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In recent work we proposed to follow a categorical approach to Statistical Mechanics. In this paper we continue in this direction and give a categorical formulation of the decomposition of Gibbs measures by extending the characterization of extreme Gibbs measures to the categorical setting.

Introduction

Statistical Mechanics is the field interested in the statistical study of interacting particles (X i ∈ E i , i ∈ N). A landmark rigorous formulation of Statistical Mechanics can be found in Georgii's Gibbs Measures and Phase Transition [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. Such a framework is needed to define phases or, more generally, Gibbs measures of statistical systems. Phases only exist for infinitely many interacting particles and do not exist for finite-size systems. The main constructions of such a framework rely on the necessity to have a universe, denoted Ω, that encompasses all possible configurations of the system, i.e., all the possible joint configurations of the particles Ω := i∈N E i . Not referring to a global space is problematic as exhibited by Giry's seminal work on A Categorical Approach to Probability Theory [START_REF] Giry | A categorical approach to probability theory[END_REF] and can be summarized by the fact that the Giry monad, P, does not commute to limits. We are interested in describing statistical systems for which it is not possible to have complete knowledge of the states of the particles at the same time; we want to forget about the 'Ω' and we want to study statistical systems 'locally'.

In [START_REF] Sergeant-Perthuis | A categorical approach to statistical mechanics[END_REF][START_REF] Sergeant-Perthuis | Intersection property, interaction decomposition, regionalized optimization and applications[END_REF], we proposed to reformulate Statistical Mechanics and Gibbs measures introducing an appropriate category. Among others, in [START_REF] Sergeant-Perthuis | Interaction decomposition for presheaves[END_REF], we gave a characterization of independent variables in terms of projective objects in this category and an easy-to-verify condition that characterizes such objects (for the injective case see [START_REF] Sergeant-Perthuis | Bayesian/graphoid intersection property for factorisation spaces[END_REF][START_REF] Sergeant-Perthuis | Intersection property and interaction decomposition[END_REF][START_REF] Sergeant-Perthuis | Interaction decomposition for hilbert spaces[END_REF][START_REF] Bennequin | Extra-fine sheaves and interaction decompositions[END_REF]). In [START_REF] Sergeant-Perthuis | Regionalized optimization[END_REF], we proposed an Entropy functional for the categorical version of statistical systems. In this article, we show how the characterization of extreme Gibbs measures (Theorem 7.7 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]), one of the steps for proving a zero-one law for the extreme Gibbs measures, transfers in the categorical setting. In the classical theory of rigorous statistical mechanics, the tail σ-algebra generates the observables for which a 'generalized' law of large numbers (zero-one law) holds. In this article, we give a candidate for such a σ-algebra in the categorical setting and show the associated extreme Gibbs measures decomposition. We will discuss in a follow-up paper the generalization of the zero-one law of specifications to A -specifications.

A -specifications and their Gibbs measures

In classical theory, a statistical system is defined by a specification (Definition 1.23 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]). We proposed in [START_REF] Sergeant-Perthuis | A categorical approach to statistical mechanics[END_REF][START_REF] Sergeant-Perthuis | Intersection property, interaction decomposition, regionalized optimization and applications[END_REF] to reformulate such constructions as a couple of a presheaf and a functor over a poset, denoted as A ; we call such a couple an A -specification. Let us recall their definition. Let us denote Mes the category that has as objects measurable spaces and as morphisms measurable maps, and Kern the category that has as objects measurable spaces and as morphisms Markov kernels. Definition 2.1 (A -specifications (Definition 7 [START_REF] Sergeant-Perthuis | A categorical approach to statistical mechanics[END_REF])). Let A be a poset. An A -specification is a couple (G, F ) of a presheaf and a functor G : A op → Mes and F : A → Kern such that for any a, b

∈ A with b ≤ a, G a b • F b a = id (1) 
We denote α • β simply as αβ in what follows.

Let us now recall the categorical generalization of the classical Gibbs measures (Definition 1.23 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]) that we propose. Definition 2.2 (Gibbs measure for A -specifications Definition 8 [START_REF] Sergeant-Perthuis | A categorical approach to statistical mechanics[END_REF]). Let γ := (G, F ) be an A -specification,

G (γ) := {(p a ∈ P(G(a)), a ∈ A )|∀b ≤ a, F b a p b = p a } (2) 
with P(G(a)) the (measurable) space of probability measures over G(a).

