths of interest (2)

LFC (3)

Cdkn2a Class-II Class-II Striatum Yes (10 months) NA No 1.018

Kcng4 Class-III NA Striatum No Yes No 0.473

Nr2f2 Class-III NA Striatum No Yes No 0.414

Cyp39a1 NA Class-I Cortex Yes (2 months) NA Yes 0.364

Kcns3 Class-III NA Striatum No Yes No 0.353

Kcnc2 Class-III NA Striatum No Yes No 0.331

Hcn3 NA Class-II Striatum Yes (10 months) NA Yes 0.228

Sirt2 Class-III NA Striatum No Yes No 0.094

Chrna4 Class-III NA Striatum No Yes No 0.091

Ptp4a2 Class-II Class-II Striatum Yes (10 months) NA No �0.102

Car4 Class-III NA Striatum No Yes No �0.107

Car8 NA Class-I Cortex Yes (2 months) NA Yes �0.126

Cpa6 Class-I Class-I Cortex Yes (2 months) NA No �0.402

Pde2a NA Class-II Striatum Yes (10 months) NA Yes �0.605

Ptpro Class-I Class-I Cortex Yes (2 months) NA No �1.285

Hipk4 Class2 Class-II Striatum Yes (10 months) NA No �1.485

Ptpn7 NA Class-I Cortex Yes (2 months) NA Yes �1.493

Note: (1) Striatum only. (2) i.e. most deregulated and part of a highly dynamic WENA edge: see node content in Supplementary Table S14/BGM network data.

(3) Log-fold-change (Q175; 10 months/Q20; 2 months). These 17 genes match either one of the following criteria: (i) recruited into the most dynamic (product-

P� 0.25) Class-I and Class-II edges in the cortex, (ii) recruited into the most dynamic (product-P� 0.3) Class-I and Class-II edges in the striatum, (iii) Class-III

genes that interact with neighbor genes in the Class-I or Class-II meta-network for the striatum (see Fig. 5) and (iv) BGM nodes involved in the meta-networks

that define critical phases (for weighted edges with a product-P value � 0.25) and that are part of the most deregulated BGM path that link two WENA nodes.

Profiles of gene deregulation across CAG repeat lengths and age points in Hdh mice can be visualized in the BioGemix-3D database (see https://www.hdinhd.org/;

see also http://www.broca.inserm.fr/webportal/Biogemix_3D.php). The full list of genes of interest retained by WENA contains 100 genes (see Supplementary

Table S14).

NA, not applicable.

Fig. 5. Class-III genes and their Class-I and Class-II neighbors in the striatum

of Hdh mice
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(Supplementary Fig. S6). For example, the striatal Class-II meta-net-

work (critical phase at 10 months) contains central nodes such as

down-regulated Hipk4, down-regulated Arpp21 and down-

regulated Fads1 (see Fig. 4). In the Drosophila model (Al-Ramahi

et al., 2018), reducing Hipk/Hipk4 suppresses whereas reducing

Endos/arpp19 aggravates motor impairment, and reducing fat-3/

Fads1 in 128Q; rff-3 nematodes enhances defective touch response

(Lejeune et al., 2012). Finally, RNAi feeding of our 128Q nemato-

des (Parker et al., 2005), here stably overexpressing sid-1 in touch

receptor neurons (for enhancing sensitivity of these neurons to

RNAi), suggests that reducing the expression of other striatal Class-

II meta-network gene nodes significantly (N>90, P<0.001 com-

pared to empty vector) aggravates (Enpp3, Arpp21) or reduces

(Tmem30b) defective touch response (Ilaria Suriano and Francesca

Farina, personal communication). Together, invertebrate data sug-

gest that WENA meta-networks contain or are enriched in modula-

tors of neuronal dysfunction in vivo and that they recapitulate a

combination of pathogenic and protective effects involved in the

temporal response of the mouse brain to HD.

