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Influence of the geometry of the feature space on
curiosity based exploration

Grégoire Sergeant-Perthuis1, Nils Ruet2, David Rudrauf2, Dimitri Ognibene3, Yvain Tisserand4 ∗†‡§

Abstract

In human spatial awareness, information appears to be represented according to
3-D projective geometry. It structures information integration and action planning
within an internal representation space. The way different first person perspectives
of an agent relate to each other, through transformations of a world model, defines a
specific perception scheme for the agent. This collection of transformations makes
a group and it characterizes a geometric space by acting on it. We propose that
imbuing world models with a ‘geometric’ structure, given by a group acting on the
space, is one way to capture different perception schemes of agents. We explore
how changing the geometric structure of a world model impacts the behavior of
an agent. In particular, we focus on how such geometrical operations transform
the formal expression of epistemic value (mutual information), a quantity known
in active inference for driving an agent’s curiosity about its environment, and the
impact on exploration behaviors accordingly. We used group action as a special
class of policies for perspective-dependent control. We compared the Euclidean
versus projective groups. We formally demonstrate that the groups induce distinct
behaviors.

1 Introduction

In previous work it has been shown that geometrically constrained active inference can be used as a
framework to understand and model central aspects of human spatial consciousness (see the Projective
Consciousness Model (PCM) (1; 2)). Consciousness accesses and represents multimodal information
through a Global Workspace (3) within which subjective perspectives on an internal world model
can be taken. The process contributes to appraise possible actions based on their expected utility
and epistemic value (2). In (1; 4; 2; 5; 6), it was hypothesized that such internal representation
space is geometrically structured as a 3-D projective space, denoted P3(R). A change of perspective
then corresponds to the choice of a projective transformation ψ, i.e. the action of an element of the
group of projective transformations PGL4. A projective transformation is a linear isomorphism
Mψ ∈ GL4(R) up to a multiplicative constant. The model yielded an explanation for the Moon
illusion (7) with, for the first time, falsifiable predictions on how strong the effect should be depending
on context, as well as for the generation of adaptive and maladaptive behaviors, consistent with
developmental and clinical psychology (see (2)). Though essential in integrative spatial cognition,
notably for understanding multi-agent social interactions, perspective-taking is rarely integral to
existing models of consciousness or formally implemented (8; 9; 10; 3; 11). The PCM assumes that
projective mechanisms of perspective changes are integral to the global workspace of consciousness,
both in non-social and social contexts. The advantages of mechanisms of perspective-taking for
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cybernetics remain to be fully formulated (see (2)). When applying the PCM to agency and action
planning, previous work (2; 5) lacked a formal framework. In recent work (12) such ideas have been
extended and replaced within stochastic optimal control with state spaces, world models, structured as
homogeneous spaces. This formal framework allows to further theoretical and algorithmic inquiries,
as we propose to do in this article.

2 Methodology

The experiment we consider is that of an agent, denoted as a, which is looking for an object O in the
‘real world’, the 3-D Euclidean space E3 := R3. The set of moves of the agent is denoted M (see
Figure 2 Appendix D). The position of O is denoted o ∈ E3. The agent ‘represents’ the position of
the object O inside its ‘internal world model’. We consider ‘internal world models’, spaces denoted
W , that are such that there is a group acting on them; we call such spaces, group structured world
models. This group accounts for the change of perspective that each movement of the agent induces;
a perspective on the world is analogous to a choice of a (non linear) coordinate system, when the
agent moves this coordinate system changes and the changes of coordinates are the group actions.
We consider two spaces in particular:

1. Euclidean case: W is the 3-D vector space, W = R3

2. Projective case: W is the 3-D projective space, denoted as P3(R)

The agent’s internal beliefs about the position of the object are encoded by a probability measure
on W that the agent updates through observations. The agent explores its environment through
the computation of an epistemic value (mutual information), the maximization of which captures
curiosity-based exploration. In Section 2.2, we explain how epistemic value is defined for group
structured internal representations. In Section 2.3 we give the details of the exploration algorithm.