Categorical Version of the Tail σ-Algebra

Measurable maps are particular Markov kernels. Let F : E b → E a be a Markov kernel; let us denote it also as F (ω a |ω b ), where ω b ∈ E b and ω a ∈ E a .

One associates to a Markov kernel F :

E b → E a a linear map π : L ∞ (E a ) → L ∞ (E b ) defined as follows: for any f ∈ L ∞ (E a ), ∀ω b ∈ E b , π(f )(ω b ) = f (ω a )F (dω a |ω b ) (3) 
This association is 'functorial', we may denote the underlying functor L ∞ : Kern op → Vect which is presheaf from the category of Markov kernels to the category of vector spaces. It is the presheaf that associates spaces to their space of observables. Let us denote

L ∞ • G : A → Vect as i and L ∞ • F : A op → Vect as π. In these notation one has that for any a, b ∈ A such that b ≤ a then π a b • i b a = id.
Let us recall the definition of the tail σ-algebra in the classical formulation. Let Ω = i∈N E i , where E i are measurable spaces; let us denote F ≥k as the σ-algebra generated by the cylinders n≥k E k . The tail σ-algebra is defined as k∈N F ≥k . A more general definition holds when I is any set and F ⊇a is indexed by a subset a ⊆ I that is co-finite, i.e., which has a finite complement. For a functor from A to Mes, let us denote σ(G(a)) as the sigma algebra of the measurable space G(a), where a ∈ A , and σ(G) as the underlying functor defined as

σ(G) b a A b := G a b -1 A b , with b ≤ a.
We propose that one candidate that plays the role of the tail σ-algebra for a given specification γ = (G, F ) is lim σ(G) defined as,

lim σ(G) := {(A a ∈ σ(G(a)), a ∈ A )|∀a, b ∈ A , A a = G a b -1 A b } (4) 
Let us denote 1 A : E → {0, 1} the indicator function over the set A that sends ω ∈ A to 1 and ω ∈ A to 0. Let us remark that

1 A b • G a b = 1[G a b (ω a ) ∈ A b ] = 1 G a b -1 A b . Remark that A ∈ lim σ(G) is equivalent to 1 A ∈ lim i; in other words, lim σ(G) is the restriction of lim i to indicator functions of the form 1 Aa , a ∈ A .
Finally, we also need to recall that for any f ∈ L ∞ (E) and µ ∈ P(E), one can define a measure f

• µ as f • µ(dω) = f (ω)dω.
The key proposition of this document is Proposition 3.1; the proof of that proposition is given for G(a), a ∈ A finite measurable sets. Therefore, we assume in what follows that the measurable sets are finite. However, there is no finiteness constraint on A . We will say that F > 0 when for any

a, b ∈ A , such that b ≤ a, F (ω a |ω b ) > 0 for any ω b such that G a b (ω a ) = ω b ; G • F = id requires that F (ω a |ω b ) = 0 when G a b (ω a ) = ω b .
The following lemma is an extension of the classical result that states that conditioning over a σ-subalgebra F 1 ⊆ F defines a morphism of modules when finer (F measurable) observables are seen as modules over the coarser (F 1 measurable observables). Lemma 3.1. Let E 1 , E 2 be two measurable spaces, let g : E 2 → E 1 be a measurable map and f : E 1 → E 2 be a Markov kernel so that, f • g = id. Let us denote respectively i and π the induced linear maps on

L ∞ (E 1 ), L ∞ (E 2 ). Let h ∈ L ∞ (E 2 ) and k ∈ L ∞ (E 1 ), then, π(h).k = π(h.i(k)) (5) 
Proof. Let us first prove the result in the particular case when

h = 1 B with B ∈ σ(E 2 ) and k = 1 A with A ∈ σ(E 1 ). Let us denote A the complement of A, then 1 A + 1 A = 1 and 1 A .1 A = 0. Furthermore i(1 A ) = g -1 A π(1 B ) = π(1 B .1 g -1 A ) + π(1 B .1 g -1 A ) (6) 
and

π(1 B .1 g -1 A ) ≤π(1 g -1 A ) = π • i(1 A ) = 1 A (7) π(1 B .1 g -1 A ) ≤π(1 g -1 A ) = 1 A (8) 
Therefore,

