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Abstract

Objective: Genome-wide association studies (GWAS) have identified over 30

susceptibility loci associated with Alzheimer’s disease (AD). Using AD GWAS

data from the International Genomics of Alzheimer’s Project (IGAP), Polygenic

Risk Score (PRS) was successfully applied to predict life time risk of AD devel-

opment. A recently introduced Polygenic Hazard Score (PHS) is able to quan-

tify individuals with age-specific genetic risk for AD. The aim of this study was

to quantify the age-specific genetic risk for AD with PRS and compare the

results generated by PRS with those from PHS. Methods: Quantification of

individual differences in age-specific genetic risk for AD identified by the PRS,

was performed with Cox Regression on 9903 (2626 cases and 7277 controls)

individuals from the Genetic and Environmental Risk in Alzheimer’s

Disease consortium (GERAD). Polygenic Hazard Scores were generated for the

same individuals. The age-specific genetic risk for AD identified by the PRS was

compared with that generated by the PHS. This was repeated using varying

SNPs P-value thresholds for disease association. Results: Polygenic Risk Score

significantly predicted the risk associated with age at AD onset when SNPs were

preselected for association to AD at P ≤ 0.001. The strongest effect (B = 0.28,

SE = 0.04, P = 2.5 9 10�12) was observed for PRS based upon genome-wide

significant SNPs (P ≤ 5 9 10�8). The strength of association was weaker with

less stringent SNP selection thresholds. Interpretation: Both PRS and PHS can

be used to predict an age-specific risk for developing AD. The PHS approach

uses SNP effect sizes derived with the Cox Proportional Hazard Regression

model. When SNPs were selected based upon AD GWAS case/control

P ≤ 10�3, we found no advantage of using SNP effects sizes calculated with the

Cox Proportional Hazard Regression model in our study. When SNPs are

selected for association with AD risk at P > 10�3, the age-specific risk predic-

tion results are not significant for either PRS or PHS. However PHS could be

more advantageous than PRS of age specific AD risk predictions when SNPs

are prioritized for association with AD age at onset (i.e., powerful Cox Regres-

sion GWAS study).

Introduction

Alzheimer’s disease (AD) is the most common form of

neurodegenerative disorder1 with over 47 million people

affected worldwide and a global economic impact esti-

mated at about US $818 billion.2

AD is highly heritable with an estimated 80% of the

liability explained by genetic factors.3 Risk for developing
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AD involves multiple genetic and environmental compo-

nents, with APOE genotype4 having the strongest genetic

effect.5 In the last 20 years numerous relevant susceptibil-

ity loci, genes, and pathways have been identified that will

improve understanding of this complex disease and iden-

tify potential therapeutic targets. The largest Genome-

Wide association study (GWAS) identified more than 20

loci6 associated with late (after the age of 65 years) onset

AD (LOAD). The analysis was extended to biological

pathways with enrichment in immune response, regula-

tion of endocytosis, cholesterol response, and protea-

some-ubiquitin activity pathways.7

The development and validation of AD prediction algo-

rithms is a very important step towards therapeutic strate-

gies for AD prevention and intervention. A polygenic risk

score (PRS) approach has demonstrated 75–84% prediction

accuracy of AD risk with APOE, the polygenic score, sex and

age as predictors.8,9 PRS is constructed as a weighted sum of

allele counts, where the weights are the B-coefficients of

SNP association with the disease obtained with the Logistic

Regression (LR) analysis. Recent development of a polygenic

hazard score (PHS) approach goes beyond AD risk predic-

tion and provides prediction of individual age-specific risk

for developing AD.22 Prior to PHS analyses, Desikan et al.10

selected SNPs based on their association with AD at

P ≤ 10�5 in the publically available IGAP dataset. Then they

constructed PHS in a similar way to PRS, with the exception

that PHS uses log(HR) as SNP risk allele weighs, instead of

log(OR). Both, log(HR)s and the best PHS model were

identified by running step-wise Cox regression, yielding 31

SNPs in addition to APOE e2 and e4 alleles (see Desikan

et al.10).