2.1 Group structured world model and relating the ‘real world’ to the ‘internal world model’

In general, groups can be seen as encoding transformations or changes of frame (see Definition 3
Appendix A). We call a group structured world model, a world model provided with a group action;
we now make this statement formal.
Definition 1. W is a group structured world model for the groupG when there is a map h : G×W →
W denoted as h(g, x) = g.x for g ∈ G and x ∈ X , such that,

1. (g.g1).x = g.(g1.x) for all g, g1 ∈ G, x ∈W

2. e.x = x, for all x ∈W

The group structured world model is usually called a G−space, but we will keep this denomination
for now to recall the context we consider, that of an agent exploring its environment with noisy
sensors. In the Euclidean case the group structured world model, W , is the 3-D vector space R3:
the Euclidean space with additional information of a center and three axis on front, on the right and
above; it is structured by the group of invertible affine transformations GL3(R)⋉R3; we will only
consider its subgroup E(3), the Euclidean group of invertible affine transformations from the space
into itself preserving the Euclidean metric. In the Projective case, the group structured world model,
W , is the projective space P3(R); it is structured by the group of projective linear transformations
PGL(R3).

We assume that the ‘real world’ is the 3-D Euclidean space, E3; it is the space that is used to set
up the experiment: the conformation of the agent and of the place of the object. We assume that
the ‘real world’ comes with an Euclidean frame RE , i.e. a point C and three independent vectors
e0, e1, e2. This frame is used to set up the experiment: the configurations of the object and agent
across time are encoded in this frame; it is fixed once and for all before starting the experiment.
Therefore we now identify E3 with R3, C with (0, 0, 0) and e0, e1, e2 with the respective basis
vectors, (1, 0, 0), (0, 1, 0), (0, 0, 1). The agent, denoted as a, is modeled as a solid in the ‘real world’;
it has its own Euclidean frame (the solid reference frame),R := (P, u0, u1, u2), with P the center
of a and u0, u1, u2 three unitary vectors that form a basis. In the Euclidean case, the map that relates
E3 and its group structured world model, W , is the affine map, ϕR, that changes the coordinate in
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RE to coordinates inR. In the Projective case, this map is a projective transformation. The choice
of such a projective transformation is dictated by Proposition A.1 (2). The (projective) transformation
ϕpR, from E3 to W , which relates the ‘real world’ to the ‘internal world model’ in the projective case,
makes use of a projective map ρ, detailed in Appendix A, and then ϕpR := ρ ◦ ϕR.

2.2 Beliefs, policies and epistemic value

Beliefs: The agent a keeps internal beliefs about the position of the object represented in its
‘internal world model’; these beliefs are encoded by a probability measure QX ∈ P(W ), where
P(W ) denotes the set of probability measures on W . These beliefs are updated according to noisy
sensory observations of the position of O. ‘Markov Kernels’ can be used to formalize noisy sensors
(Definition 3 Appendix A). Let us recall their definition. The uncertainty on the sensors of a is
captured by a Markov kernel PY |X from W to W . It is a parameter of the experiment: it is fixed
before the agent starts looking for O. The couple (PY |X , QX) defines the following probability
density, PX,Y ∈ P(W ×W ): for any x, y ∈W , PX,Y (dx, dy) := pY |X(y|x)qX(x)dxdy, where dx
is the Lebesgue measure on W . An observation of the position of the object yo ∈ W triggers an
update of the belief QX to the belief with density

QX|yo =
pY |X(yo|x)qX(x)dx∫

x∈W pY |X(yo|x)qX(x)dx
(1)

