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Abstract

In recent work we proposed to follow a categorical approach to

Statistical Mechanics. In this paper we continue in this direction and

give a categorical formulation of the decomposition of Gibbs measures

by extending the characterization of extreme Gibbs measures to the

categorical setting.
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1 Introduction

Statistical Mechanics is the field interested in the statistical study of in-
teracting particles (Xi ∈ Ei, i ∈ N). A landmark rigorous formulation of
Statistical Mechanics can be found in Georgii’s Gibbs Measures and Phase

Transition [1]. Such a framework is needed to define phases or, more gen-
erally, Gibbs measures of statistical systems. Phases only exist for infinitely
many interacting particles and do not exist for finite-size systems. The main
constructions of such a framework rely on the necessity to have a universe,
denoted Ω, that encompasses all possible configurations of the system, i.e.,
all the possible joint configurations of the particles Ω :=

∏

i∈N Ei. Not re-
ferring to a global space is problematic as exhibited by Giry’s seminal work
on A Categorical Approach to Probability Theory [2] and can be summarized
by the fact that the Giry monad, P, does not commute to limits. We are
interested in describing statistical systems for which it is not possible to have
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complete knowledge of the states of the particles at the same time; we want
to forget about the ‘Ω’ and we want to study statistical systems ‘locally’.

In [3, 4], we proposed to reformulate Statistical Mechanics and Gibbs
measures introducing an appropriate category. Among others, in [5], we
gave a characterization of independent variables in terms of projective ob-
jects in this category and an easy-to-verify condition that characterizes such
objects (for the injective case see [6–9]). In [10], we proposed an Entropy
functional for the categorical version of statistical systems. In this article, we
show how the characterization of extreme Gibbs measures (Theorem 7.7 [1]),
one of the steps for proving a zero-one law for the extreme Gibbs measures,
transfers in the categorical setting. In the classical theory of rigorous sta-
tistical mechanics, the tail σ-algebra generates the observables for which a
’generalized’ law of large numbers (zero-one law) holds. In this article, we
give a candidate for such a σ-algebra in the categorical setting and show
the associated extreme Gibbs measures decomposition. We will discuss in
a follow-up paper the generalization of the zero-one law of specifications to
A -specifications.

2 A -specifications and their Gibbs measures

In classical theory, a statistical system is defined by a specification (Definition
1.23 [1]). We proposed in [3,4] to reformulate such constructions as a couple
of a presheaf and a functor over a poset, denoted as A ; we call such a couple
an A -specification. Let us recall their definition. Let us denote Mes the
category that has as objects measurable spaces and as morphisms measurable
maps, and Kern the category that has as objects measurable spaces and as
morphisms Markov kernels.

Definition 2.1 (A -specifications (Definition 7 [3])). Let A be a poset. An
A -specification is a couple (G,F ) of a presheaf and a functor G : A op →
Mes and F : A → Kern such that for any a, b ∈ A with b ≤ a,

Ga
b ◦ F

b
a = id (1)

We denote α ◦ β simply as αβ in what follows.
Let us now recall the categorical generalization of the classical Gibbs

measures (Definition 1.23 [1]) that we propose.

Definition 2.2 (Gibbs measure for A -specifications Definition 8 [3]). Let
γ := (G,F ) be an A -specification,

G (γ) := {(pa ∈ P(G(a)), a ∈ A )|∀b ≤ a, F b
apb = pa} (2)

with P(G(a)) the (measurable) space of probability measures over G(a).
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3 Categorical Version of the Tail σ-Algebra

Measurable maps are particular Markov kernels. Let F : Eb → Ea be a
Markov kernel; let us denote it also as F (ωa|ωb), where ωb ∈ Eb and ωa ∈ Ea.
One associates to a Markov kernel F : Eb → Ea a linear map π : L∞(Ea) →
L∞(Eb) defined as follows: for any f ∈ L∞(Ea),

∀ωb ∈ Eb, π(f)(ωb) =

∫

f(ωa)F (dωa|ωb) (3)

This association is ‘functorial’, we may denote the underlying functor
L∞ : Kern

op → Vect which is presheaf from the category of Markov kernels
to the category of vector spaces. It is the presheaf that associates spaces to
their space of observables. Let us denote L∞ ◦ G : A → Vect as i and
L∞ ◦F : A op → Vect as π. In these notation one has that for any a, b ∈ A

such that b ≤ a then πa
b ◦ i

b
a = id.