LR and Cox Proportional Hazard Regression (Cox

regression) analyses are widely used in epidemiological

studies depending upon the question of interest and avail-

able information. LR is used to measure the relationship

between a binary variable (e.g., case/control) and predic-

tor variables, while Cox regression investigates the associ-

ation between the time-to-event (“survival time”) of

patients together with other predictor variables. Cox

regression11 is one of the most-widely applied methods in

medical studies when investigating time-dependent

explanatory variable. Similar to odds ratio (OR) in LR,

Cox regression estimates the hazard ratio (HR) that is a

measure between the probability of events in a “case”

group compared to the probability of events in a “con-

trol” group. The advantage of Cox regression over LR is

that the former estimates an instantaneous risk for devel-

oping AD, based on genotype and age, while the latter

ignores “survival time” and censoring information.

There have been several studies conducted to compare

Logistic and Cox regression models.12–15 Earlier studies

have shown that if the time-to-event data are available,

Cox proportional hazards models have more statistical

power to detect risk factors than LR models,16 since it

accounts for the time until events occur. However, the

two models yield similar estimates of regression coeffi-

cients in studies with short follow-up (5 years or less)

time and high survival rate. In addition, although these

two regression models have different purposes, it has been

shown that the risk factors with strong effect size will be

significant in both models and present similar regression

coefficient estimates.14,17

The aim of this study was to quantify the age-specific

genetic risk for AD with PRS and compare the results

with PHS. Previously, 31 SNPs in addition to APOE e2
and e4 alleles were identified10 that were used in deriving

PHS and then predicting the age-specific individual risk.

There are two components in the PHS/PRS analyses, (1)

how the individual score is generated, that is, how the

SNPs were selected and their effect sizes are derived, and

(2) what aspect of the disease is predicted by this score

(age at onset or overall risk).

First, we compared the effect sizes of SNP association

to AD derived in the same dataset using two different

models (1) Logistic regression and (2) Cox regression. To

explore the second component, we compared the accuracy

in quantification of individual differences in age-specific

genetic risk for AD using PRS, that is, when the SNP

effect sizes are derived by LR, and PHS when the effect

sizes are derived by Cox regression.

Tan et al.18 in their editorial claim that PHS has advan-

tage over PRS to help inform disease management decisions

for at-risk individuals in the clinic. Our study shows that

PHS, as constructed in Desikan et al.10 gives very similar

results to PRS when tested in the Genetic and Environmen-

tal Risk for Alzheimer’s disease (GERAD) dataset.

Materials and Methods

Data

Generation of PRS (and similar PHS) requires two inde-

pendent datasets: a discovery sample, where the summary

statistics are sufficient, and a validation samples, which is

independent of the discovery sample and contains geno-

types for each individual.19 We compared individual SNP

hazard ratio (HR)10 with odds ratios (OR) reported by

the International genomics of Alzheimer’s project (IGAP)

GWAS.6 The original IGAP summary statistics was

derived using a meta-analysis of four GWAS datasets,

namely European Alzheimer ‘s disease Initiative (EADI),

Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE), Alzheimer’s Disease Genetics

Consortium (ADGC) and Genetic and Environmental

Risk for Alzheimer’s disease (GERAD) consortia.

ª 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 457

G. Leonenko et al. Polygenic and Hazard Risk Scores

 23289503, 2019, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acn3.716 by C

ochrane France, W
iley O

nline L
ibrary on [07/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



In this study, since individual genotypes of the GERAD

sample were available to us, we used GERAD data as the

test set. For PRS calculation we used SNP’s log(OR) from

the meta-analysis of three consortia (EADI, CHARGE and

ADGC), excluding GERAD, hereby referred to as IGAP_-

noGERAD. Note that individual SNP effects (B = log

(OR)) of IGAP_noGEARD dataset were adjusted for age.

