

Generation of human induced pluripotent stem cell lines from five patients with Myofibrillar myopathy carrying different heterozygous mutations in the DES gene

Pierre Joanne, Yeranuhi Hovhannisyan, Alexandre Simon, Gaëlle Revet, Romain Diot, Gabriel Friob, Denisa Calin, Zhenlin Li, Anthony Béhin, Karim

Wahbi, et al.

► To cite this version:

Pierre Joanne, Yeranuhi Hovhannisyan, Alexandre Simon, Gaëlle Revet, Romain Diot, et al.. Generation of human induced pluripotent stem cell lines from five patients with Myofibrillar myopathy carrying different heterozygous mutations in the DES gene. Stem Cell Research, 2024, 76, pp.103338. 10.1016/j.scr.2024.103338 . hal-04466294

HAL Id: hal-04466294 https://hal.sorbonne-universite.fr/hal-04466294v1

Submitted on 19 Feb2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ELSEVIER

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Multiple Cell Lines

Generation of human induced pluripotent stem cell lines from five patients with Myofibrillar myopathy carrying different heterozygous mutations in the *DES* gene

Pierre Joanne^{a,*}, Yeranuhi Hovhannisyan^a, Alexandre Simon^a, Gaëlle Revet^a, Romain Diot^b, Gabriel Friob^a, Denisa Calin^a, Zhenlin Li^a, Anthony Béhin^c, Karim Wahbi^{d,e}, Gérard Tachdjian^b, Onnik Agbulut^{a,*}

^a Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France

^b Assistance Publique-Hôpitaux de Paris, Université Paris Saclay, Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, Clamart, France

^c Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Inserm UMR_S 974, Paris, France

^d AP-HP, Cochin Hospital, Cardiology Department, Paris, France

e Université de Paris, Paris, Paris Cardiovascular Research Center (PARCC), INSERM Unit 970, Paris, France

ABSTRACT

Myofibrillar myopathy (MFM) is a rare genetic disorder characterized by muscular dystrophy that is often associated with cardiac disease. This disease is caused by mutations in several genes, among them *DES* (encoding desmin) is the most frequently affected. Peripheral blood mononuclear cells from 5 different MFM patients with different *DES* mutations were reprogrammed into induced pluripotent stem cells (IPSC) using non-integrative vectors. For each patient, one IPSC clone was selected and demonstrated pluripotency hallmarks without genomic abnormalities. SNP profiles were identical to the cells of origin and all the clones have the capacity to differentiate into all three germ layers.

Resource Table:		(continued)		
Unique stem cell lines identifier	INSRMi012-C INSRMi013-A		Age: 73 Sex: Male Ethnicity if known: NA	
Alternative name(s) of stem cell lines	INSRMI019-A INSRMi020-A INSRMi021-A PC173T19 PC170c1		For Patient PC129k8 (line INSRMi019-A) Age: 70 Sex: Male Ethnicity if known: NA	
	PC129K8 PC130K2c PC177 3c14		For Patient PC130k2c (line INSRMi020-A) Age: 56 Sex: Male	
Institution Contact information of distributor	Sorbonne Université, UMR8256, INSERM ERL U1164, Team CARTHER Dr. Pierre JOANNE (pierre. icanne@sorbonne.universite fr)		Ethnicity if known: NA For Patient PC177 3c14 (line INSRMi021- A)	
Type of cell lines iPSC Origin Human Additional origin info required for For Patient PC173 human ESC or iPSC Age: 35 Sex: Male Ethnicity if known	iPSC Human For Patient PC173T19 (line INSRMi012-C) Age: 35 Sex: Male Ethnicity if known: NA	Cell Source Clonality Method of reprogramming	Age: 57 Sex: Female Ethnicity if known: NA PBMC Clonal Non-integrative reprogramming using episomally or Sendaï-delivered factors	
	For Patient PC179c1 (line INSRMi013-A)	Genetic Modification	No	
	(continued on next column)		(continued on next page)	

* Corresponding authors.