Let us recall the definition of the tail σ-algebra in the classical formula-
tion. Let Ω =

∏

i∈NEi, where Ei are measurable spaces; let us denote F≥k

as the σ-algebra generated by the cylinders
∏

n≥k Ek. The tail σ-algebra
is defined as

⋂

k∈N F≥k. A more general definition holds when I is any set
and F⊇a is indexed by a subset a ⊆ I that is co-finite, i.e., which has a
finite complement. For a functor from A to Mes, let us denote σ(G(a)) as
the sigma algebra of the measurable space G(a), where a ∈ A , and σ(G)
as the underlying functor defined as σ(G)baAb := Ga

b
−1Ab, with b ≤ a. We

propose that one candidate that plays the role of the tail σ-algebra for a
given specification γ = (G,F ) is lim σ(G) defined as,

limσ(G) := {(Aa ∈ σ(G(a)), a ∈ A )|∀a, b ∈ A , Aa = Ga
b
−1Ab} (4)

Let us denote 1A : E → {0, 1} the indicator function over the set A that
sends ω ∈ A to 1 and ω 6∈ A to 0. Let us remark that 1Ab

◦Ga
b = 1[Ga

b (ωa) ∈
Ab] = 1Ga

b

−1Ab
. Remark that A ∈ limσ(G) is equivalent to 1A ∈ lim i; in

other words, limσ(G) is the restriction of lim i to indicator functions of the
form 1Aa

, a ∈ A .
Finally, we also need to recall that for any f ∈ L∞(E) and µ ∈ P(E),

one can define a measure f · µ as f · µ(dω) = f(ω)dω.

The key proposition of this document is Proposition 3.1; the proof of
that proposition is given for G(a), a ∈ A finite measurable sets. Therefore,
we assume in what follows that the measurable sets are finite. However,
there is no finiteness constraint on A . We will say that F > 0 when for any
a, b ∈ A , such that b ≤ a, F (ωa|ωb) > 0 for any ωb such that Ga

b (ωa) = ωb;
G ◦ F = id requires that F (ωa|ωb) = 0 when Ga

b (ωa) 6= ωb.
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The following lemma is an extension of the classical result that states that
conditioning over a σ-subalgebra F1 ⊆ F defines a morphism of modules
when finer (F measurable) observables are seen as modules over the coarser
(F1 measurable observables).

Lemma 3.1. Let E1, E2 be two measurable spaces, let g : E2 → E1 be a

measurable map and f : E1 → E2 be a Markov kernel so that, f ◦g = id. Let

us denote respectively i and π the induced linear maps on L∞(E1), L
∞(E2).

Let h ∈ L∞(E2) and k ∈ L∞(E1), then,

π(h).k = π(h.i(k)) (5)

Proof. Let us first prove the result in the particular case when h = 1B with
B ∈ σ(E2) and k = 1A with A ∈ σ(E1). Let us denote A the complement of
A, then 1A + 1A = 1 and 1A.1A = 0. Furthermore i(1A) = g−1A

π(1B) = π(1B .1g−1A) + π(1B .1g−1A
) (6)

and

π(1B .1g−1A) ≤π(1g−1A) = π ◦ i(1A) = 1A (7)

π(1B .1g−1A
) ≤π(1

g−1A
) = 1A (8)

Therefore,

π(1B)1A = π(1B .1g−1A)1A + π(1B .1g−1A)1A (9)

But, π(1B .1g−1A)1A ≤ 1A.1A = 0 so, π(1B)1A = π(1B .1g−1A)1A. Fur-
thermore, π(1B .1g−1A) = π(1B .1g−1A)1A + π(1B .1g−1A)1A therefore,

π(1B .1g−1A)1A ≤ π(i(1A)).1A = 0 (10)

We just showed that,

π(1B .1g−1A) = π(1B .1g−1A)1A (11)

So π(1B).1A = π(1B .i(1A)). The result then extends by linearity directly
to h =

∑

k≤n 1Bk
and k =

∑

k≤n1
1An

, which ends the proof.