To generate polygenic hazard scores in the GERAD sam-

ple, we used hazards ratio estimates for the 31 SNPs

reported in ADGC data.10 To test other SNPs, we split

the GERAD data and estimated hazards ratios in 75% of

the data and generated and tested individual scores in the

remaining 25% of the data.

The GERAD dataset consists of 3177 cases and 7277

controls of Caucasian ancestry (see Table S1 for cohort

statistical characteristics) and partly was published previ-

ously.20 Haplotype Reference Consortium (HRC), version

r1.1 2016, was used to impute GERAD genotype data on

the Michigan Imputation Server,21 which to date, allows

the most accurate imputation of genetic variants. Imputed

genotype probabilities (also known as dosages) were con-

verted to most probable genotype with a probability

threshold of 0.9 and greater. SNPs were removed if their

imputation INFO-score < 0.4, MAF < 0.1, missingness of

genotypes ≥ 0.05 or HWE < 10�6. A total of 6,119,694

variants were retained. To correct for population

structure and genotyping differences, all our analyses were

adjusted for gender and 3 principle components.20

For the survival analysis model we used age at onset

where available, and imputed age at onset for the remain-

ing individuals. Imputed age at onset was estimated by

subtracting 5 years from the age of the last assessment (as

the mean difference between the age of the last assessment

and age at onset was 4.7 years in our data). The age at

onset has been imputed for 253 (8%) cases and for an

additional 551 individuals had no age related information.

Out of the remaining 9903 individuals (2626 cases and

7277 controls), APOE genotypes were available for 8415

individuals (2384 cases and 6031 controls) and these sub-

jects were included in the analysis.

To validate the PHS approach in a sample which is

independent of ADGC,10 we split our GERAD data into a

discovery (75% or 1934 cases and 5493 controls) dataset,

for estimation the HR, and validation (25% or 692 cases

and 1784 controls) dataset, where we derived the PHS for

each individual and tested for age-specific risk prediction.

In the GERAD sample 5570 controls were from the

1958 birth cohort (all included at age 45) (http://www.b

58cgene.sgul.ac.uk), introducing differences in age distri-

bution between cases and controls (Fig. 1). To avoid a

potential bias due to these differences, we have repeated

the analyses including only participants with age 55 and

Figure 1. Histogram of age of AD cases and controls in the GERAD dataset.
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above, retaining 4100 individuals (2575 cases and 1525

controls).

Statistical analysis

We calculated PHS for each subject in our GERAD sam-

ple using effect sizes as reported in the Desikan

et al.10(see fifth column of Table 1). The PRS were gener-

ated using IGAP_noGERAD effect sizes for the 25 SNPs

reported (see seventh column of Table 1). To evaluate the

contribution of the 25 SNPs over and above APOE e2
and e4 risk alleles, PHS and PRS were derived in three

ways (1) only using e2 and e4 risk alleles, (2) 25 SNPs,

and (3) combining e2, e4, and 25 SNPs. We tested

whether the addition of either PHS or PRS into the Cox

regression model improves the model fit over and above

APOE e4 and e2 risk alleles using anova() function in R.

Since APOE is the strongest predictor of AD risk, we also

validated our results in e3 homozygous individuals

(N = 4368). Furthermore, to investigate the stability of

the results o for the 25 SNPs of interest, this analysis was

repeated for randomly selected subsets of cases and con-

trols (20, 40, 60, 80, and 100% of the whole sample).

We further investigated whether a different (larger) set

of SNPs could improve the power of the association and

the quality of the prediction of age-specific genetic risk

Table 1. APOE variants and the 31 SNPs and, their closest genes, log hazard ratio estimates used for PHS construction in Desikan et al.10 and

their odds ratio estimates as in Lambert et al.6

SNP Chr Position Gene

Β = log(HR)

Desikan et al.