π(1 B )1 A = π(1 B .1 g -1 A )1 A + π(1 B .1 g -1 A )1 A (9) But, π(1 B .1 g -1 A )1 A ≤ 1 A .1 A = 0 so, π(1 B )1 A = π(1 B .1 g -1 A )1 A . Fur- thermore, π(1 B .1 g -1 A ) = π(1 B .1 g -1 A )1 A + π(1 B .1 g -1 A )1 A therefore, π(1 B .1 g -1 A )1 A ≤ π(i(1 A )).1 A = 0 (10) 
We just showed that,

π(1 B .1 g -1 A ) = π(1 B .1 g -1 A )1 A (11) So π(1 B ).1 A = π(1 B .i(1 A )).
The result then extends by linearity directly to h = k≤n 1 B k and k = k≤n 1 1 An , which ends the proof.

Let us remark that if

A ∈ lim σ(G) then A := (A a , a ∈ A ) is also in lim i. Proposition 3.1. Let γ = (G, F ) be a specification, let G(a) be finite sets for any a ∈ A , let F > 0. Let µ ∈ G (γ), for any f ∈ a∈A L ∞ (G(a)), such that ∀a ∈ A , µ a (f a ) = 1, f.µ ∈ G (γ) ⇐⇒ ∃ f ∈ lim i, s.t. f.µ = f .µ (12)
Proof. Let us assume that f.µ ∈ G (γ), then for any a, b ∈ A such that b ≤ a, and for any g a ∈ L ∞ (G(a)), by hypothesis, (f.µ) b π a b (g a ) = (f.µ) a (g a ); it can be rewritten as,

µ b (π a b (g a ).f b ) = µ a (f a .g a ) (13) By Lemma 3.1, π a b (g a ).f b = π a b (g a .i b a f b ); therefore, µ b π a b (g a .i b a f b ) = µ a (f a .g a ) (14) 
Therefore f a = i b a f b µ a -almost surely. We will now show that there is f ∈ lim i such that f .µ = f.µ. It is in this part of the proof that we assume that G(a) are finite sets and that F > 0. Let's call S a := suppµ a , the support of µ a , i.e., the set suppµ a := {ω a ∈ G(a)|µ a (ω a ) > 0}. Let us denote N a := S a its complement and M a = 1 Na . We will now show that (N a , a ∈ A ) ∈ lim σ(G).

For any b, a

∈ A such that b ≤ a, µ a i b a = µ b ; therefore, as µ b (M b ) = 0, one has that µ a i b a (M b ) = 0. Recall that i b a (M b ) is the indicator function of the set G a b -1 N b ; the previous remark implies that i b a (M b ) ≤ M a . Furthermore, µ b π a b (M a ) = µ a (M a ) = 0; therefore, π a b (M a ) ≤ M b . Hence, as π a b (i b a M b ) = M b and i b a M b ≤ M a , then by applying π a b on both sides, M b ≤ π a b (M a ). And so π a b (M a ) = M b . Recall that we showed that π a b (M a ) = M b and i b a (M b ) ≤ M a . In partic- ular, M a -i b a (M b ) ≥ 0; furthermore, π a b (M a -i b a (M b )) = 0 so M a = i b a (M b ). To be more explicit: ∀ω b ∈ G(b), π a b (M a -i b a (M b ))(ω b ) = ωa∈G(a) F (ω a |ω b )[M a -i b a (M b )](ω a ) (15) 
As F (ω a |ω b ) > 0 by hypothesis, then M a = i b a (M b ). This implies that M ∈ lim i and N ∈ lim σ(G). This also implies that S ∈ lim σ(G).

Let f = f 1 S . Then f 1 S ∈ lim F and for any a ∈ A , f a = fa µ a -a.s., which ends the proof.

One remarks that lim i is a subset of lim π: for any f ∈ lim i, by definition for any a, b

∈ A such that b ≤ a, i b a f b = f a and so π a b i b a f b = π a b f a so f b = π a b f a . Let us also remark that for any b ≤ a ∈ A , µ a (A a ) = µ b (A b ) for µ ∈ G (γ), A ∈ lim G.
Theorem 3.1 (Extreme measure characterisation (Generalisation of Theorem 7.7 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]) ). Let γ = (G, F ) be a specification, let G(a) be finite sets for any a ∈ A , let F > 0. G(γ) is a convex set. Each µ ∈ G (γ) is uniquely determined by it's restriction to lim σ(G). Furthermore µ is extreme in G (γ) if and only if for any A ∈ lim σ(G), ∀a ∈ A , µ a (A a ) = 0 or 1.

