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Electrostatic correlations between ions dissolved in water are known to impact their transport properties
in numerous ways, from conductivity to ion selectivity. The effects of these correlations on the solvent
itself remain, however, much less clear. In particular, the addition of salt has been consistently reported
to affect the solution’s viscosity – but most modelling attempts fail to reproduce experimental data even at
moderate salt concentration. Here, we use an approach based on stochastic density functional theory, which
accurately captures charge fluctuations and correlations. We derive a simple analytical expression for the
viscosity correction in concentrated electrolytes, by directly linking it to the liquid’s structure factor. Our
prediction compares quantitatively to experimental data at all temperatures and all salt concentrations up
to the saturation limit. This universal link between microscopic structure and viscosity allows to shed light
on the nanoscale dynamics of water and ions in highly concentrated and correlated conditions.

I. INTRODUCTION

One mole of table salt is dissolved in a liter of pure
water: how does this addition modifies the liquid’s
viscosity? While this question has been addressed in
great details by many experimentalists over the last two
centuries1–3, their observations are often difficult to ra-
tionalize beyond the qualitative level. In particular, the
effects of electrostatic interactions between ions dissolved
in water are known to be manyfold, with unclear con-
sequences on the liquid’s rheological properties. How
these interactions impact ions’ transport properties has
been the subject of many modelling attempts for over
a century, starting with the seminal works of Debye,
Hückel, Onsager and others4–6. Most existing theories
of electrokinetic transport share, however, many com-
mon shortcomings, such as failing at high salt concen-
trations or for multivalent ions. In addition, the ex-
act nature of the coupling between the motion of dis-
solved ions and that of the surrounding solvent remains
a very much open question, even in the apparently sim-
ple case of ions in room temperature water; let alone
in more complex environments such as nanoconfined or
glass-forming liquids7–9, where charge fluctuations can
play a key role10.

Here, we focus on the impact of the presence of salt on
the liquid’s viscosity. It had indeed be noticed first by
Poiseuille1 that increasing the salt concentration gener-
ally also increases an electrolyte’s viscosity, sometimes by
up to one order of magnitude near the saturation limit.
Later, Jones and Dole3 noted that, in most cases, the
relative change of the liquid’s viscosity η followed an em-
pirical law – now known as the Jones-Dole equation – of
the form:

∆η = η − η0 ' A
√
c+Bc, (1)

a)Electronic mail: paul.robin@ista.ac.at
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FIG. 1. Electrostatic correlations in aqueous electrolytes. A
Debye correlation cloud around a cation at thermal equilib-
rium. B Deformation of the correlation cloud under a shear
flow, in the reference frame of a cation. This deformation
allows ions to transmit momentum through the fluid via elec-
trostatic interactions, playing the role of an additional viscos-
ity.

where η0 is the viscosity of the pure solvent at the same
temperature, c is the salt concentration and A and B are
empirical, salt- and temperature-dependent parameters.

From the qualitative point of view, the origin of this
“ionic viscosity” can be readily understood. At thermal
equilibrium, ions are typically surrounded by oppositely
charged ions, creating a so-called Debye correlation cloud
extending over a typical scale known as the Debye length
(see Fig. 1A):

λD =

√
εkBT

2e2c
, (2)

where T is temperature, ε the solvent’s dielectric con-
stant, kB Boltzmann’s constant and e the elementary
charge. In presence of a fluid velocity gradient, however,
the correlation cloud is sheared (see Fig. 1B), and elec-
trostatic forces between ions contribute to homogeneize
momentum throughout the fluid, effectively increasing
its viscosity. Quantifying this effect is a notoriously hard
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problem, pioneered by Falkenhagen and Debye11. They
obtained that, in the limit of infinite dilution, ion-ion
electrostatic interactions are responsible for a viscosity
increase of the form:

∆ηion-ion =
1

60

√
`Bc√
8π

kBT

D
, (3)

where we introduced the diffusion coefficient D of ions
as well as the Bjerrum length `B, which measures the
strength of electrostatic interactions:

`B =
e2

4πεkBT
. (4)

This result yields a theoretical prediction for the value
of the A coefficient of the Jones-Dole equation (1). This
prediction compares favorably to experiments in the limit
of very high dilution (see Fig. 2).

At higher concentrations, the B term introduced by
Jones and Dole is generally interpreted as describing
how individual ions perturb the solvent – an effect that
is a priori linear in salt concentration. Positive values
of B were initially interpreted as stemming from a re-
inforcement of the hydrogen bond network in water (a
phenomenon known as kosmotropy), and conversely for
negatives values (chaotropy). Yet, recent works have
shown that, while this effect does seem to originate in
local electrostatic interactions between ions and water, it
does not correspond to large-scale changes in the solvent’s
structure12,13. In addition, adding this phenomenologi-
cal term only provides good agreement with experimental
data for concentrations up to around 100 mM.