(2017)

�log10(P-value)

Desikan et al.

(2017)

B = log(OR)

in IGAP

B = log(OR)

IGAP_ noGERAD

A1 IGAP_

noGERAD

APOE e2 19 APOE �0.47 >15.0 �0.66 1 �0.492 e2

APOE e4 19 APOE 1.03 >20.0 1.12 2 0.662 e4

rs4266886 1 207685786 CR1 �0.09 2.7 �0.1542 0.1520 T

rs61822977 1 207796065 CR1 �0.08 2.8 �0.0805 �0.0820 A

rs6733839 2 127892810 BIN1 �0.15 10.5 �0.1880 0.1807 T

rs10202748 2 234003117 INPP5D �0.06 2.1 �0.058 �0.0603 A

rs115124923 6 32510482 HLA-DRB5 0.17 7.4 0.1216 �0.0973 A

rs115675626 6 32669833 HLA-DQB1 �0.11 3.2 �0.1246 0.1040 A

rs1109581 6 47678182 GPR115 �0.07 2.6 �0.0651 0.0601 T

rs17265593 7 37619922 BC043356 �0.23 3.6 �0.0659 �0.0620 T

rs2597283 7 37690507 BC043356 0.28 4.7 0.0679 0.0629 A

rs1476679 7 100004446 ZCWPW1 0.11 4.9 0.1741 0.0712 T

rs78571833 7 143122924 AL833583 0.14 3.8 0.0795 0.2083 A

rs12679874 8 27230819 PTK2B �0.09 4.2 �0.0795 �0.0748 A

rs2741342 8 27330096 CHRNA2 0.09 2.9 0.0916 �0.0872 T

rs7831810 8 27430506 CLU 0.09 3.0 0.083 �0.0774 A

rs1532277 8 27466181 CLU 0.21 8.3 0.1385 �0.1271 T

rs9331888 8 27468862 CLU 0.16 5.1 0.0819 �0.0806 C

rs7920721 10 11720308 CR595071 �0.07 2.9 �0.0713 �0.0660 A

rs3740688 11 47380340 SPI1 0.07 2.8 0.0724 0.0739 T

rs7116190 11 59964992 MS4A6A 0.08 3.9 0.0991 �0.0968 A

rs526904 11 85811364 PICALM �0.20 2.3 �0.1188 �0.1130 T

rs543293 11 85820077 PICALM 0.30 4.2 0.1257 �0.1192 A

rs11218343 11 121435587 SORL1 0.18 2.8 0.2697 0.2539 T

rs6572869 14 53353454 FERMT2 �0.11 3.0 �0.0947 0.1006 A

rs12590273 14 92934120 SLC24A4 0.10 3.5 0.1348 0.1231 T

rs7145100 14 107160690 abParts 0.08 2.0 0.1047 �0.1081 C

rs74615166 15 64725490 TRIP4 �0.23 3.1 �0.3358 �0.2986 T

rs2526378 17 56404349 BZRAP1 0.09 4.9 0.0762 0.0754 A

rs117481827 19 1021627 C19orf6 �0.09 2.5 �0.1288 �0.1059 T

rs7408475 19 1050130 ABCA7 0.18 4.3 0.0971 �0.0973 C

rs3752246 19 1056492 ABCA7 �0.25 8.4 �0.1345 �0.1308 C

rs7274581 20 55018260 CASS4 0.10 2.1 0.139 0.1497 A

First 6th columns are the same as they were presented in Desikan et al. (2017),10 followed by effect sizes from IGAP and IGAP_noGERAD sum-

mary statistics and reference allele as it was presented in IGAP.
1B estimated on GERAD data when running LR.
2B estimated on GERAD data when running Cox regression.
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for AD. For this we used the full GERAD GWAS dataset

(4,997,262 SNPs). The dataset was LD pruned with

r2 = 0.1 in a 1000 kb window, retaining 167,188 SNPs

(with IGAP_noGERAD summary statistics). A fivefold

cross-validation approach was employed splitting the

GERAD data randomly into 75%/25% discovery and vali-

dation sets, respectively. LR and Cox regression were run

in the discovery (75% of GERAD) dataset in order to

obtain effect sizes, log(OR) and log(HR), respectively.