Policies: The agent has a set of moves it can make M ; a move m ∈ M is associated to the
action of the group element ψm : W → W (Appendix Proposition 1). The agent plans the
consequence of its moves on its internal world model one step ahead: each change of frame induces
the following Markov Kernel, for any m ∈ M , A ⊆ W a (Borel) subset of W , and x0 ∈ W ,
pX1|X0,m(A|x0,m) = 1[ψm(x0) ∈ A]. Each move m spreads a prior QX on X0 into the following
prior on X1: ∀A ∈ B(W ),

ψm,∗QX(A) :=

∫
1[ψm(x0) ∈ A]qX(x0)dx = QX(ψ−1

m A) (2)

We chose to denote this probability measure as ψm,∗QX , because it is the standard mathematical
notation for the ‘pushforward measure’ by ψm. The generative model the agent uses to plan its future
actions is summarized in Figure 3.

Epistemic value: Following (13),
Definition 2 (Epistemic Value). For any probability measure QX ∈ P(W ), the epistemic value of
this measure is:

C(QX) :=EPY

[
H(PX|Y |QX)

]
(3)

=

∫
pY (y)dy

∫
pX|Y (x|y) ln

pX|Y (x|y)
qX(x)

dx (4)

H is the relative entropy, also called Kullback-Leibler divergence.

Reexpressing Equation 3, it becomes apparent that epistemic value is simply a mutual information:

C(QX) =

∫
pX,Y ln

pX,Y (x, y)

pY (y)qX(x)
dxdy (5)

We propose to define the epistemic value of move m as the epistemic value of the induced prior on
X1, C(m) := C(ψm,∗QX).

2.3 Exploration algorithm

Let us now put the previous elements together to describe the exploration behavior programmed
in our agent. The agent a is initialized in a configuration of the ‘real world’, with solid reference

3



frame R0; the object O is positioned at o ∈ E3. a starts with an initial belief Q0
X ∈ P(W ) on

the position of O. It plans one step ahead the consequence of move m; move m induces a group
action ψm : W → W that pushes forward the belief Q0

X to ψm,∗Q0
X . The agent then evaluates

the epistemic value of (PY |X , ψm,∗Q
0
X) for each move m and chooses the move that maximizes

this value, m. a executes the move m which transforms its solid reference frame R0 to R. It can
then observe (with its ‘noisy sensors’) the position of O which is yo := ϕR(o) in its internal world
model, which triggers the update of prior ψm,∗Q0

X to the distribution conditioned on the observation:(
ψm,∗Q

0
X

)
|yom

. The process is iterated with this new prior. The exploration algorithm is summarized
in Appendix Algorithm 1.

3 Theoretical predictions

We prove that the group by which the internal world model is structured influences the exploration
behavior of the agent. The Euclidean case serves as the reference model; in this case the world model
shares the same structure as the real world: it is the ‘classical’ way of modeling this exploration
problem. The Projective case corresponds to the hypothesis underlying the PCM. We consider the
following noisy sensor, for any x, y ∈ R3, PY |X(y|x) = 3

4πϵ3 1[∥x− y∥ ≤ ϵ] where ∥.∥ designates
the Euclidean norm on R3, i.e. ∥x∥2 = x20 + x21 + x22; ϵ > 0 is a strictly positive real number.

Theorem 1. Let us assume that staying still is always a possible move for the agent.

Euclidean case: when the agent has an objective representation of its environment, given by an affine
map, the agent stays still.

Projective case: Assume now that the set of moves M is finite; assume furthermore that after any
possible move, the agent faces O, in other words, we assume that the agent knows in which direction
to look in order to find the object but is still uncertain on where the object is exactly. If it has a

‘subjective’ perspectives, i.e. its representation is given through a projective transformation, it will
choose the moves that allows it to approach O (for any ϵ small enough).