Based on these observations, one can write the viscos-
ity increment as the sum of two terms:

∆η = ∆ηion-ion + ∆ηion-water, (5)

where ∆ηion-ion (respectively ∆ηion-water) corresponds to
the contribution of ion-ion (respectively ion-water) inter-
actions.

Various attempts at extending the Jones-Dole law were
reported in the literature 15–17; they generally amount
to adding phenomenological terms scaling as c2, c log c,
etc., emerging from e.g. volume exclusion effects, ion-
ion interactions or electrostatic barriers for microscopic
rearrangements – without strong theoretical evidence for
any of the suggested scalings. In addition, the suggested
models contain various fitting parameters that do not
allow for easy physical interpretation, or only compare
reasonably to certain salts or experimental conditions.
As an example of such limitations, in the limit of very
high concentrations (above 1 M), the viscosity increment
seems to scale like c3/2, see Fig. 2 in the case of sodium
bromide (NaBr). This scaling differs from the ones often
used in the literature to extend the Jones-Dole law.

It is not a priori clear whether these high-concentration
deviations arise from ion-ion or ion-water interactions.
However, rescaling the viscosity increment by the viscos-
ity of pure water η0(T ), and plotting it as function of the
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FIG. 2. Comparison between experimental data and the
Falkenhagen limiting law. Blue points: Experimental data
for a NaBr solution at 25 °C (reproduced from Ref.14). Red
line: Falkenhagen limiting law, ∆η ∝

√
c. Yellow line: power

law fit ∆η ∝ c1.5 in the limit of high concentrations.
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FIG. 3. Rescaled viscosity increment as function of concentra-
tion and temperature. x axis: c × `B (note that `B depends
on temperature); y axis: ∆η/η0(T ). Symbols represent ex-
perimental data for KF, CaCl2 and LaCl3, reproduced from
Refs.14,18. Colors represent temperatures. Black lines are
guides for the eye.

quantity c`B, experimental data for a given salt at all
temperatures seem to collapse on a single mastercurve
at high concentrations. Since c`B ∝ λ−2

D is a measure of
electrostatic correlations between ions, this observation
suggests that high concentration deviations arise mostly
from ion-ion interactions.

Based on these observations, we develop in this paper
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a field-theoretical approach for the description of this
ionic viscosity, and show that it can be directly deter-
mined from the charge structure factor of the electrolyte.
The latter can be determined thanks to a stochastic
density functional theory based on the Dean-Kawasaki
equation19,20, which has recently proved successful at de-
termining various properties of electrolytes21–24. In par-
ticular, we make use of a technique introduced by Avni
and coworkers22 to cut off electrostatic interactions at
short distance, enabling to better describe the structure
of concentrated electrolytes.

Overall, we show as our main result that the viscosity
increment can determined analytically as a Fourier space
integral:

∆ηion-ion =
c

15(2π)2

kBT

D

∫
dqV (q)

d

dq

[
q2C0

ρ(q)
∂C0

ρ

∂q

]
,

(6)
where V (q) is the Fourier-transformed ion-ion interac-

tion potential (e.g. electrostatic or van der Waals in-
teractions), and C0

ρ is the charge structure factor of the
electrolyte at thermal equilibrium in absence of any flow
– directly linking the electrolyte’s microscopic structure
to a macroscopic quantity such as viscosity. Based on this
result, a simple ansatz for the viscosity of concentrated
electrolytes is found to be:

∆η = B(T )c+
1

60
√

8π

kBT

D

[√
`Bc+ 6πa2 (`Bc)

3/2
]
,

(7)
where the only new parameter introduced by our model
is the ionic size a, allowing for straightforward physical
interpretation. We show that this theoretical result com-
pares favorably to experimental data in nearly all condi-
tions of temperature, concentration, salt composition and
valence, and can correctly predict viscosity increments of
more than 300%, in the case of multivalent salts close to
the saturation limit.

This paper is organized as follows. In Section II, we
present our field-theoretical framework and derive equa-
tion (7). Readers not interested in the details of the
computation may skip Sections II B to II E and go di-
rectly to Section III, where we compare our predictions
to a large body of experimental data. We also provide
a simple, quasi-quantitative interpretation of our result.
Finally, Section IV establishes our conclusion.