E-mail addresses: pierre.joanne@sorbonne-universite.fr (P. Joanne), onnik.agbulut@sorbonne-universite.fr (O. Agbulut).

https://doi.org/10.1016/j.scr.2024.103338

Received 15 January 2024; Accepted 4 February 2024 Available online 8 February 2024

1873-5061/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

(continued)

Type of Genetic Modification	Spontaneous mutations are carried by the		
	patients of origin (see Gene/locus row of		
Evidence of the reprogramming			
transgene loss (including genomic	PCK		
copy if applicable)			
Associated disease	Myofibrillar myopathy associated with		
	cardiac disease:		
	Patient PC173T19 (line INSRMi012-C):		
	Severe atrioventricular block (type 3),		
	Ventricular fibrillation, Atrial fibrillation,		
	Cardiomyopathy biventricular		
	Patient PC179c1 (line INSRMi013-A):		
	Moderate atrioventricular block (type 1),		
	Ventricular tachycardia, Cardiomyopathy		
	(LVEF 45 %)		
	Patient PC129k8 (line INSRMi019-A):		
	Severe atrioventricular block (type 2/1)		
	Severe atrioventricular block (type 3)		
	Patient PC177 3c14 (line INSRMi021-A):		
	Severe atrioventricular block (type 3),		
	Atrial fibrillation, Ventricular tachycardia,		
	Cardiomyopathy biventricular		
Gene/locus	Mutations in the desmin gene (location		
	2Q35):		
	Patient PC173T19 (line INSRMi012-C): DES ^{D214-E245Del}		
	Patient PC179c1 (line INSRMi013-A): DES ^{S46Y}		
	Patient PC129k8 (line INSRMi019-A): DES ^{P419H}		
	Patient PC130k2c (line INSRMi020-A): DES ^{E439K}		
	Patient PC177 3c14 (line INSRMi021-A): DES ^{E245D}		
Date archived/stock date	2023-12-28		
Cell line repository/bank	https://hpscreg.eu/user/cellline/edit/IN SRMi012-C		
	https://hpscreg.eu/user/cellline/edit/IN SRMi013-A		
	https://hpscreg.eu/user/cellline/edit/IN		
	SRMi019-A		
	https://hpscreg.eu/user/cellline/edit/IN		
	SRMi020-A		
	https://hpscreg.eu/user/cellline/edit/IN SRMi021-A		
Ethical approval	Approval number from the French		
	« Ministère de l'enseignement superieur,		
	2019–3388		

1. Resource utility

These IPSC lines, generated from five different patients affected by MFM associated with dilated cardiomyopathy (DCM) with five different *DES* mutations, can be used to study cellular and molecular mechanisms of the MFM. They also can be used as a cell model to develop new therapeutic approaches, especially based on drug-screening.

2. Resource details

Desmin is the specific intermediate filament of muscle cells, within which it forms a three-dimensional network connecting the various cellular components to each other, including organelles and contractile apparatus (Brodehl et al., 2018). Mutations in the gene encoding this protein is known to cause desmin-related myofibrillar myopathy (MFM1: OMIM:601419), a heterogeneous disease affecting primarily skeletal muscles (weakness) (Joanne et al., 2013). However, approximately 75 % of patients also present signs of cardiac disease (van Spaendonck-Zwarts et al., 2010) that mainly evolve toward dilated cardiomyopathy and heart failure. At the cell level, mutations of desmin cause several disorganizations of the muscle cell that lead to contractile and metabolic dysfunctions (Hovhannisyan et al., 2023; Winter et al., 2016).