Proof. The details of the proof are given in Appendix B.1. Let us here give an idea of the proof. The
agent circumscribes a region of space in which it believes it is likely to find the object. This region
corresponds to the error the agent tolerates on the measurement it makes of the position of O; we
can also see it as the precision up to which the agent measures the position of O. In the Euclidean
case, the region in which the agent circumscribes the object appears to always be of the same size,
irrespective of the agent’s configuration with respect to the object. Therefore not moving ends up
being an optimal option and the agent will not approach the object without additional extrinsic
reward. In the Projective case, the agent can ‘zoom’ on this region in order to gain more precision in
measuring o; the configurations of the agent in which this region is magnified are more informative
regarding the position of O and therefore preferred by the agent. The only way for the agent to
actually zoom onto this area is to approach the location it believes O is likely to be, therefore the
agent will end up approaching O.

Implementation of this experiment are provided in Appendix C.

4 Conclusion and Future Work

In this paper we proposed a generative model for environment exploration based on first person
perspective in which actions are encoded as changes of perspective. The family of all possible
perspective taking on the environment structures the representation of sensory evidence inside the
world model of the agent. In other words each family corresponds to a specific perception scheme
for the agent. We encoded each of such family as a group acting on the internal world model of
the agent, i.e. in the geometric properties of this internal world model. We showed that different
geometries induce different behaviors, focusing on two case: when the internal world model of
the agent followed Euclidean geometry versus projective geometry. The study of world models
with projective geometries was motivated by ongoing work in computational psychology aimed at
reproducing features of consciousness. Although preliminary, this result contributes to understanding
how integrative geometrical processing and principles can play a central role in cybernetics. In
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our approach, the geometry of the world model links perception and representation with action and
behavior. One motivation is theoretical, as we would like to assess how geometry changes learning
behavior and information processing. In this contribution, we have discarded representation learning
per se, as it was beyond its scope. In future work, we wish to use deep learning to learn group
structured representations. However, it is important to note that such approach differs from geometric
deep learning (14; 15) as we do not seek to learn equivariant representations: a group structure will
only be considered for the internal world model but none will be presupposed on the observation
side. Another motivation for this research is more practical, as we would like to use such principles
to design virtual and robotic artificial agents mimicking human cognition and behaviors following
(2; 5).
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A Definitions

A.1 Group and representing the real world in the internal world

Let us first recall what a group is.

Definition 3 (Group, §2 Chapter 1 (16)). A group is a set G with an operation . : G×G→ G that
is associative, such that there is an element e ∈ G for which e.g = g for any g ∈ G, and any g ∈ G
has an inverse denoted g−1 defined as satisfying, g.g−1 = g−1.g = e.

For a given solid frameR of the agent, the map ϕpR : E3 →W maps the real world to the internal
world of the agent. Such a map depends on a (arbitrary) choice of a projective transformation ρ
that allows to embed the moves of the agent, i.e. the Euclidean group E3, inside the projective
linear group. In Proposition A.1 of(2), moves of the agents are related to projective transformations
using a set of axioms based on phenomenal experience; we propose that the subject is centered in its
internal world, and around it proportions are faithful to reality. These axioms imply a unique family
of projective transformations, denoted as ργ in the main text, which we will now define.

Definition 4 (Projective transformation). Let for any (x, y, z) ∈ R3,

ρ(x, y, z) =

(
x

γz + 1
,

y

γz + 1
,

z

γz + 1

)
(6)

The map that relates real world to internal world is then ϕpR := ρ ◦ ϕR.

A.2 Markov kernel

Markov kernels play a central role in agency because actions can introduce control errors, and
similarly, sensory inputs can be noisy. Sensors may introduce noise, for instance, when one focuses
on a specific location in the hope of locating an object. In these situations, sensor-related uncertainty
is inevitable, leading to a certain "radius" of uncertainty (typically represented by the standard
deviation) around the expected object position. We model this uncertainty using stochastic maps also
called Markov kernels, which we will define now.