II. FROM ELECTROSTATIC CORRELATIONS TO THE
IONIC VISCOSITY

A. Hydrodynamics with ions

We consider an aqueous solution containing some
monovalent binary salt X+, Y − with concentration c,
subjected to a shear flow. We only consider ion-ion inter-
actions, and therefore treat water as a continuous fluid
with a given permittivity ε(T ). We assume that both

types of ions are monovalent with same diffusion coeffi-
cient D and have the same physical size; the relaxation
of these assumptions will be discussed later. We denote
by u(r) the local fluid velocity, p(r) the pressure field,
n+(r) the local density in cations and n−(r) the local
density in anions. We define ρ(r) = n+(r) − n−(r) the
local charge density. It should be noted that 〈ρ〉 = 0 due
to electroneutrality and that 〈n+〉 = 〈n−〉 = c. In the
limit of low Reynolds numbers, the velocity field solves
the Stokes equation:

η0∇2u−∇p+ f(r) = 0, (8)

where f represents all body forces acting on the fluid,
other than pressure. If the fluid is subject to no ex-
ternal force, then f(r) corresponds only to interactions
between dissolved ions at position r and other ions else-
where, which derives from an interaction potential V (r):

f(r) = −kBT

∫
dr′ρ(r)∇V (r− r′)ρ(r′). (9)

In the simplest case, where we assume that ions are
point particles with no short-range repulsion, the interac-
tion potential is simply the Coulomb potential: V (r) =
e2/4πkBTεr = `B/r. Other situations will also be ad-
dressed later. Since the fluid is electroneutral on average,
〈ρ〉 = 0 and the net force 〈f〉 acting on the fluid is solely
due to local and random charge fluctuations. Introducing
the Fourier transform as:

f(k) =

∫
f(r)eik·r dr, (10)

we can express the electrostatic force as:

〈f(k)〉 =
kBT

(2π)3

∫
dq 〈ρ(k− q)ρ(q)〉 (iq)V (q). (11)

This force vanishes at equilibrium due to the problem’s
symmetries, but may take a non-zero value in presence
of an external shear flow. The last equation allows to di-
rectly link 〈f〉 to the electrolyte’s charge structure factor
defined as:

Γρ(k,k
′) =

〈
ρ(k)ρ(k′)

〉
. (12)

The goal of next sections is therefore to compute this
structure factor using a field-theoretical approach, and
to use equation (11) to show that

〈f(k)〉 ' −k2∆ηu(k). (13)

To do so, we first compute the structure factor Γρ at
equilibrium (i.e. in the absence of any flow), and use it
to compute the effect of advection by the solvent when
an external flow is present. We then deduce a first-order
correction of the structure factor, and use equation (11)
to obtain the viscosity correction. We now present the
details of this computation.
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B. Charge fluctuations and the Dean-Kawasaki equation

The local charge density ρ can be determined by
computing the fluctuations of the local cation and an-

ion densities, n+ and n−, around their mean value
c. These fluctuations can be described by the Dean-
Kawasaki equation19,20, which has been used recently
to compute the conductivity of concentrated electrolytes
accurately23. It reads:

∂tn± = −∇ · (n±u) +D∇2n± ±D∇ ·
∫

dr′n±(r)∇V (r− r′)ρ(r′) +
√

2Dn±(r)∇ · ζ±, (14)

where ζ+ and ζ− are uncorrelated white noise fluxes with zero mean and unit variance. The first term on the right-
hand side corresponds to advection by the solvent, the second to ion diffusion, the third to ion-ion interactions and
the last one to random Brownian fluctuations.

In what follows, we assume that fluctuations of n+ and n− are small compared to the average value c, so that we
may work at first order in δn± = n± − c and ζ±. Since ρ = n+ − n− and that ∇ · u = 0 due to the fluid being
incompressible, we obtain:

∂tρ = −u ·∇ρ+D∇2ρ+ 2cD∇ ·
∫

dr′∇V (r− r′)ρ(r′) +
√

4Dc∇ · ζ, (15)

or, in Fourier space:

∂tρ(k) =
1

(2π)3

∫
dqu(k− q) · iqρ(q)−Dk2ρ(k)−Dκ2

Dρ(k)− i
√

4Dckζ. (16)

Note that we made use of the fact that the sum of two Gaussian vectors is itself a Gaussian vector, with additive
variance, and that V (q) = 4π`B/q

2 in the case of point-like ions. We also introduced the inverse Debye length
κD = λ−1

D .
The last equation can be seen as an evolution equation of the form:

∂tρ = (−a + iL) · ρ + b, (17)

where ρ is the vector {ρ(k)}k, and where the operators a, b and L are given by:

a = diag
{
Dk2 +Dκ2

D

}
k
, (18)

b =
{
−i
√

4Dckζ(k)
}
k
, (19)

L · f(k,k′) =
1

(2π)3

∫
dqu(k− q) · qf(q,k′). (20)

We may now integrate equation (16) over time, assuming that the initial condition vanishes:

ρ(k, t) =

[∫ t

0

e(−a+iL)(t−s) · bds

]
k

. (21)

The charge structure factor can now be obtained as:

Γρ(k,k
′; t) =

〈
ρ(t) · ρ†(t)

〉
kk′

=

∫ t

0

ds

∫ t

0

ds′e(−a+iL)(t−s) ·
〈
b · b†

〉
· e(−a−iLT)(t−s′). (22)

Since we are interested in static correlations, we now take the limit t→∞ and use the fact that:〈
ζ(k, t)ζ(k′, t′)

〉
= (2π)3δ(k + k′)δ(t− t′). (23)

We obtain (see Ref.25):

(−a + iL) · Γρ + Γρ · (−a− iLT) = −4Dck2(2π)3δ(k + k′), (24)

or, using the definition of L and a:

D(k2 +k′2 +2κ2
D)Γρ(k,k

′)− i

(2π)3

∫
dqu(k−q) ·qΓρ(q,k

′)+
i

(2π)3

∫
dqu(k′−q) ·qΓρ(k,q) = 4Dck2(2π)3δ(k+k′).

(25)
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Equation (25) cannot be solved directly. However, since we only wish to compute 〈f〉 up to linear order in the velocity
field u, one may use a perturbative approach, which we now describe. At zeroth order in u, one may set L = 0 and
obtain:

Γ0
ρ(k,k

′) = (2π)3δ(k + k′)
2ck2

k2 + κ2
D

= (2π)3δ(k + k′)g(k). (26)

To obtain the correction at first order in u, one may simply replace Γρ by Γ0
ρ in all convolutions in equation (25). We

obtain:

Γρ(k,k
′) = Γ0

ρ(k,k
′)− u(k + k′) · (ik′g(k′)− ikg(k))

D(k2 + k′2 + 2κ2
D)

. (27)

Inserting this result in equation (11) then yields:

〈f(k)〉 =
kBT

(2π)2D
2`B

∫
dq

g(q)− g(k− q)

q2 + (k− q)2 + 2κ2
D

qq

q2
· u(k). (28)

Note that we have used the incompressibility condition u(k) · k = 0. To compute this integral, we use spherical
coordinates (q, θ, φ) to describe the Fourier space, with k being the reference for angles. We have:

qq

q2
=

 cos2 θ sin θ cos θ cosφ sin θ cos θ sinφ
sin θ cos θ cosφ sin2 θ cos2 φ sin2 θ sinφ cosφ
sin θ cos θ sinφ sin2 θ sinφ cosφ sin2 θ sin2 φ

 . (29)

The rest of the integrand does not depend on φ, so we can write:∫ 2π

0

dφ
qq

q2
= π

2 cos2 θ 0 0
0 sin2 θ 0
0 0 sin2 θ

 . (30)

Note that the first diagonal coefficient is irrelevant since we only wish to evaluate the tensor on a vectorial subspace
orthogonal to k due to incompressibility. Since we interpret f as a viscous force, we are interested in its long wavelength
limit k → 0 (see equation (13)). Expanding to second order in k and integrating over θ, we obtain:

〈f(k)〉 ' −kBT

D
`B

2

15π
c

∫ ∞
0

dqκ2
Dq

2 5κ2
D − q2

(κ2
D + q2)4

k2u(k) = −kBT

D
`Bc

1

60κD
k2u(k). (31)

Comparing with equation (13), we find that indeed electrostatic interactions between ions effectively increase the
fluid’s viscosity by:

∆ηion-ion =
1

60
√

8π

kBT

D

√
`Bc, (32)

which corresponds to the Falkenhagen limiting law11.

C. General case: universal link between the charge structure factor and the viscosity increment

The above Fourier-space approach has the advantage of being computationally lighter than Falkenhagen’s historical
real-space derivation (which made extensive use of spherical harmonics), and of offering a straightforward way of
extending the result to any desired accuracy, provided that the charge structure factor in absence of flow Γ0

ρ is known,
and might deviate from equation (26) due to non-Coulombic interactions between ions, e.g. short-distance repulsion.
In the case of a generic interaction potential V (k), due to translation invariance in the absence of external flow, Γ0

ρ

can always be written as:

Γ0
ρ(k,k

′) = 2c(2π)3δ(k + k′)C0
ρ(k), (33)

where we introduced the rescaled structure factor C0
ρ(k). One can then express the viscosity increment as function of

this quantity alone:

∆η = lim
k→0

1

(2π)3k2

kBT

D

∫
dqV (q)

C0
ρ(q)− C0

ρ(k− q)

(k− q)2C0
ρ(q) + q2C0

ρ(k− q)
C0
ρ(q)C0

ρ(k− q)qq. (34)
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If we assume ions to be perfectly spherical, then C0
ρ(k) only depends on k. This assumption is valid for atomic ions