Here we described the generation of human induced pluripotent stem cells from the peripheral blood mononuclear cells (PBMC) of 5 patients affected by MFM associated with a cardiac dysfunction. These five patients have different mutations in DES even if they present similar cardiac symptoms (see Table 1.). These mutations (*DES*^{D214-E245Del}, *DES*^{S46Y}, *DES*^{P419H}, *DES*^{E439K}, *DES*^{E245D}) have been previously described (Wahbi et al., 2012) and are linked to the development of dilated cardiomyopathy. Five different clones (INSRMi012-C from the patient PC173T19 with the mutation *DES*^{D214-E245Del}, INSRMi013-A from the patient PC179c1 with the mutation *DES*^{S46Y}, INSRMi019-A from the patient PC129k8 with the mutation DES^{P419H} , INSRMi020-A from the patient PC130k2c with the mutation DES^{E439K} and INSRMi021-A from the patient PC177 3c14 with the mutation DES^{E245D}) were derived and are described here (Table 1). In details, PBMC of these patients were reprogrammed using non-integrative strategy (Phenocell SAS, France) and clones for each patient were manually isolated and amplified until passage 20 where they were frozen in liquid nitrogen with CTS PSC Cryomedium (Thermo Fisher Scientific, France). After thawing on Matrigel, these clones were passaged at least one time before analysis. Colonies of all clones demonstrate normal morphology in culture with a high nucleus/cytoplasm ratio (Fig. 1A, scale bar = $100 \mu m$) and express pluripotency markers as shown by immunocytochemistry (Fig. 1B, scale $bar = 100 \ \mu m$) and cytometry (Fig. 1C and Supplemental Data A). The absence of residual reprogramming plasmids was confirmed by PCR. Genomic integrity, gender and identity were confirmed for each clone by G-banding karvotyping (Fig. 1E) and by SNP analysis through the comparison of the iPSCs genotype with that of parental PBMCs to confirm their origin (see Table 1 and Supplemental Data C and D). Moreover, each clone was tested for its capacity to differentiate into the three germ layer lineages using the STEMdiff^{\mbox{\tiny IM}} Trilineage Differentiation Kit (Stem Cell Technologies, France). As shown in Fig. 1D, each clone expresses endodermic, mesodermic and ectodermic markers after specific differentiation (expresses as fold change compared to undifferentiated condition) further confirming their pluripotency. The presence of the specific mutations (Table 1) was assessed by sequencing the genomic DNA of each clone and reveal that the expected mutation was correctly observed (Supplemental Data B). Finally, absence of mycoplasma was confirmed using the Mycoplasma check service of Eurofins Genomics.

3. Materials and methods

3.1. Generation and culture of iPSCs

Patient PBMC were reprogrammed by a non-integrative method using a commercial episome-based kit (Cat. #A15960, ThermoFischer Scientific) or sendai-based kit (#A16517, ThermoFischer Scientific). After manually isolated, clones are cultured and amplified under 37C, 5 % CO₂, 20 % O₂ on Matrigel® (hESC-qualified, Corning) coated dishes with daily replacement of mTeSRTM1 (Stem Cell Technologies) and passaged in clumps (1:30 ratio) at approximately 80 % confluency using ReLeSR (Stem Cell Technologies).

3.2. Immunocytochemistry

Cells cultured on coverslip coated with Matrigel were fixed with 4 % paraformaldehyde for 5 min and permeabilization were performed with cold methanol (-20 °C) for 5 min. After incubation with 5 % bovine serum albumin for one hour cells were incubated with primary antibodies (see Table 2) overnight at 4 °C. After 45 min incubation with secondary antibodies (see Table 2), nuclei were counterstained with Hoescht 33,342 (Life Technologies). Then, slides were mounted with homemade medium containing Mowiol. Images were taken on an

Classification

Morphology

Phenotype

Genotype

Identity

Table 1

Characterization and validation.

Test

field

Photography Bright

Qualitative analysis by

immunocytochemistry

Quantitative analysis

by flow cytometry

Karvotype (G-

banding) and

Microsatellite PCR

(mPCR) OR

STR analysis

resolution

Nanog 1-80 m INSRM passage 24 INSRMi013-A:

passage 21 INSRMi019-A: passage 20

INSRMi020-A: passage 20

INSRMi021-A: passage 21

karyotype (46,

XY or 46,XX)

Resolution

passage 24 INSRMi013-A:

passage 21 INSRMi019-A: passage 23

passage 20 INSRMi021-A:

passage 23

Not performed

SNP Analysis

INSRMi012-C:

INSRMi013-A:

INSRMi019-A:

INSRMi020-A:

passage 23

passage 24

passage 19

passage 19 INSRMi021-A:

passage 20

INSRMi020-A:

450-500 INSRMi012-C: Fig. 1E

Supplemental

Data C and D

Original data

submitted in

archive with

journal

Normal

		Classification	Test	Result	Data
Result	Data	Mutation	Sequencing	Heterozygous	Supplemental
Normal for all	Fig. 1A	analysis (IF		mutations	Data B
INSRMi012-C:		APPLICABLE)	Southern Blot OR WGS	Not performed	
passage 24		Microbiology	Mycoplasma	Mycoplasma	Submitted as
INSRMi013-A:		and virology		testing by RT-	supplementary
passage 21				PCR	files
INSRMi019-A:		Differentiation	Directed	Expression of	Fig. 1D
passage 20		potential	differentiation	genes from cells	
INSRMi020-A:				induced for	
passage 20				differentiation	
INSRMi021-A:				toward	
passage 21				endoderm,	
Normal staining	Fig. 1B			mesoderm or	
of Nanog				ectoderm	
(green) and Tra-				germlayers:	
1-80 (red)				FOXA2, EOMES,	
markers				Brachyury,	
INSRMi012-C:				MIXL1, LHX2	
passage 24				and MAP2	
INSRMi013-A:				INSRMi012-C:	
passage 21				passage 24	
INSRMi019-A:				INSRMi013-A:	
passage 20				passage 21	
INSRMi020-A:				INSRMi019-A:	
passage 20				passage 20	
INSRMi021-A:				INSRMi020-A:	
passage 21				passage 20	
Assess more	Fig. 1C and			INSRMi021-A:	
than 90 %	Supplemental			passage 21	
positive cells for	Data A	Donor	HIV $1 + 2$ Hepatitis B,	Not performed	
Nanog, Oct3/4		screening	Hepatitis C		
and Sox.		(OPTIONAL)			
staining of		Genotype	Blood group	Not performed	
Nanog and Tra-		additional	genotyping		
1-80 markers		info	HLA tissue typing	Not performed	
INSRMi012-C:		(OPTIONAL)			

inverted epifluorescence microscope (DMi8, Leica).

3.3. Cytometry

Table 1 (continued)

Cells were detached with accutase (10 min of incubation at 37 °C). Then, cells were fixed with a 1 % formaldehyde solution for 20 min and permeabilized using 0.1 % TritonX-100. Then, cells were labelled fluorescent-coupled antibodies (see Table 2) for 15 min, centrifuged (300 g, 5 min), washed in 0.5 % BSA and resuspended in the same buffer before analysis on a MACSQuant10 cytometer (Miltenyi Biotec). Analysis was performed using the $FlowJo^{TM}$ v.10.6.1.

3.4. Karyotyping

At least 2 passages after thawing cells were karyotyped by Cell Guidance systems (UK) and at least 10 metaphases were counted.

3.5. Differentiation assay

STEMdiff Trilineage Differentiation Kit (Cat. # 05230, StemCell Technologies) was used according to the manufacturer's instructions, at a density of 400,000 cells/well for the ectoderm and endoderm conditions and 100,000 cells/well for the mesoderm condition. Differentiated cells were then collected for RNA isolation using TRIzol. RevertAid First Strand cDNA Synthesis Kit was used to generate cDNA using random hexamer primers and expression of lineages markers (Table 2) was performed in SYBR Green Master Mix (Roche) on a LightCycler480 (Roche).

