

Can we improve solid-state NMR sensitivity without DNP ?

Guillaume Laurent, Christian Bonhomme

Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université, 4 place Jussieu, 75005 Paris guillaume.laurent@sorbonne-universite.fr

15/06/2023 – GERM 2023 – Résonance Magnétique aux Extrêmes

Photo challenge

Context

chimie de la M

Instrumentation

Acquisition

"There are three problems in NMR: sensitivity, sensitivity and sensitivity", 2020 Dr Ulrich Scheler, Institute for Polymer Research, Dresden, Germany

BRUKER

Ultra-fast MAS, 100 k€

Can we improve solid-state NMR sensitivity without DNP ? \rightarrow extremely low cost limit \rightarrow 7 T, 4-7 mm

 L_{a} : *PSNR*_{max} = 3.0, quantification level

 L_d : *PSNR_{max}* = 1.0, detection level at unexpected position

 $L_c: PSNR_{max} = 0.5$ critical level, yes / no at expected position

L. A. Currie, Anal. Chem. 40, 586-593 (1968).

"In the NMR literature the RMS noise is usually multiplied by 2 for reasons that can be attributed only to tradition." $\rightarrow PSNR_{rms}/2$

M. E. Lacey et al., Chem. Rev. 99, 3133-3152 (1999).

G. Laurent et al., Appl. Spectrosc. Rev., 54, 602–630 (2019).

G. Laurent, RMN structurale dans le bassin parisien, Orléans, France (2018).

Instrumentation

J. Phys. D: Appl. Phys.. 45, 383001, 1-10 (2012).

Decrease coil size Increase filling factor

J. Magn. Reson. Ser. B. 108, 114-124 (1995).

D. Sakellariou *et al.*, *Nature*. 447, 694–697 (2007). J.-F. Jacquinot, D. Sakellariou, *Concept. Magn. Reson. A.* 38A, 33–51 (2011).

R. Weaver, http://electronbunker.ca/eb/CalcMethods2a.html (2016).

H. Nagaoka, The Journal of the College of Science, Imperial University of Tokyo, Japan. 27, 1–33 (1909).

E. B. Rosa, F. W. Grover, Bulletin of the Bureau of Standards. 8, 1–237 (1916).

Context

Best RF homogeneity with elongated coil $I_{sample} : d_{coil} : I_{coil} = 0.5 : 1 : 1.2$

Compromise between Eddy currents and RF homogeneity

G. Aubert et al., J. Chem. Phys. 137, 154201-154201-14 (2012).

Strong influence of sample position

Characteristics	Solenoid coil	TLR coil
Design	\odot	$\overline{\mathbf{S}}$
Manipulation	:	\odot
Mechanical tolerance	:	
Ease of spin	$\overline{\mathbf{c}}$	\odot
RF homogeneity	\odot	
RF power	\odot	÷
Leakage point	Wire soldering	Substrate
Time gain	9.6	4.2

Collab. Marie Poirier-Quinot

Fast acquisitions

Dims	Direct points	Indirect increments			Dhaca	Total		Dick
		#1	#2	#3	quad	FID	Time	space
1D	512	-	-	-	2 (sim)	2 (sim)	5 s	4.0 ko
2D	512	128	-	-	4	512	21 min	1.0 Mo
3D	512	128	128	-	8	1.3e5	3,8 d	268 Mo
4D	512	128	128	128	16	3.4e7	2,7 у	69 Go

Chimie de la Matiere Condensée de la Matiere de la Matiere

Radial / Non-Uniform Sampling

Instrumentation

Context

full sampling

V. Orekhov, Biomolecular NMR : modern tools for data processing and interpretation dynamics, Gothenburg, Sweden (2017).

Acquisition

G. Bodenhausen and R. R. Ernst, *J. Magn. Reson.* (1969), 45, 2, 367–373 (1981).

Strong duration decrease
full resolution
sensitivity increase
processing complexity

Conclusion

Processing

non-uniform sampling

J. C. J. Barna *et al.*, *J. Magn. Reson.* (1969), 73, 1, 69–77 (1987).

V. Orekhov, Workshop on novel reconstruction strategies in NMR and MRI, Goettingen, Germany (2010).

A. Shchukina et al., J Biomol NMR, 68, 2, 79–98 (2017).

K. Kazimierczuk et al. in Novel sampling approaches in higher dimensional NMR, (Springer, 2012), 79–124.

22

Chimie de la Matiere Condensée

Context

Instrumentation

Characteristics	US	NUS
High dimension	:	
Sensitivity	$\overline{\mathbf{S}}$	\odot
Resolution	$\overline{\mathbf{S}}$	\odot
Sampling	\odot	:
Reconstruction	\odot	$\overline{\mathbf{c}}$
Topspin	\odot	:
External	\odot	\odot
Time gain	NA	~3-5

Processing

NUS outlook

MddNMR

Acquisition

K. Kazimierczuk, V. Y. Orekhov, *Angew. Chem. Int. Ed.* 50, 5556–5559 (2011).

Conclusion

M. W. Maciejewski et al., Biophys. J., 112, 8, 1529–1534 (2017).

Signal processing

G. Laurent et al., Appl. Spectrosc. Rev., 54, 602-630 (2019).

Context

chimie de la Mation

rondensée de a

Instrumentation

Acquisition

Processing

Automatic thresholding

6*7380 simulated spectra

Malinowski's Significance Level (SL) at 5 % E. R. Malinowski, *Factor analysis in chemistry* (Wiley, 3rd ed., 2002).

 $PSNR_{max} = 2$

Gaussian peak: two components

Extracted error: overestimation by 20 % Z. Dong et al., Am. J. Neuroradiol. 30, 1096–1101 (2009).

G. Laurent et al., Appl. Spectrosc. Rev., 55, 173-196 (2020).

Instrumentation

Useful to denoise spectra

Context

PSNR_{max} ~2

Time gain ~2.3

Computation time gain ~100

~20 % overestimation of Gaussian peaks

Processing

SVD outlook

Improve 2D denoising

Acquisition

Conclusion

Conclusion

General conclusion

PSNR gain of 2→ time gain of 4 Potential decrease of acquisition time by > 500 More samples or more complex materials Time consuming developments Need of programming

General outlook

Combining techniques Improving MACS dipolar recoupling Process 3D NUS spectra Improving SVD on 2D spectra

Acknowledgements

Trainees, docs & post-docs

- Samy Liso (2015)
- Pierre-Aymeric Gilles (2017)
- Winh-Chhunn Teh (2019-2022)
- Andrew Rankin (2020-2021)

Thank you for your attention

Supplementary materials