Proof. Let us denote π * the functor from A to Vect for which for any b ≤ a, π * b a : (L ∞ F (b)) * → (L ∞ F (a)) * is the dual of π a b that send linear forms to linear forms. Then G (γ) is a subspace of the vector space lim F * and furthermore for any a ∈ A and p ∈ [0, 1], pµ a + (1p)ν a ∈ P(G(a)) whenever µ a , ν a ∈ P(G(a)). Therefore G (γ) is a convex set. Proposition 3.1, allows us to apply a similar proof, when done with caution, to the one found of Theorem 7.7 in [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. Let us recall the proof. Let µ, ν ∈ G(γ) such that µ | lim i = ν | lim i . Let µ = µ+ν 2 , then µ ∈ G (γ). But µ and ν are absolutely continuous with respect to µ therefore for any a ∈ A there is f a , g a ∈ L ∞ (G(a)) such that µ a = f a µ a and ν a = g a µ a . By Proposition 3.1, f, g ∈ lim i. By hypothesis, for any h

∈ lim i µ a (h a ) = µ a (h a ) = ν a (h a ). Im- portantly i b a is a ring morphism of L ∞ (G(b)), i.e. i b a (k b .h b ) = i b a (k b ).i b a (h b ). Therefore for any h, k ∈ lim i, k.h ∈ lim i; as f -g ∈ lim i, then it is also the case that (f -g) 2 ∈ lim i; but for any a ∈ A , µ a [(f a -g a ) 2 ] = 0 (16) so f a = g a µ a -a.s. Therefore f µ = gµ and µ = ν. Showing that µ ∈ G (γ) is extreme is equivalent to µ being trivial on lim i is a direct generalization of Corollary 7.4 [1] thanks to Proposition 3.1. Let µ ∈ G (γ) be not trivial on lim σ(G) then there is A = (A a , a ∈ A ) ∈ lim σ(G) such that, ∀a ∈ A , 0 < µ a (A a ) < 1 (17) 
Therefore for any a ∈ A ,

µ a = µ a (A a ) 1 Aa .µ a µ a (A a ) + µ a (A a ) 1 Aa .µ a µ a (A a ) (18) 
Furthermore, for any b ≤ a,

i b a 1 A b µ a (A b ) = 1 Aa µ a (A b ) = 1 Aa µ a (A a ) (19) 
Therefore 1 Aa µa(Aa) , a ∈ A is in lim i and so by Lemma 3.1, 1 Aa .µa µa(Aa) , a ∈ A ∈ G (γ). Similarly 1 A a .µa µa(Aa) , a ∈ A ∈ G (γ). In particular there is 0 < p < 1 so that µ = pν + (1p)ν 1 with ν, ν 1 ∈ G (γ). Therefore µ is not an extreme measure.

Assume now that µ ∈ G (γ) is such that for any A ∈ lim σ(A), and any a ∈ A , µ a (A a ) = 0 or 1. Suppose that there is 0 < p < 1 such that µ = pν + (1p)ν 1 with ν, ν 1 ∈ G (γ). Then for any a ∈ A , ν a , ν 1a is absolutely continuous with respect to µ a . Therefore, there are (f a ≥ 0, a ∈ A ), (g a ≥ 0, a ∈ A ) both in a∈A L ∞ (G(a)) such that ν = f µ and ν 1 = gµ. As ν, ν 1 ∈ G (γ), then by Lemma 3.1, f, g ∈ lim i. Therefore, for all a ∈ A , µ a (f a ) = 0 or for all a ∈ A , µ a (g a ) = 0. So, µ = ν or µ = ν 1 and µ is extreme in G (γ). 

  Let us remark that if A has only one connected component, then forA ∈ lim σ(G), satisfying ∀a ∈ A , µ a (A a ) = 0 or 1 is equivalent to ∃a ∈ A , µ a (A a ) = 0 or 1. Indeed, ifa, b are in the same connected component, i.e., a ≤ b or b ≤ a, then µ a (A a ) = µ b (A b ).