(Na+, Cl−, etc.), and is an approximation in the case of molecular ions (SO2−
4 , NO−3 , etc.). We can therefore expand

the integrand for k → 0 and perform the integral of φ and θ, yielding:

∆ηion-ion =
c

15(2π)2

kBT

D

∫
dqV (q)

d

dq

[
q2C0

ρ(q)
∂C0

ρ

∂q

]
. (35)

In the above case where ions interact through elet-
rostatics alone, with no short-range repulsion, then the
rescaled structure factor is given by

C0
ρ(k) =

k2

k2 + κ2
D

, (36)

and equation (35) is equivalent to equations (13) and
(32). However, equation (36) only provides a very rough
estimate of the electrolyte’s structure factor, which can
be determined from numerical simulations or experi-
ments. For example, Fig. 4A shows a comparison be-
tween equation (36) (red line) and results from molecular
dynamics simulations of a concentrated NaCl solution26

(blue circles). The above ansatz fails at capturing the
layered structure of ionic correlations at high concentra-
tions, as those emerge from short-distance repulsions be-
tween ions.

Consequently, a straightforward way of improving on
Falkenhagen’s result is to use a more precise ansatz for
C0
ρ(k), and insert it into equation (35). Although this

ansatz does not need to be physically motivated as long
as it faithfully reproduces experimental and numerical
data, we report results to this end in next section, making
use of a simple model first introduced by Ref.22.

D. Finite ion size and truncated Coulomb potential

Introducing a short-distance repulsion between ions
in the Dean-Kawasaki equation unfortunately makes the
computation intractable. However, Avni and coworkers
suggested an alternative approach to account for the fi-
nite size of ions22: truncating the Coulomb potential at
some finite cut-off distance a, and setting the ion-ion in-
teraction to zero below a (see Fig. 4B):

V (r) =
`B
r
→ `B

r
H(r − a), (37)

with H the Heaviside step function. In Fourier space,
this corresponds to:

V (k) = 4π
`B
k2
→ 4π

`B
k2

cos ka. (38)

While this constitutes an apparently uncontrolled ap-
proximation, this trick generally yields accurate results,
at very little mathematical cost.

Overall, the above derivation of Γ0
ρ still holds, replac-

ing κ2
D by κ2

D cos ka in equation (16). The equilibrium
structure factor C0

ρ is then given by:

C0
ρ(k) =

k2

κ2
D cos ka+ k2

. (39)

This result is shown on Fig. 4A (yellow line), and cap-
tures the essential features of the numerical data. There-
fore, truncating the electrostatic potential appears to a
be viable strategy to accurately describe the structure of
concentrated electrolytes.

Injecting now equation (39) in (35), we obtain at lead-
ing order in a:

∆ηion-ion =
1

60
√

8π

kBT

D

[√
`Bc+ 6πa2 (`Bc)

3/2
]
.

(40)
Equations (35) and (40) constitute the main result of this
work.

E. Multivalent ions and asymmetric salts

In the previous sections, we only considered the case of
a monovalent binary electrolyte X+, Y −. However, the
discussion can be extented in a straightforward manner
to multivalent salts of the type z : 1 or z : z with z > 1.
Noticing that ρ = z+n+−z−n−, all the above derivations
can be redone, yielding:

∆η =
1

60
√

8π

kBT

D

[√
zz̄`Bc+ 6πa2 (zz̄`Bc)

3/2
]
, (41)

with z̄ = z or (z + 1)/2 depending for z : z and z : 1
salts, respectively.

In a similar manner, the case where cations and anions
have different diffusion coefficients, say D+ and D−, can
also be treated analytically, see Refs.11 and23. It can be
shown that all the above computations still hold, deplac-
ing the quantity D by an effective coefficient:
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FIG. 4. Effective cut-off electrostatic potential. A Charge structure factor of a concentrated electrolyte. Blue points: molecular
dynamics simulation of a solution of NaCl with concentration c = 1.23 M (adapted from Ref.26). Red line: Equation (26) (no
cut-off). Yellow line: Equation (39) (cut-off a = 3�A). B Definition of the short-distance cut-off a. a corresponds roughly to
the distance of minimal approach between two ions: instead of introducing a short-distance repulsion, the interaction potential
is simply truncated below a.

Deff =
(z+ + z−)D+D−

D+z− +D−z+ − 4z+z−

(
D+−D−√

D++D−
√
z++z−+

√
D+z++D−z−

)2 (42)

In the above derivation, we also used the same cut-
off distance a for cation-cation, cation-anion and anion-
anion interactions. One could, in principle, define specific
values of a for cation-cation and anion-anion interactions,
and then use mixing rules for cross-interactions. Doing so
has been reported to only marginally affect the results23;
we therefore use a single value of a for all types of inter-
actions.