The PRS and PHS for each individual in the validation

set (25% of GERAD) were generated for AD association

P-value thresholds of P ≤ 5 9 10�8, 10�5, 10�3, 0.05, 0.1,

and 0.5, adjusted for covariates and then standardized.

The Cox regression model was run to predict age-specific

genetic risk for AD by (1) PHS and (2) PRS in the valida-

tion set. Note, in LR analysis age was not included into

the model, while Cox regression model has accounted for

the age as a censor variable. The proportional hazards

assumption for the Cox regression model, that is, that the

hazard rate ratio is constant over time, was tested using

function cox.zph() in R. P-values of the proportional haz-

ards assumption tests were non-significant indicating that

the models were correctly specified.

The results of the cross-validation procedure are

reported as mean and SD of the effect sizes, and as the

average of the P-values across cross-validation. We also

report the average of the correlation coefficients between

individual PHS vs PRS scores.

Results

In attempt to directly replicate the Desikan et al.10 results,

we performed analysis on 8415 individuals (2384 cases

and 6031 controls) for whom APOE genotypes were avail-

able. PHS was derived for each individual in the GERAD

dataset with APOE e2 and e4 risk alleles and the 25 SNPs

available in the dataset that were reported in Desikan

et al.10 (see also Table 1). PRS was derived using effect

sizes obtained from IGAP_noGERAD summary statistics

using the same SNPs as for PHS. As the effect sizes for

APOE e2 and e4 risk alleles in IGAP_noGERAD data were

unavailable, we used GERAD data to estimate them using

LR (B(e2) = �0.66, B(e4) = 1.12). Table 2 presents the

results of PHS and PRS models, where risk scores were

constructed with (1) APOE e4 and e2 risk alleles (col-

umns 2 and 3), (2) PHS and PRS scores based upon 25

SNPs (columns 4 and 5), and (3) PHS and PRS

scores + APOE e4 and e2 risk alleles (columns 6 and 7).

It can be seen from Table 2 that the regression coefficient

estimates (B) and P-values for both models are very simi-

lar. In both models the strongest association is observed

when the risk scores (either PHR or PRS) were con-

structed using APOE e2 and e4 risk alleles. The scores

derived with the 25 SNPs also show significant association

with age-specific AD risk (P = 9.7 9 10�8,

P = 1.9 9 10�10 for PHS and PRS Models, respectively).

The last column of Table 2 compares the fit of the

APOE-alone model with the model using APOE + 25

SNPs as predictors and shows that the both PHS and PRS

significantly improve the association results over and

above the predictor variable based upon APOE e2 and e4
only. The correlation between individual PHS and PRS

was r = 0.85 (see Fig. 2) and even higher when APOE

variants were included r = 0.99. Analysis in e3 homozy-

gotes (N cases = 846, N controls = 3522) confirmed that

PRS is a significant predictor of age specific risk for AD

over and above APOE (B = 0.17, P = 9.5 9 10�7), and

revealed that PHS is a slightly less significant predictor

(B = 0.14, P = 2.0 9 10�5).

Figure 3 shows survival curves for individuals quanti-

fied in 5 groups based on 0–5%, 5–25%, 25–75%, 75–
95%, and 95–100% of PHS/PRS distributions. Survival

curves were created using PHS (left panel) and PRS (right

panel) accounting for APOE e2, e4 risk alleles and the 25

SNPs. There is a clear difference in age at onset for indi-

viduals that belong to different distribution groups for

both models. For example, individuals with the low PHS

(bottom 5% of the PHS distribution, purple line in the

left panel of Fig. 3) on average have 20 years earlier age

at onset as compared to the top 5% of the PHS (red line

Table 2. Cox regression analysis results using PHS and PRS based upon (the same) SNPs as in Desikan et al. (2017)10 in GERAD dataset.