Let us remark that if A ∈ lim σ(G) then A := (Aa, a ∈ A ) is also in
lim i.

Proposition 3.1. Let γ = (G,F ) be a specification, let G(a) be finite sets

for any a ∈ A , let F > 0. Let µ ∈ G (γ), for any f ∈
∏

a∈A L∞(G(a)), such

that ∀a ∈ A , µa(fa) = 1,

f.µ ∈ G (γ) ⇐⇒ ∃f̃ ∈ lim i, s.t. f.µ = f̃ .µ (12)
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Proof. Let us assume that f.µ ∈ G (γ), then for any a, b ∈ A such that b ≤ a,
and for any ga ∈ L∞(G(a)), by hypothesis, (f.µ)bπ

a
b (ga) = (f.µ)a(ga); it can

be rewritten as,

µb (π
a
b (ga).fb) = µa (fa.ga) (13)

By Lemma 3.1, πa
b (ga).fb = πa

b (ga.i
b
afb); therefore,

µbπ
a
b (ga.i

b
afb) = µa (fa.ga) (14)

Therefore fa = ibafb µa-almost surely.
We will now show that there is f̃ ∈ lim i such that f̃ .µ = f.µ. It is in this

part of the proof that we assume that G(a) are finite sets and that F > 0.
Let’s call Sa := suppµa, the support of µa, i.e., the set suppµa := {ωa ∈
G(a)|µa(ωa) > 0}. Let us denote Na := Sa its complement and Ma = 1Na

.
We will now show that (Na, a ∈ A ) ∈ lim σ(G).

For any b, a ∈ A such that b ≤ a, µai
b
a = µb; therefore, as µb(Mb) = 0,

one has that µai
b
a(Mb) = 0. Recall that iba(Mb) is the indicator function of the

set Ga
b
−1Nb; the previous remark implies that iba(Mb) ≤ Ma. Furthermore,

µbπ
a
b (Ma) = µa(Ma) = 0; therefore, πa

b (Ma) ≤ Mb.
Hence, as πa

b (i
b
aMb) = Mb and ibaMb ≤ Ma, then by applying πa

b on both
sides, Mb ≤ πa

b (Ma). And so πa
b (Ma) = Mb.

Recall that we showed that πa
b (Ma) = Mb and iba(Mb) ≤ Ma. In partic-

ular, Ma − iba(Mb) ≥ 0; furthermore, πa
b (Ma − iba(Mb)) = 0 so Ma = iba(Mb).

To be more explicit: ∀ωb ∈ G(b),

πa
b (Ma − iba(Mb))(ωb) =

∑

ωa∈G(a)

F (ωa|ωb)[Ma − iba(Mb)](ωa) (15)

As F (ωa|ωb) > 0 by hypothesis, then Ma = iba(Mb). This implies that
M ∈ lim i and N ∈ limσ(G). This also implies that S ∈ limσ(G).

Let f̃ = f1S. Then f1S ∈ limF and for any a ∈ A , fa = f̃a µa-a.s.,
which ends the proof.

One remarks that lim i is a subset of lim π: for any f ∈ lim i, by definition
for any a, b ∈ A such that b ≤ a, ibafb = fa and so πa

b i
b
afb = πa

b fa so
fb = πa

b fa.
Let us also remark that for any b ≤ a ∈ A , µa(Aa) = µb(Ab) for µ ∈

G (γ), A ∈ limG.