F. Discussion of the cut-off potential

Lastly, let us comment the choice of the cut-off poten-
tial. While the combination of the cut-off potential and of
the stochastic density functional theory has been shown
to be quite powerful to account for finite size effects in the
transport dynamics of concentrated electrolytes22, recent
developments24 have suggested that details of the cut-off
potential may need to be chosen carefully. In particular,
Ref.24 suggests to set the potential to some finite value v0

(which may be positive or negative) at distances smaller
than a:

V (r) =
`B
r
H(r − a) + v0H(a− r). (43)

In this case, it can be shown that the ion-ion correlator
becomes:

C0
ρ(k) =

k2

k2 + κ2
D cos ka+ v0κ2

D(sin ka− ka cos ka)/`Bk
.

(44)

Inserting again this result into equation (7), we obtain:

∆η =
kBT
√
`Bc

60D
√

8π

[
1 + 6πa2

[
1− 2

3

av0

`B

]
`Bc

]
, (45)

which is identical to the previous result, with a being
effectively replaced by a

√
1− 2av0/3`B.

Since we can a priori expect v0 to be at most of the
order of `B/a, this modification essentially amounts to
modifying a by a factor of order unity. Our results should
therefore not depend too much on the exact details of
the cut-off potential. In what follows, we come back to
the simple case where v0 = 0, and instead treat a as an
adjustable parameter.

III. INTERPRETATION AND COMPARISON WITH
EXPERIMENTAL DATA

A. Physics of the ionic viscosity and the truncated
potential

At the semi-quantitative level, one can interpret the
Falkenhagen limiting law (equation (32)) and the exis-
tence of a viscosity increment at low concentrations as
follows. As previously stated, ions in an electrolyte at
equilibrium are typically surrounded by a Debye atmo-
sphere bearing an opposite charge, and distributed over
a typical lengthscale λD.

Let us now consider the case where an external flow is
applied on the electrolyte, with a given velocity gradient
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∂u
∂z , see Fig. 1B. We notice that, since ions in the correla-
tion cloud are typically separated by λD, they will feel dif-
ferent solvent velocities, typically by an amount λD

∂u
∂z (z),

where ∂u
∂z is the external velocity gradient. Therefore, an

anion in the Debye cloud surrounding a cation will be on
average pulled away by a force λD

∂u
∂z /µ, where µ is the

ion’s mobility. The energy landscape of the Debye atmo-
sphere is locally modified by ∆E ∼ λ2

D
∂u
∂z /µ upstream of

the flow and by −∆E downstream: the probabilities of
finding an anion there are modified by e±∆E/kBT , tilting
the cloud along the velocity profile (see Fig. 1B). Since
each ion in the correlation cloud is exerting an average
force e2/4πελ2

D on the central cation, the latter overall
feels a net force of the order of:

λ2
D`B
λ2

Dµ

(
∂u

∂z
(+λD)− ∂u

∂z
(−λD)

)
∼ λD`B

µ

∂2v

∂z2
. (46)

Since the electrolyte has a concentration c, the overall
force exerted on the liquid is

f ∼ c`BλD

µ

∂2u

∂z2
, (47)

which shows that the presence of ions is equivalent to an
additional viscosity of the order of

∆η ∼ c`BλD

µ
∼ 1

µ

√
`Bc. (48)

Importantly, this simple argument explains why this cor-
rection scales like the inverse of the mobility µ, and iden-
tifies the quantity `Bc as the main relevant parameter.

Furthermore, the use of the truncated potential (38)
can be justified from the theoretical point of view by com-
paring this ansatz to the so-called Poisson-Fermi equa-
tion introduced to account for crowding effects in con-
centrated electrolytes27:

(1− `2c∇2)∇2V = −4π`Bρ, (49)

where `c is a measure of the ionic size. Solving equation
(49) around a point-like charge ρ = δ(r) and Fourier
transforming yields:

V (k) =
`B
k2

4π

1 + `2ck
2
' 4π

`B
k2

[
1− `2ck2

]
' 4π

`B
k2

cos 2k`c,

(50)
which corresponds to equation (38) with a = 2`c,
strengthening our otherwise uncontrolled approximation.

Lastly, we can interpret the fact that truncating the
potential actually results in a larger viscosity correction.
The charge structure factor contains terms correspond-
ing to cation-cation, anion-anion and cation-anion cor-
relations. If no interaction cut-off nor short-distance re-
pulsion are introduced, then nothing prevents oppositely
charge ions to significantly overlap each other, being sep-
arated by λD which can become smaller than a at high
concentrations. If ions overlap, they essentially form a
neutral pair that does not interact with the environment,

and becomes ineffective at transmitting momentum over
large distance. Instead, if ions cannot be closer than
some finite distance a, then interactions are not entirely
screened off at high concentration and the resulting ionic
viscosity continues to increase sharply.