APOE(e2 + e4) 25 SNPs APOE(e2 + e4) + 25 SNPs Compare: APOE

vs. 25 SNPs +

APOE(e2 + e4) P-valueB [SE] P-value B [SE] P-value B1 [SE], B2 [SE] P-value

PHS model with effect

sizes from Desikan

et al. (2017)

0.41 [0.019] 1.8 9 10�101 0.11 [0.02] 9.7 9 10�8 0.41 0.019],

0.11 [0.02]

4.8 9 10�103 3.4 9 10�8

PRS model with effects

from IGAP_noGERAD

0.408 [0.018] 2.7 9 10�103 0.13 [0.02] 1.9 9 10�10 0.41 [0.019],

0.13 [0.02]

2.4 9 10�105 8.8 9 10�10

1B is a coefficient for APOE (e2 + e4).
2B is a coefficient for PRS/PHS without APOE.
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in the left panel of Fig. 3), given a probability of 0.25 of

developing AD. For both models the curves are almost

identical and there is clear difference in age at onset for

individuals that belong to different distribution groups

for both models.

The results of age-specific predictions using PHS and

PRS analyses based upon 25 SNPs for different sample

sizes are presented in Figure 4. As before, the age-specific

risk effect sizes for both PRS and PHS were similar and

(as expected) were lowest in the smallest subset of the

GERAD data, gradually increasing with sample size.

To increase the power of the analysis we attempted to

increase the sample size and the number of SNPs included

in the analysis. We utilized the full GERAD dataset (2626

cases and 7277 controls), and included APOE locus via the

best (imputed) proxies as not all individuals in the GEARD

Figure 2. Scatter plot of individual’s PRS and PHS that were derived using 25 SNPs from Desikan et al.10 in the GERAD sample.

Figure 3. Survival curves for PHS and PRS scores + APOE e4 and e2 risk alleles for 8,415 individuals (2,384 cases and 6,031 controls) for whom

APOE genotypes were available. Individuals are split into 5 groups based on 0–5%, 5–25%, 25–75%, 75–95%, and 95–100% of PHS/PRS

distributions.
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sample had direct APOE genotypes. The correlation

between APOE e2 allele and rs41290120 was r = 0.74 and

between APOE e4 allele and rs7259620 was r = �0.41. To

include more SNPs into the PHS, we increased the P-value

association threshold to 0.5 and LD pruned SNPs while

keeping the most significantly AD-associated SNPs (in

IGAP_noGERAD) for the analysis. For the pruned SNPs

we re-estimated the B coefficients with Cox regression and

LR in the 75% of the GERAD sample, and ran the age

specific prediction analyses in the remaining 25% with

fivefold cross-validation (see Results in Table 3). The Cox

regression analysis suggests that significant age-specific pre-

diction when using either PHS or PRS is achieved with the

SNP selection threshold at P ≤ 10�3. The Pearson’s corre-

lation coefficient between individual PHS and PRS is high

for SNP selection thresholds up to P ≤ 10�5 (Table 3, last

column). Age-specific predictions are no longer significant

when SNPs P-value thresholds are higher than 10�3. Since

the age distribution was quite different in cases and con-

trols (see Fig. 1), the same analyses were performed for

Figure 4. Results of age-specific predictions using PRS and PHS analyses in GERAD subsamples of 20, 40, 60, 80, and 100% randomly selected

individuals. The PHS and PRS are derived based upon 25 SNPs reported by Desikan et al.10

Table 3. Cox regression analyses results of 5-fold cross-validation for PHS and PRS in GERAD dataset.