3.6. Genomic DNA extraction

Genomic DNA was extracted using the Genelute Mammalian

4

Table 2

Reagents details

Table 2 (continued)

	Antibodies used for immunocytochemistry/flow-cytometry			
	Antibody	Dilution	Company Cat #	RRID
Pluripotency Markers	Rabbit (IgG1) anti Nanog clone D73G4	1:200	Cell Signaling #4903	RRID: AB_10559205
Pluripotency Markers	Mouse monoclonal (IgM) anti Tra- 1–81	1:100	Merck #MAB4381	RRID: AB_177638
Pluripotency Markers	PE Mouse anti- Human Nanog (clone N31- 355)	1:10	BD Biosciences Human Pluripotent Stem Cell Transcription Factor Analysis Kit #51-9006414	RRID: AB_2722505
Pluripotency Markers	PerCP- Cy™5.5 Mouse anti- Oct3/4 (clone 40/oct-3)	1:10	BD Biosciences Human Pluripotent Stem Cell Transcription Factor Analysis Kit #51 0006267	RRID: AB_2722505
Pluripotency Markers	Alexa Fluor® 647 Mouse anti-Sox2	1:10	BD Biosciences Human Pluripotent Stem Cell Transcription Factor Analysis Kit #51–9006407	RRID: AB_2722505
Isotype control antibodies	PE Mouse IgG1, κ Isotype Control	1:10	BD Biosciences Human Pluripotent Stem Cell Transcription Factor Analysis Kit #51 0006406	RRID: AB_2722505
Isotype control antibodies	PerCP- Cy™5.5 Mouse IgG1, κ Isotype Control	1:10	BD Biosciences Human Pluripotent Stem Cell Transcription Factor Analysis Kit #51-9006272	RRID: AB_2722505
Isotype control antibodies	Alexa Fluor® 647 Mouse IgG2a, κ Isotype Control	1:10	BD Biosciences Human Pluripotent Stem Cell Transcription Factor Analysis Kit #51-9006410	RRID: AB_2722505
Secondary antibodies	Goat anti- Rabbit IgG (H + L) Highly Cross- Adsorbed Secondary Antibody, Alexa Fluor 488	1:1000	ThermoFisher Scientific #A-11034	RRID: AB_2576217
Secondary antibodies	Goat anti- Mouse IgM (Heavy Chain) Secondary Antibody, Alexa Fluor 647	1:1000	ThermoFisher Scientific #A-21238	RRID: AB_2535807

	Antibodies used for immunocytochemistry/flow-cytometry		
	Antibody	Dilution	Company Cat RRID #
	Primers		
	Target	Size of band	Forward/Reverse primer (5'- 3')
Differentiation markers	FOXA2	138 bp	AGCCCGAGGGCTACTCC/ ACGACATGTTCATGGAGCCC
Differentiation markers	EOMES	90 bp	TACCCAGACCCAACCTTTCC/ GGAGGTCCATGGTAGTCCAG
Differentiation markers	BRACHYURY	121 bp	CCAGTGGCAGTCTCAGGTTA/ CTACTGCAGGTGTGAGCAAG
Differentiation markers	MIXL1	95 bp	AGTCCAGGATCCAGGTATGGT/ GATAATCTCCGGCCTAGCCA
Differentiation markers	LHX2	199 bp	GGGTCCTCCAGGTCTGGTTC/ GTGGGGGCTAGTCAAGTCTGTC
Differentiation markers	MAP2	157 bp	GGCCAACTTCTCCAGTGAAC/ TGCTGGAACTCAGCAGGTAA
House-Keeping Genes (qPCR)	NUBP1	88 bp	CAGAGGGGGCTTCATGTCAGG/ GATTTCCTCTATAGCCGTGTCC
Targeted	PCR/ Sequencing		TATCACCCGCAACTGTCTGT/
analysis/ sequencing	primer for DESD214- E245Del and E245D		
Targeted mutation analysis/ sequencing	PCR/ Sequencing primer for DESS46Y		CCCGCCGCCTCCTCCGTG/ GAAAGAGGAGTCTGGGGTGC
Targeted mutation analysis/ sequencing	PCR/ Sequencing primer for DESP419H		GGAGGTTTTGTCTCTTCCCTTT/ CTCTACCTAAACTCCCCCACCT
Targeted mutation analysis/ sequencing	PCR/ Sequencing primer for DESE439K		ACCCTGTTACAGAAACCAGCC/ AACCATGTGCTAGCCAGAGAAT

Genomic DNA kit (Sigma) and was amplified using specific primers (Table 2). After migration into an 0.1 % agarose gel, bands were purified using the NucleoSpin Gel and PCR clean-up kit (Macherey Nagel) following the manufacturer's instructions.