Theorem 3.1 (Extreme measure characterisation (Generalisation of Theo-
rem 7.7 [1]) ). Let γ = (G,F ) be a specification, let G(a) be finite sets for

any a ∈ A , let F > 0. G(γ) is a convex set. Each µ ∈ G (γ) is uniquely

determined by it’s restriction to limσ(G). Furthermore µ is extreme in G (γ)
if and only if for any A ∈ lim σ(G), ∀a ∈ A , µa(Aa) = 0 or 1.
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Proof. Let us denote π∗ the functor from A to Vect for which for any
b ≤ a, π∗b

a : (L∞F (b))∗ → (L∞F (a))∗ is the dual of πa
b that send linear

forms to linear forms. Then G (γ) is a subspace of the vector space limF ∗

and furthermore for any a ∈ A and p ∈ [0, 1], pµa + (1 − p)νa ∈ P(G(a))
whenever µa, νa ∈ P(G(a)). Therefore G (γ) is a convex set.

Proposition 3.1, allows us to apply a similar proof, when done with cau-
tion, to the one found of Theorem 7.7 in [1]. Let us recall the proof. Let µ, ν ∈
G(γ) such that µ| lim i = ν| lim i. Let µ = µ+ν

2 , then µ ∈ G (γ). But µ and ν

are absolutely continuous with respect to µ therefore for any a ∈ A there is
fa, ga ∈ L∞(G(a)) such that µa = faµa and νa = gaµa. By Proposition 3.1,
f, g ∈ lim i. By hypothesis, for any h ∈ lim i µa(ha) = µa(ha) = νa(ha). Im-
portantly iba is a ring morphism of L∞(G(b)), i.e. iba(kb.hb) = iba(kb).i

b
a(hb).

Therefore for any h, k ∈ lim i, k.h ∈ lim i; as f − g ∈ lim i, then it is also the
case that (f − g)2 ∈ lim i; but for any a ∈ A ,

µa[(fa − ga)
2] = 0 (16)

so fa = ga µa − a.s. Therefore fµ = gµ and µ = ν.
Showing that µ ∈ G (γ) is extreme is equivalent to µ being trivial on lim i

is a direct generalization of Corollary 7.4 [1] thanks to Proposition 3.1. Let
µ ∈ G (γ) be not trivial on lim σ(G) then there is A = (Aa, a ∈ A ) ∈ limσ(G)
such that,

∀a ∈ A , 0 < µa(Aa) < 1 (17)

Therefore for any a ∈ A ,

µa = µa(Aa)
1Aa

.µa

µa(Aa)
+ µa(Aa)

1Aa
.µa

µa(Aa)
(18)

Furthermore, for any b ≤ a,

iba
1Ab

µa(Ab)
=

1Aa

µa(Ab)
=

1Aa

µa(Aa)
(19)

Therefore
1Aa

µa(Aa)
, a ∈ A is in lim i and so by Lemma 3.1,

(

1Aa
.µa

µa(Aa)
, a ∈ A

)

∈

G (γ). Similarly
(

1
Aa

.µa

µa(Aa)
, a ∈ A

)

∈ G (γ). In particular there is 0 < p < 1 so

that µ = pν + (1 − p)ν1 with ν, ν1 ∈ G (γ). Therefore µ is not an extreme
measure.

Assume now that µ ∈ G (γ) is such that for any A ∈ limσ(A), and any
a ∈ A , µa(Aa) = 0 or 1. Suppose that there is 0 < p < 1 such that
µ = pν + (1 − p)ν1 with ν, ν1 ∈ G (γ). Then for any a ∈ A , νa, ν1a is
absolutely continuous with respect to µa. Therefore, there are (fa ≥ 0, a ∈
A ), (ga ≥ 0, a ∈ A ) both in

∏

a∈A
L∞(G(a)) such that ν = fµ and ν1 = gµ.

As ν, ν1 ∈ G (γ), then by Lemma 3.1, f, g ∈ lim i. Therefore, for all a ∈ A ,
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µa(fa) = 0 or for all a ∈ A , µa(ga) = 0. So, µ = ν or µ = ν1 and µ is
extreme in G (γ).

Let us remark that if A has only one connected component, then for
A ∈ limσ(G), satisfying ∀a ∈ A , µa(Aa) = 0 or 1 is equivalent to ∃a ∈
A , µa(Aa) = 0 or 1. Indeed, if a, b are in the same connected component,
i.e., a ≤ b or b ≤ a, then µa(Aa) = µb(Ab).
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