SNP selection

P-value

threshold N SNPs

PHS PRS Correlation

between PHS

and PRSB [SD] P-value B [SD] P-value

5 9 10�8 31 0.28 [0.04] 4.3 9 10�13 0.28 [0.04] 2.5 9 10�12 0.96

10�5 80 0.26 [0.02] 2.8 9 10�11 0.29 [0.05] 5.7 9 10�11 0.79

10�3 1460 0.13 [0.025] 3.4 9 10�3 0.18 [0.04] 1.9 9 10�4 0.17

0.05 29998 0.07 [0.027] 0.12 0.1 [0.034] 0.04 0.21

0.1 49247 0.06 [0.031] 0.18 0.09 [0.028] 0.05 0.27

0.5 128952 0.08 [0.024] 0.07 0.08 [0.035] 0.13 0.42

First column shows the P-value thresholds for AD associated SNP selection (from an independent IGAP_noGERAD data). Second column represents

the number of SNPs that were included to the PRS/PHS score. PHS and PRS effect sizes (mean and SD) and averaged P-values across 5-fold cross-

validation subsampling are shown in columns 3–6. The last column shows the average of Pearson’s correlation coefficients between PHS and PRS.
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individuals aged 55 and above, retaining 4100 samples for

the analysis (see Results in Table 4). Despite the substantial

reduction in sample size, the pattern of the results stays

the same across tables.

Discussion

Polygenic risk score approach is typically used to predict

risk of the disease and does not account for age at onset

of cases and the fact that controls may develop the disease

later in their lives. Implementation of the polygenic haz-

ard score provides prediction for individuals’ age-specific

risk of AD development and can potentially be used for

future investigation of the disease progression, interven-

tion, and treatment of the disease.

There are two components to the risk prediction anal-

yses by polygenic scores. The first component is the con-

struction of the scores. Both PRS and PHS are derived

as a sum of the number of risk alleles weighed by the

SNP effect sizes, either logarithm of the odds ratio (log

(OR)) or logarithm of the hazards ratio (log(HR)),

respectively, which in turn are obtained with two differ-

ent regression models (Logistic or Cox Proportional

Hazard regression models). Ideally, for the construction

of these scores, the SNP selection should be informed by

the corresponding summary statistic from an indepen-

dent dataset. For example case/control GWAS results

should be used for PRS SNP selection, and Cox regres-

sion GWAS results, should be used for PHS SNP selec-

tion. The second component is the actual risk

prediction. The choice of the regression model for this

component of the analysis depends upon the question of

interest and available data. If one is interested in predict-

ing age-specific risk for AD then PHS should be used as

the predictor in the Cox regression model, given that the

age for controls and age at onset for cases is available

for the analysis.

In this study, we tested whether there is an advantage

in using PHS over the PRS for age-specific risk

prediction. First, we attempted to directly replicate the

results of Desikan et al.10 using SNPs available in the

GERAD dataset. Then we constructed PRS using the same

SNPs and tested how well PRS can predict the age-speci-

fic risk in the GERAD sample. Finally, we attempted to

enhance the PHS by adding more SNPs related to AD

risk.

Desikan et al.10 selected AD associated SNPs with

P ≤ 10�5 in the IGAP, currently the largest publicly avail-

able GWAS dataset, then generated individual PHS in

their (ADGC) dataset and tested this PHS for association

with the AD age-specific risk. We have replicated their

findings in our (GERAD) data. These were as expected

given previous studies, comparing LR and Cox regres-

sion,14,17 show that the predictors with the largest effects

stay significant in both Cox and Logistic regression analy-

ses. When the effect sizes of the associated SNPs are large,

the period between the age at onset and age at assessment

is short (follow-up period is 5 years or less) and survival

rate is high, then both Cox regression and LR will show

similar estimates of the regression coefficients.16 A typical

AD GWAS design falls into this category. In our data the

mean difference between the age of the last assessment

and age at onset was 4.7 years; there were more controls

than cases; and the SNPs were selected on the basis of sig-

nificant association with the disease risk. Therefore, it is

expected that the IGAP genome-wide significant SNPs

combined into PHS will show strong association in the

ADGC and GERAD datasets as these datasets both con-

tribute to the IGAP study.