3.7. Sequencing

Genomic DNA was sequenced by Eurofins Genomics using the primers indicated in Table 2.

3.8. SNP analysis

Genomic DNA (at least 500 ng) was analysed for SNP by Integragen (Evry, France) using Illumina-Infinium Core24 technology. Results were analyzed using Genome Studio by comparing the SNP profile of the clone to the profile of the corresponding genomic DNA extracted from PBMC of the patient to verify cell identity and genomic integrity.

3.9. Mycoplasma checking

Supernatant medium (500 $\mu L)$ from 80 to 90 % confluency iPSC were boiled at 95 °C for 10 min, centrifuge at 10,000 g to pellet cellular debris and analyzed by eurofins genomics. Reports were deposited as archive with the manuscript.

Credit authorship contribution statement

Pierre Joanne: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. Yeranuhi Hovhannisyan: Data curation, Investigation, Methodology, Writing – review & editing, Formal analysis, Validation, Visualization. Alexandre Simon: Data curation. Gaëlle Revet: Data curation. Romain Diot: Data curation. Gabriel Friob: Data curation. Denisa Calin: Data curation, Formal analysis. Zhenlin Li: Data curation, Formal analysis, Methodology. Anthony Béhin: Resources. Karim Wahbi: Resources. Gérard Tachdjian: Data curation, Formal analysis, Investigation. Onnik Agbulut: Conceptualization, Formal analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing – review & editing, Funding acquisition, Project administration, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was partly supported by Sorbonne Université, France, and CNRS France, and INSERM, France. OA and PJ are supported by the AFM-Téléthon, France (Association Française contre les Myopathies) (contract number: 22142 & 28597). YH was funded by a Ph.D. fellowship from the AFM-Téléthon, France during this study. We thank Dr Brigitte Onteniente and Phenocell SAS (Grasse, France) for IPSC generation from MFM1 patients; Stéphanie Bigou and iPS cell culture facility of the Paris Brain Institute who has received funding from the program "Investissements d'avenir" ANR-10- IAIHU-06 for the clonal selection of IPSC; Dr. Nathalie Lefort (Institut Imagine, France) for her assistance concerning the analysis of SNP profiles and all personnel from the IBPS photon microscopy core facility for helpful advice and technical assistance during flow cytometry.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2024.103338.

References

- Brodehl, A., Gaertner-Rommel, A., Milting, H., 2018. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys. Rev. 10, 983–1006.
- Hovhannisyan, Y., Li, Z., Callon, D., Suspène, R., Batoumeni, V., Canette, A., Blanc, J., Hocini, H., Lefebvre, C., El-Jahrani, N., et al. (2023). Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation.
- Joanne, P., Chourbagi, O., Hourdé, C., Ferry, A., Butler-Browne, G., Vicart, P., Dumonceaux, J., Agbulut, O., 2013. Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skelet. Muscle 3, 4.
- van Spaendonck-Zwarts, K., van Hessem, L., Jongbloed, J.D.H., de Walle, H.E.K., Capetanaki, Y., van der Kooi, A.J., van Langen, I.M., van den Berg, M.P., van Tintelen, J.P., 2010. Desmin-related myopathy: a review and meta-analysis. Clin, Genet.
- Wahbi, K., Béhin, A., Charron, P., Dunand, M., Richard, P., Meune, C., Vicart, P., Laforêt, P., Stojkovic, T., Bécane, H.M., et al., 2012. High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: a 10-year longitudinal study. Neuromuscul. Disord. 22, 211–218.
- Winter, L., Wittig, I., Peeva, V., Eggers, B., Heidler, J., Chevessier, F., Kley, R.A., Barkovits, K., Strecker, V., Berwanger, C., et al., 2016. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol. 132, 453–473.