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An overview of current glaucomatous trabecular meshwork models 24 

Abstract: The trabecular meshwork (TM) is a complex tissue that regulates aqueous humor 25 

outflow from the eye. Dysfunction of the TM is a major contributor to the pathogenesis of 26 

open-angle glaucoma, a leading cause of irreversible blindness worldwide. The TM is a porous 27 

structure composed of trabecular meshwork cells (TMC) within a multi-layered extracellular 28 

matrix (ECM). Although dysregulation of the outflow throughout the TM represents the first 29 

step in the disease process, the underlying mechanisms of TM degeneration associate cell loss 30 

and accumulation of ECM, but remain incompletely understood, and drugs targeting the TM 31 

are limited. Therefore, experimental models of glaucomatous trabeculopathy are necessary for 32 

preclinical screening, to advance research on this disease's pathophysiology, and to develop 33 

new therapeutic strategies targeting the TM. Traditional animal models have been used 34 

extensively, albeit with inherent limitations, including ethical concerns and limited 35 

translatability to humans. Consequently, there has been an increasing focus on developing 36 

alternative in vitro models to study the TM. Recent advancements in three-dimensional cell 37 

culture and tissue engineering are still in their early stages and do not yet fully reflect the 38 

complexity of the outflow pathway. However, they have shown promise in reducing reliance 39 

on animal experimentation in certain aspects of glaucoma research. This review provides an 40 

overview of the existing alternative models for studying TM and their potential for advancing 41 

research on the pathophysiology of open-angle glaucoma and developing new therapeutic 42 

strategies. 43 

Keywords: glaucoma model, trabecular meshwork, 3D culture, in vitro model, tissue 44 

engineering, outflow 45 

 46 

Introduction  47 



Glaucoma is a blinding optic neuropathy affecting over 70 million people worldwide 
1
. Its 48 

most important risk factor is elevated intraocular pressure (IOP). The trabecular meshwork 49 

(TM) plays a key role in the pathophysiology of glaucoma. This filter is located within the 50 

iridocorneal angle and constitutes the main outflow pathway for the aqueous humor. It is a 51 

fenestrated triangle-form structure in which trabecular meshwork cells (TMC) populate a 52 

multi-layered extracellular matrix. The TM tissue is not a rigid structure, but a highly 53 

dynamic, avascular filtration system that has a multitude of roles, including filtering aqueous 54 

humor of waste material, sensing and regulating IOP through the mechanical stretch, and 55 

altering ECM composition and deposition 
2–4

.The TM contributes to the regulation of IOP by 56 

regulating the outflow of aqueous humor from the eye’s anterior chamber, primarily through 57 

the juxtacanalicular tissue and the endothelium of Schlemm’s canal (SC) 
2,5

. The 58 

juxtacanalicular tissue, located adjacent to the inner wall of SC, plays a crucial role in the 59 

regulation of outflow resistance. It consists of specialized cells and extracellular matrix (ECM) 60 

components that modulate the flow of aqueous humor 
6
. Dysfunction of the TM and the inner 61 

wall of SC is the cause of IOP elevation and represents the primum movens of primary open-62 

angle glaucoma (POAG) but the precise mechanisms at the origin are still unclear.  It is 63 

known that abnormal TMC function and excess of ECM deposit contribute to TM stiffening 64 

in POAG
7
. Alterations in the structure and composition of the TM ECM generate aqueous 65 

humor outflow resistance. Cell-ECM interactions within the TM and SC play a role in 66 

regulating outflow resistance. Cellular responses to ECM components and their remodeling 67 

can influence the contractility and overall functionality of the tissue
6,8,9

. The endothelial cells 68 

lining the inner wall of SC exhibit contractile properties. Contraction and relaxation of these 69 

cells regulate the diameter of the canal and thereby influence outflow resistance
10,11

. Tight 70 

junctions between endothelial cells of SC also contribute to the formation of a barrier that 71 

controls the paracellular movement of aqueous humor
12. A second ‘unconventional’ outflow 72 



pathways exists in the human eye, but it only accounts for less than 10% of the total outflow, 73 

and thus does not significantly contribute to the regulation of IOP in the normal eye
13

. 74 

The development of robust models of physiologic and pathologic TM is necessary to 75 

study the different mechanisms at the origin of this deregulation but also to develop and test 76 

treatments targeting TM, which are currently rare. Several experimental models have been 77 

described with advantages and disadvantages, from animal models or perfusion-cultured 78 

anterior segments to cell culture models. 79 

To study the pathophysiology of the TM or its changes under the effects of treatments, 80 

all models that artificially increase the IOP by blocking or sclerosing the outflow pathways, 81 

for example using laser photocoagulation, episcleral vein cauterization, injection of 82 

microbeads or hyaluronic acid into the anterior chamber or hypertonic saline injection into the 83 

episcleral veins are not appropriate as they do not mimic the natural course of glaucomatous 84 