B. Comparison with experimental data

In order to assert the validity of our model, we com-
pare our main result (7) (and its equivalent for mul-
tivalent salts, see equation (41)) to experimental data
accessible in the literature. We mainly used the data
collected by Isono14, who systematically reports the vis-
cosity of a wide variety of electrolytes at temperatures
ranging from 15 °C to 55 °C and for concentrations be-
tween 0.05 M and the saturation limit. His data unfor-
tunately do not contain viscosity values at very high di-
lution, so that the Falkenhagen regime ∆η ∝ c1/2 is of-
ten difficult to observe (see Fig. 2 for example). The
validity of the Falkenhagen limiting law at low concen-
tration, however, has been discussed elsewhere28,29. In
addition, we compared Isono’s data to experimental re-
sults by other experimentalists18,30–32. No difference was
found between the different tested datasets, and nearly
all compared favorably to our model.

Overall, we tested equation (7) against data for the vis-
cosity of the following salts: NaF, NaCl, NaBr, NaNO3,
KF, KCl, KBr, KNO3, AgNO3, LiCl, CaCl2, MgCl2,
BaCl2, SrCl2, LaCl3, Na2SO4 and Cd(NO3)2.

Equation (7) contains three parameters that need to be
specified: the Jones-Dole coefficient B(T ), the ion diffu-
sion coefficient D, and the short-distance cut-off a.

For the diffusion coefficient, we used tabulated values
at infinite dilution (see Table 1). Since its values are in
general different for cations and anions, we used equation
(42) to determine the value of the effective diffusion coef-
ficient of the electrolyte. It should be noted that the dif-
fusion coefficients of electrolytes are found to also depend
on salt concentration33; however, these observations are
obtained for a coarse-grained definition of the diffusion
coefficient. Since we are interested here in the micro-
scopic dynamics of ions, we assume that at the single-ion
level one may use the limit of infinite dilution.

Since a can be thought off as a minimum approach dis-
tance between two ions (see Fig. 4A), Avni and cowork-
ers suggested to set a to the sum of the two ionic radii
(which can be determined from crystallographic data, for
example). This choice, however, compares poorly to ex-
perimental data in our case. We found better agreement
for higher values of a, which are more in line with hy-
drated diameter. As there is in addition an uncertainty
on the exact value of a (see Section II F), we used a as a
fitting parameter independent of temperature (see Table
2).

The Jones-Dole coefficient B(T) was determined for
each temperature by examining experimental data for
low concentrations.
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FIG. 5. Comparison between theory (equation (7)) and experimental data: effect of temperature and ion valence. Symbols:
experimental data for KF, CaCl2 and LaCl3 at 25 °C (A–C) and 55 °C (D), reproduced from Refs.14,18. Solid line: this work,
equation (7). Dashed line: Falkenhagen limiting law, equation (32).

Ion D (10−9 m2/s)

Na+ 1.33
K+ 1.96
Li+ 1.03
Ag+

3 1.65
Ca2+ 0.79
Mg2+ 0.705
Ba2+ 0.848

Ion D (10−9 m2/s)

Sr2+ 0.794
Cd2+ 0.717
La3+ 0.629
Cl− 2.03
NO3

− 1.9
SO2−

4 1.07
Br− 2.02

TABLE I. Diffusion coefficients of ions at 25 °C.

Lastly, note that `B itself depends on T , both directly
through equation (4) and indirectly through the dielec-
tric constant of water ε(T ), which we determined from
tabulated data34. Like the diffusion coefficient, ε(T ) is
known to depend on salt concentration when measured
over macroscopic samples; but since again we use it here
to describe the properties of water at the microscopic
level around individual ions, we used the value in absence
of salt. Taking this effect into account would amount to
describing ion-water interactions and the hydration shell
around ions; these are already encapsulated into B(T )
and a, respectively.

Salt a (�A) Ref.

NaCl 5.5 32

NaBr 8.5 14,18

NaNO3 9.0 14

KNO3 9.4 14

KF 6.5 32

KBr 5.0 32

KCl 6.5 32

LiCl 6.5 30,32

Salt a (�A) Ref.

AgNO3 6.5 31

CaCl2 7.0 14

MgCl2 8.0 14

BaCl2 5.0 3,14

SrCl2 8.5 14

LaCl3 6.0 14

Na2SO4 8.5 14

Cd(NO3)2 7.5 14

TABLE II. Fitted values of a and original papers of experi-
mental datasets for the studied salts.