4 Discussion

The analysis of HD datasets using single network approaches has

highlighted prominent alterations of gene expression in developmen-

tal pathways during neuronal differentiation as observed in polyQ

nematodes (Tourette et al., 2014) and human HD neural stem cells

(Ring et al., 2015). In the RNA-seq time series data from the allelic

series of Hdh knock-in mice (Langfelder et al., 2016), WGCNA

highlighted signatures suggestive of a loss of striatal neuron identity

(Langfelder et al., 2016), a possibility supported by epigenetic data

(Achour et al., 2015). Here, we used a multi-layer network approach

to build a quantitative model of the dynamics of genetic cooperativ-

ity in the brain of the Hdh knock-in mice through the integration of

three complementary families of networks, all inferred from the

RNA-seq time series data in these mice. Our results suggest this inte-

grative approach may greatly reduce data complexity and biases in

source networks while allowing robust ranking of gene cooperativ-

ity networks, highlighting weighted gene-to-gene path lengths that

are highly dynamic over time (based on the product-P value associ-

ated to each edge in WENA meta-networks). Our results also sug-

gest this integrative approach may greatly reduce the biases

associated with super-connectivity of gene nodes in source networks

The novelty of our findings thus comes from the principle of the

WENA method itself compared to using single-network analysis,

where the rationale is to build-up on the consistency and comple-

mentary of edge data in different types of source networks for mod-

eling the molecular and temporal dynamics of genetic cooperativity

the HD process at high resolution.

Although some of the pathways highlighted by WENA might be

detectable in source networks such as for example alteration of

neuronal-identity and cell-division pathways (Langfelder et al.,

2016), the added value of our approach is to provide an unbiased

model for the dynamics of genetic cooperativity that is more com-

prehensive compared to source networks as shown herein by the

identification of critical phases of genetic cooperativity in the cortex

and striatum of Hdh mice. Biological precision and biological homo-

geneity are two major features of the waves of genetic cooperativity

identified by WENA analysis. For example, it could be that a path

linking two genes Ga and Gb is about the same overtime as indi-

cated by WGCNA (e.g. path Ga-Gb becomes Ga-Gc-Gb from 2 to

6 months and remains the same at 10 months) whereas BGM data

could show that Ga-Gb becomes Ga-Gc-Gb then Ga-Gc-Gd-Gb

from 2 to 10 months. Edge fusion in WENA provides a quantifica-

tion of this phenomenon on a global level. This analysis reveals the

existence of successive and critical phases of genetic cooperativity

that are biologically distinct and that in the brain of Hdh mice may

peak pre-symptomatically in cortex and symptomatically in stri-

atum. This suggests the cortex might sense HD before striatum. In

the cortex, WENA highlights a discontinued-response model in

which the early response is disrupted over time by the loss of genetic

cooperativity and by increasingly pronounced gene deregulation. In

contrast, WENA predicts the early and late responses tend to work

as a continuum in the striatum (convergent-response model). The

striatal genes defining the late-stage response are already deregu-

lated, suggesting that the biological efficiency of this response is not

going to be hampered by dramatic changes of gene expression. This

also applies to the early-stage response, which involves genes that

are not dramatically deregulated over time. Additionally, the early

and late response may involve a common group of genes as sug-

gested by Class-III gene and node rewiring data between 2 and

10 months of age. One of the possible explanations for a discontin-

ued- versus convergent-response in cortex compared to striatum is

that epigenetic alteration, which significantly modifies gene expres-

sion in HD mice (Achour et al., 2015), may impact on the dynamics

of genetic cooperativity earlier, and in a more acute manner, in cor-

tex compared to striatum. Collectively, these data are coherent with

previous knowledge of HD pathogenesis while providing insight

into the critical phases that may govern the evolution of the disease

on a genetic system level. Our data identify the early alteration of

gene cooperativity networks associated with neurotransmission in

the cortex, which may significantly contribute to HD pathogenesis

(Virlogeux et al., 2018), and they emphasize the alteration of gene

cooperativity associated with stress response, cell maintenance and

senescence at a later stage in the striatum, which may apply to

mouse glial cells and neurons and which may also apply to the

human HD caudate (Scarpa et al., 2016).

The cross-integration of three layers of source networks puts

forth a small number of biologically precise rules where data enrich-

ment in weighted edges enhances the basis for target prioritization

in view of preclinical studies (Table 1, Supplementary Table S14).