Definition 5 (Markov Kernel). A ‘Markov Kernel’ Π from Ω1 to Ω is a map Π : Ω× Ω1 → [0, 1]
such that for any ω1 ∈ Ω1,

∑
ω∈Ω P (ω|ω1) = 1, i.e. a map that sends any ω1 ∈ Ω1 to a probability

measure Π|ω1
∈ P(Ω).

B Proposition and Theorem and proofs

Proposition 1. When the agent a makes the move m ∈M , its solid reference frame changes fromR
toRm. In the Euclidean case this move induces invertible affine transformations ψm ∈ E(3) from
the ‘internal world model’ to itself. In the Projective case it induces a projective transformation,
ψm ∈ PGL(R3).
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Proof. Euclidean case:

Any 3-D affine transformation is encoded by a matrix M = (mi,j ; i, j = 1..3) and a vector
(mj,4; j = 1..3); let (mR

i,j ; i, j = 1..3) be the matrix associated to ϕR and (mR
4,j ; j = 1..3) its vector.

Projective case: ϕpR = ρ ◦ ϕR is the projective map with expression in homogeneous coordinates
given by the matrix,

m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

0 0 γ 1


By construction, the transition map in the projective case, ψpm, is ϕpRm ◦ ϕpR

−1; it is the composition
of two projective transformations, therefore it is a projective transformation.

B.1 Proof of Main Theorem

We will denote Bϵy the Euclidean ball of radius 1 around y ∈ R3,
i.e. Bϵy = {x ∈ R3| ∥x− y∥ ≤ ϵ}.
Lemma 1. For any Q ∈ P(W ), both in Euclidean and Projective cases, for any affine map or
projective transformation ψ :W →W ,

C(ψ∗Q) = −
∫
dyQ(ψ−1(Bϵy)) lnQ(ψ−1(Bϵy)) (7)

Proof.

C(ψ∗Q) =
3

4πϵ3
×∫

ψ∗Q(dx1)

∫
dy 1[x1 ∈ Bϵy] ln

1[x1 ∈ Bϵy]∫
ψ∗Q(dx1) 1[x1 ∈ Bϵy]

= − 3

4πϵ3

∫
dy lnQ(ψ−1(Bϵy)

∫
ψ∗Q(dx1) 1[x1 ∈ Bϵy]

= − 3

4πϵ3

∫
dyQ(ψ−1(Bϵy)) lnQ(ψ−1(Bϵy)) (8)

Proof of Theorem:

Euclidean case: for any set of moves M , and for any m ∈ M , ψm is a rotation; therefore for any
y ∈W , ψ−1

m (Bϵy) = Bϵ
ψ−1

m (y)
. Then, for any prior Q ∈ P(W ),

C(ψm,∗Q) = − 3

4πϵ3

∫
dyQ(Bϵ

ψ−1
m (y)

) lnQ(Bϵ
ψ−1

m (y)
)

= − 3

4πϵ3

∫
dyQ(Bϵy) lnQ(Bϵy) (9)

In this case, the epistemic value is independent from the change of Euclidean frame, and not moving
is a perfectly valid choice for the agent to maximize it, at each time step of the exploration algorithm
(Algorithm 1).
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Remark 1. The fact that staying still is a valid strategy arises as the agent assumes (or believes) that
it has access to the whole configuration space of O. If it knew it had limited access to it, through for
example limited sight, we expect the agent would look around until the object O would be in sight,
and then stop moving.

Projective case: Consider two projective transformations ψ,ψ1 :W →W , if for any y ∈W ,

ψ−1(Bϵy) ⊆ ψ−1
1 (Bϵy) (10)

then,

−Q(ψ−1(Bϵy)) lnQ(ψ−1(Bϵy)) (11)

≥ −Q(ψ−1
1 (Bϵy)) lnQ(ψ−1

1 (Bϵy)) (12)