C. Results and discussion

Overall, we observed a very good agreement between
experiments and the model, see Fig. 5. Equation (7)
quantitatively matched with literature data nearly up to
the saturation limit, at all tested temperarures (see Fig.
5A-C), even for multivalent salts like BaCl2 or LaCl3 (see
Fig. 5C and D).

In most cases, the liquid’s viscosity increases with salt
concentration. This is not the case for certains salts, like
KCl, KBr or KNO3 – the viscosity decreases in certain
concentration and temperature ranges. This effect, which
is more pronounced for salts with large, weakly charged
anions, is thought to be caused by interactions between
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ions and water molecules. It corresponds to negative val-
ues of the Jones-Dole coefficient B(T ), which are linked
to changes in the immediate environment of ions. In
particular, salts that decrease the liquid’s viscosity tend
to be those with low hydration enthalpies (for example,
KCl, KBr and KNO3 all have hydration enthalpies below
700 kJ/mol35).

Our model is not able to predict which salt should re-
sult in a negative viscosity increment, since it does not
provide a prediction for the B coefficient. The model,
however, correctly predicts that the viscosity should in-
crease sharply at high concentration, see Fig. 5F in the
case of KNO3. In particular, the model provides a theo-
retical justification for the inclusion of an additional term
in the Jones-Dole equation, with a c3/2 scaling – other
usual fitting ansatz often lack theoretical ground.

The only deviation between the model and experimen-
tal data was observed when the Jones-Dole coefficient
B(T ) changed sign. While good agreement was obtained
for KCl, KBr and KNO3 at low temperature (where
B(T ) < 0 for these salts), the model compared poorly
to experimental data for higher temperatures, where,
B(T ) > 0. As this was only observed for salts for which
B(T ) changes sign, we can suggest a modification in the
hydration shell of the ions to be at the source of this ef-
fect, for example. In all other cases, agreement was good

in the entire temperature range.
Lastly, we observe that the fitted values of a are for

the most part well above ionic radii of the corresponding
salts. It should be noted that the “correct” way of defin-
ing the ionic size depends on context; it seems that here
one should consider hydrated ions (with typical hydrated
radii around 3− 4�A, corresponding to a ∼ 6− 8�A).

IV. CONCLUSION

In this work, we derived a theoretical model for the vis-
cosity of concentrated electrolytes. Through the use of a
field-theoretical framework based on the Dean-Kawasaki
equation, we recovered and considerably extended the
long-standing Falkenhagen limiting law, providing a first
theoretical insight on the matter beyond the limit of in-
finite dilution. We showed that fluctuations of charge
result in an increase in viscous dissipation, scaling as the
salt concentration to the power 1.5 at high concentra-
tions, in contrast with the traditional Jones-Dole equa-
tion and similar empirical laws, but in excellent agree-
ment with experimental data.

More importantly, we derived a general relation linking
the liquid’s microscopic structure factor to a macroscopic
parameter like viscosity:

∆ηion-ion =
c

15(2π)2

kBT

D

∫
dqV (q)

d

dq

[
q2C0

ρ(q)
∂C0

ρ

∂q

]
. (51)

This result holds in principle regardless of the precise
shapes of the charge structure factor C0

ρ or the interaction
potential V , and would be relevant in other contexts.

The conclusions of our work are two-fold. First, it
shows the usefulness of the Dean-Kawasaki framework in
establishing fluctuation-dissipation relationships in com-
plex contexts, such as concentrated electrolytes. In-
deed, direct computations of viscous forces due to electro-
static interactions, in line with Falkenhagen’s historical
derivation, are particularly arduous and therefore only
tractable in simple cases, like that of infinite dilution.
On the contrary, our approach allows to link quantities
like the liquid’s viscosity to the charge structure factor, a
more easily-accessible quantity in the theory, but also in
simulations or experiments26,36,37. This observation sug-
gests manyfold potential extensions, e.g. by considering
the effect of charge or density fluctuations in the solvent
as well, or ion transport in more complex environments.
In particular, accounting for charge fluctuations in the
solvent could allow to shed light on the effect of ion-
water interactions. Another important extension would
be to study the effect of solid surfaces. In particular, the
presence of surface charges typically results in a local in-
crease in the ion concentration near walls, which could

affect the viscosity of electrolytes e.g. in nanometric con-
finement found in nanofluidic apparatus or in biological
membranes38.

Secondly, our somewhat formal and general framework
does allow to catch a glimpse of the complexity and the
non-universality of ion transport, by allowing to differen-
tiate the behavior of salts with various chemical composi-
tion. While we are at this stage unable to fully rationalize
specific deviations that certain salts display, we expect
that this work will help to further the understanding of
ion transport at the nanoscale.
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