When the SNPs were selected based upon AD associa-

tion results in a sample set independent of GERAD

(IGAP_noGERAD), both PHS and PRS were significantly

associated with AD age-specific risk (P < 10�3). For less

stringent significance thresholds the age-specific risk pre-

diction was not significant with either PHS or PRS. The

results of Cox regression analysis have shown no signifi-

cant difference in model fits when using PRS or PHS, if

SNPs are selected on the basis of strong association to

Table 4. Cox regression analysis results of 5-fold cross-validation for PHS and PRS in GERAD dataset for individuals age at onset 55 and above.

P-value

threshold N SNPs

PHS PRS
Pearson’s correlation

between PHS and PRSB [sd] P-value B [sd] P-value

5 9 10�8 31 0.3 [0.01] 1.3 9 10�12 0.29 [0.03] 5.8 9 10�12 0.96

10�5 80 0.25 [0.05] 8.4 9 10�7 0.31 [0.04] 5.3 9 10�10 0.76

10�3 1460 0.12 [0.04] 0.03 0.1 [0.03] 0.03 0.16

0.05 29998 0.03 [0.04] 0.42 0.004 [0.02] 0.62 0.32

0.1 49247 0.04 [0.03] 0.34 0.001 [0.02] 0.62 0.4

0.5 128952 0.05 [0.03] 0.29 0.008 [0.02] 0.59 0.59

First column shows the P-value thresholds for AD associated SNP selection (from an independent IGAP_noGERAD data). Second column represents

the number of SNPs that were included to the PRS/PHS score. PHS and PRS effect sizes (mean and SD) and averaged P-values across 5-fold cross-

validation subsampling are shown in columns 3–6. The last column shows the average of Pearson’s correlation coefficients between PHS and PRS.
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AD risk. However when SNPs are prioritized for associa-

tion with AD age at onset rather than general AD risk by

a powerful discovery study (e.g., Cox-regression AD

GWAS), the PHS is likely to be advantageous over the

PRS for age specific AD risk prediction. As such discovery

study was not available to us, we could not demonstrate

this advantage in our paper. We emphasize, that this is

the main limitation of our study. Since we only had

access to the AD GWAS summary statistics, obtained with

Logistic Regression, we could not prioritize SNPs specifi-

cally associated with AD age at onset, but only used SNPs

associated with AD risk overall. To overcome this issue

we divided the GERAD data into a discovery and valida-

tion sub-samples, however this reduced the power of our

further analyses. Another limitation of this study is the

lack of replication in a similar dataset since we did not

have access to individual genotypes of another AD case/

control study that was independent from IGAP. To

address this limitation, we employed cross-validation and

resampling approaches to the GERAD data. The main

results remained consistent in all analyses.

In conclusion, when SNPs are selected based upon case/

control AD GWAS with P-values thresholds up to

P ≤ 10�3, comparison of PRS and PHS suggests no advan-

tage of using effects of PHS over PRS for age-specific risk

prediction. Using less stringent significance thresholds for

SNP selection, the age-specific risk prediction results are

not significant by either PHS or PRS. To further enhance

and validate the PHS approach for AD age at onset risk

prediction, a large Cox regression GWAS needs to be con-

ducted, and used for SNP prioritization prior to construc-

tion of the PHS for each individual.

We have demonstrated that PRS is a robust measure of

the genetic liability to Alzheimer’s disease. In addition to

general AD risk, it predicts the age-specific risk of AD.

The PHS, when constructed using significant SNPs identi-

fied by case/control GWAS, has potential disadvantages

which are similar to PRS, as outlined in Tan et al.18

Development of PHS based up on Cox Hazard Regression

model GWAS is a potential way forward to validate the

PHS approach.
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