This suggests that the moves that maximize epistemic value are those where ψ−1
m shrinks the zone

around yo = ρ(ϕR(o)), which is the representation of O in the internal world of the agent. In
particular, it means magnifying the zone around ρ(ϕRm(o)) in the agent’s new frame, Rm, after
move m. The only way to do so is to select moves that bring the agent closer to O. Let us denote
yom := ρ(ϕRm(o)). Let us now make the previous argument more formal. We assume that the set of
moves M is finite. Let Q0 = q0dλ be any initial prior on W = P3(R), at stating time t = 0. After
one step, move m1 is chosen and the agent updates its prior as,

q1(x) ∼= 1[x ∈ Bϵyom1
]q0(x) (13)

where ∼= means proportional to. The prior we now consider is Q1 denoted simply as Q. One shows
that there is α > 0, such that for all m ∈M , and ϵ > 0 small enough,

C(ψm,∗Q) = − 3

4πϵ3
×∫

dy 1[y ∈ Bαϵyom ]Q(ψ−1
m (Bϵy)) lnQ(ψ−1

m (Bϵy)) (14)

(15)

Let ≈ stand for ‘approximately equal to’ (equal at first order in development in powers of ϵ). Then
from the previous statement the summand can be approximated by its value in yom:

C(ψm,∗Q) ≈ −α3Q(ψ−1
m (Bϵyom)) lnQ(ψ−1

m (Bϵyom)) (16)

Furthermore, Q(ψ−1
m (Bϵyom)) ≈ 4πϵ3

3
q1(y

o)
| det∇ψm|(yo) , where |det∇ψm|(yo) is the absolute value of

the Jacobian determinant of ψm at yo. The epistemic value is maximized when |det∇ψm|(yo) is
maximized. By definition, ψm = ρ ◦ ϕRm ◦ ϕ−1

R ◦ ρ−1, therefore, by the chain rule of differentiation

|det∇ψm|(yo)
= |det∇ρ|(ϕRm(o)).|detϕRm |(o).|det∇[ϕ−1

R ◦ ρ
−1]|(yo) (17)

Let us make explicit each terms in the previous equation. ϕRm is a rigid movement therefore,
|detϕRm |(o) = 1. |det∇[ϕ−1

R ◦ ρ−1]|(yo) does not depend on m so we can label it as a constant
C. ϕRm(o) is the coordinate of O in the Euclidean frame Rm; let us denote (xm, ym, zm) these
coordinates, i.e. (xm, ym, zm) := ϕRm(o). Then,

|det∇ρ|(xm, ym, zm) =
1

(γzm + 1)4
(18)
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Therefore, |det∇ψm|(yo) = C 1
(γzm+1)4 .

As we assumed that for any move m ∈M , the object O is always in front of the agent, then zm ≥ 0;
in this case, zm is also the distance of the agent to the object. Epistemic value is maximized when zm
is minimized and therefore the agent selects moves that reduce its distance to the object. Denote one
of such move m; the argument then loops back with the new reference frameRm and updated belief
q ← ψm,∗q|yom .

C Implementation

Algorithm 1 is implemented in the following manner. Beliefs and the Markov kernel corresponding to
sensors were considered to be multivariate normal distributions, that is PY |X ∼ N (µY |X , ΣY |X) and
QX ∼ N (µX , ΣX). Belief update through the action of a group was approximated using a Gaussian
distribution; a projective transformation changes a Gaussian distribution into a non Gaussian one
which is difficult to describe. Therefore we replace this non-Gaussian distribution with a Gaussian
distribution with same mean and variance. We assumed µY |X = x (which implies µy = µx) and
ΣY |X = ϵ2I where I is the identity matrix and ϵ > 0 a positive real number. As a result, for a given
observation yo, QX|yo and C(ψm,∗QX) can be computed efficiently. The joint distribution P on
X,Y is a Gaussian distribution:

P (x, y) = p(y|x)p(x)
P (x, y) ∼ N (µX,Y , ΣX,Y )

with µX,Y = (µX , µX) and

ΣX,Y =

(
ΣXX ΣXX
ΣXX ϵ2I+ΣXX

)
(19)

The variance of Y is ΣY Y = ϵ2I+ΣXX .