However, it should be noted that we integrate three layers of HD

networks and therefore we eliminated all information that may re-

late to consistency between any two source networks. Nonetheless,

along the line of maximizing the discriminative power of target pri-

oritization approaches, our data provide new information for study-

ing the mechanisms that modulate the progression of striatal

neurons, which are highly susceptible to HD (Zuccato et al., 2010),

through dysfunction towards cell death. Our data noticeably indi-

cate that down-regulation of stress-activated (e.g. by DNA damage)

kinases such as Hipk4 is central to the dynamics of gene cooperativ-

ity in the striatum of symptomatic Hdh mice. Interestingly, reducing

Hipk3 decreases mHTT aggregation in mouse HD striatal cells and

striata of knock-in HD mice (Yu et al., 2017), reducing Hipk2 pro-

tects mHtt-expressing cells from apoptosis via p53 (Grison et al.,

2011) and reducing Hipk suppresses motor impairment in a

Drosophila HD model (Al-Ramahi et al., 2018). Thus, downregu-

lated Hipk4 in the striatal class-2 meta-network (see Fig. 4) could

correspond to a protective response of the striatum of HD mice.

Conversely, reducing fly cAMP-regulated phosphoprotein Arpp19

(Endos) enhances motor impairment in a Drosophila HD model (Al-

Ramahi et al., 2018), suggesting that downregulation of Arpp19 in

the striatum of HD mice could correspond to a pathogenic effect. A

full view of the genes that are retained in weighted edges and that
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show activity in HD flies (Al-Ramahi et al., 2018) is provided in

Supplementary Table S15, suggesting that weighted edge networks

in Hdh mice may implicate pathogenic intertwined with compensa-

tory responses. Our data also indicate that in the striatum of symp-

tomatic Hdh mice, Hipk4 may tightly cooperate with Cdkn2a (up-

regulated), a locus encoding key regulators of cell cycle arrest, DNA

damage repair and cellular senescence (p16INK4a, p14ARF), suggest-

ing that prosurvival and prosenescence features are tightly inte-

grated in response to HD in the mouse striatum, and linking HD

molecular pathogenesis with cellular senescence. Here, it is notice-

able that cellular senescence of astrocytes or microglia has been

associated with neurodegeneration and neuronal dysfunction in

mouse models of tauopathies (Bussian et al., 2018; Musi et al.,

2018) and Parkinson’s disease (Chinta et al., 2018). Finally, cortico-

striatal communication is altered in HD (Deng et al., 2013;

Unschuld et al., 2012; Veldman and Yang, 2018; Virlogeux et al.,

2018), and WENA information about synchronous waves of genetic

cooperativity in cortex and striatum (i.e. cortical neurotransmission

and striatal neuroglial responses at 2 months; cortical proteostasis

and striatal cell senescence response at 10 months) provides a mo-

lecular basis and manageable number of candidate genes for testing

functional interplay between cellular responses to HD in the cortex

and those in the striatum of Hdh mice.

In summary, our data highlight a 2-step logic for the dynamics of

genetic cooperativity in the brain of HD knock-in mice where cell

proliferation and cellular senescence responses may be centrally

involved in the striatum, synchronous to major symptoms. The abil-

ity of the top genes retained by WENA analysis to modulate motor,

behavioral or cognitive phenotypes in HD mice will be addressed in

future studies. In this study, several of the top genes retained in

WENA meta-networks are associated with behavioral phenotypes in

Hdh mice (Alexandrov et al., 2016), as contributed by causal net-

work data. Additionally, gene perturbation data obtained in nema-

tode and Drosophila models of HD pathogenesis suggest that

several WENA nodes are relevant to neuronal dysfunction in vivo,

which notably applies (significant enrichment) to the genes retained

in the most-dynamic striatal weighted edges. Collectively, our find-

ings illustrate the value of combining several layers of network data

for accurately modeling the temporal dynamics of genetic coopera-

tivity in HD and for enriching the basis for target prioritization prior

to preclinical testing.
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