The joint distribution being Gaussian entails that the distribution of X conditioned on y = yo is
also Gaussian, thus QX|yo ∼ N (µX|yo , ΣX|yo). Applying Proposition 3.13. (17) to our setting, the
mean and covariance of the conditioned distribution are given by:

µX|yo = µX +ΣXXΣ−1
Y Y (y

o − µX) (20)

ΣX|yo = ΣXX − ΣXXΣ−1
Y Y ΣXX (21)

Epistemic value is computed using the Kullback-Leibler divergence. With full knowledge of the joint
distribution, in the Gaussian case, following the expression of entropy for gaussian vectors (Chapter
12 Equation 12.39, (18)) it is computed as:

C(QX) = I(X;Y ) =
1

2
ln

(detΣXX)(detΣY Y )

detΣX,Y
(22)

The set of moves that can be selected by the agent is restricted to translations as the agent must
always face the object. The set of possible translations is composed of eight translations with the
same norm, with evenly distributed angles (one of them being oriented toward the object irrespective
of the position of the agent), and also contained an idle state, i.e. no translation. Here the angles
correspond to the angles of the translation and not a rotation angle of the solid frame of the agent, as
the agent always faces the object.

We approximated the belief after the action m of a given group using a Gaussian distribution,
ψm,∗QX ∼ N (µm, Σm). The mean and covariance matrix are approximated using numerical
integration:

µm =

∫
xp(ψ−1

m (x))
1

|det Jψm(ψ−1
m (x))|

dx (23)

Σm =

∫
(x− µm)(x− µm)T p(ψ−1

m (x))
1

|det Jψm
(ψ−1
m (x))|

dx (24)
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Figure 1: Movement of the agent in the Euclidean vs projective case

The experimental results of this implementation show the agent exhibits different behaviors depending
on the group used to structure its internal world model (Figure 1). The agent started from an initial
position with the object always located at a fixed position, and the algorithm was applied for 20
iterations, for both the Euclidean and Projective internal spaces. The agent started at (0, 0) and the
object was located at (0, 2) in the world frame E2 spanning the agent’s displacement floor. If all
translations were associated with epistemic values that only varied within a small range (±1e− 4) as
compared to the epistemic value of the idle state, reflecting numerical imprecision, the idle state was
selected (the agent did not move).

D Figures, Algorithm

Algorithm 1: Curiosity based Exploration for agent a

Data: Initialization: Q0
X initial belief, R0 initial solid reference frame of a

1 QX ← Q0
X ;

2 while True do
3 m← argmaxm∈M C(ψm,∗QX);
4 R ← solid reference frame of a after move m;
5 QX ← ψm,∗QX ;
6 yo ← ϕR(o);
7 QX ← QX|yo ;
8 end
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Figure 2: Toy model setup and main transformations
Upper-tier. Agent a simulates move m in Euclidean space E. R0 and R are its frames in E before and after the
move, oriented toward object O. Vertical arrows indicate transformations ϕ from the external to the internal
space. Lower-tier. Rendering of the effect of the internal group action ψ(m) corresponding to move m in the
Euclidean versus projective case. (Made with Unity).

X0 =W
ϕRm

o ∈ E3

X1

Y =W ∋ yo Y ∋ yom

1[ψm(x0) ∈ A]

PY |X

ϕR

Figure 3: m ∈ M is a move of the agent a, 1[ψm(x0) ∈ A] defines the kernel induced by move
m, PY |X is the noisy sensor. The diagram constituted of solid arrows defines the generative model
the agent uses to plan its actions. o is the position of the object in the ‘real world’, yo ∈ W is the
representation of o in the ‘internal world model’ of a with respect to the solid reference frameR, yom
is the same for the reference frameRm after move m.
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