dysfunction to the aqueous outflow pathway
14

. Indeed, a distinction must be made between 85 

animal models of ocular hypertension made to study RGC loss and those specifically 86 

developed for the study of TM.  87 

 88 

Models of glaucoma exist in mice, rats, dogs, cats, and primates
15

. Each has its challenges, 89 

including the availability of genetic resources and difficulty of genetic manipulation, ethical 90 

considerations, cost, and maintenance. Translational research in glaucoma is faced with 91 

numerous challenges. One significant factor is the divergence in eye anatomy between 92 

animals and humans. Furthermore, the etiology of the disease differs between glaucoma 93 

animal models and human patients. Additionally, there are notable disparities in study design 94 

and statistical analysis methods employed in preclinical and clinical investigations. Moreover, 95 

significant differences exist in terms of dosage, scale, timing of intervention, methodologies, 96 



endpoints, age groups studied, and the presence or absence of IOP-lowering treatment, which 97 

further complicates the comparison between preclinical and clinical studies in glaucoma
16

.  98 

The animal whose TM anatomy is the closest to humans is the primate, but their use is limited 99 

because of their expensive price, the inaccessibility of transgenic strains and the rise of ethical 100 

concern. Most preclinical studies in the field of glaucoma used mice as their outflow tract 101 

anatomy is comparable to humans. It is described as follows: TM, juxtacanalicular tissue, 102 

Schlemm canal, collector channels, and episcleral veins
15

. However, the main anatomical 103 

difference is that the human TM structure consists of 9 to 18 trabecular beams whereas in the 104 

mouse TM, there are only 2 to 5 layers of lamellae. This difference in the structure of the 105 

animal TM as well as the regulation of aqueous humor excretion constitutes a limitation to use 106 

of animal models. The results obtained with animal models are therefore not always 107 

transposable to humans although the majority of IOP lowering glaucoma medications in 108 

human are also effective in mouse eyes
16

. Moreover, the lack of cooperation of animals and 109 

the use of anesthesia to perform experimentation affects the results. The IOP values vary by 110 

animal breed, method of sedation, and measure. In general, excessive restraint, inadequate 111 

positioning, or lack of experience in the use of equipment can increase IOP. Last but not least, 112 

they are questioned from an ethical point of view. Recently, a consensus recommendation for 113 

mouse models to study the aqueous humor outflow was published in 2022 to set standard 114 

practice in this field 
17

. The most useful models are genetic models that allow OHT by 115 

transduction of the TM with glaucoma-related genes
18

 (e.g., MYOC
19,20

, TGFβ
21–23

, GREM1
24

, 116 

CTGF
25

, DKK1
26

, SFRP1
27

, CD44
28

). To meet the expectations of this consensus 117 

recommendation animal models used to study outflow physiology must
17

: 118 

- have an open iridocorneal angle 119 

- present decreased outflow facility 120 

- present elevated IOP  121 



- include morphologic descriptions of the conventional outflow tract (TM, Schlemm’s 122 

canal, collector channels, and intrascleral and episcleral regions) preferably by 123 

electronic microscopy to be able to analyze the organization of the ECM 124 

- and assessment of TMC numbers. 125 

The Myoc
Y437H

 mouse, responsible for a juvenile glaucoma, is the best-known and most 126 

used
20

. The genetically modified mice express high levels of mutant myocilin in the TM and 127 

sclera resulting in a decline of AH outflow facility and a secondary increase of IOP. 128 

Morphological changes can be observed in the TM: decreased intertrabecular spaces and a 129 

progressive loss of TMC. However, the level of IOP can vary based on the genetic 130 

background of the mouse strain selected for inducing the MYOCY437H mutation
29

.   131 

In recent years, progress in three-dimensional cell cultures and tissue engineering 132 

fabrication has offered promising approaches to reduce the use of animal models, partly 133 

encouraged by the three Rs rule (Reduce the number of animals used; Replace the living 134 

animal with alternative experimental techniques; and Refine the techniques to minimize 135 

animal suffering) 
30,31

. While conventional 2D cell culture models represent an attractive 136 

alternative to animal models for analyzing the TM and allow for more accurate assessment at 137 

the cellular scale, they are limited by the absence of differentiation, polarization, or 138 

relationship with an extracellular matrix, making them insufficient in reflecting the actual 139 

porous architecture of the TM 
32,33

. However, this deficient architecture is precisely the cause 140 

of its dysfunction 
34

. Ex vivo models such as organ perfusion chambers, whole tissue explants, 141 

and decellularized tissues are commonly used natural sources; however, their limited 142 

availability restricts their use in perfusion studies and drug testing
35,36

. This is why a three-143 

dimensional (3D) cellular model of the TM would be an interesting tool to advance research 144 

on this pathology by considering the biomechanics, which is a key element in the 145 

pathophysiology of glaucoma
4
. 3D cell culture would enable the recreation of the 146 



microenvironment encountered in vivo and provide cells with an environment allowing them 147 

to interact with each other
33

. This, in turn, would lead to a better understanding of the 148 

physiological functioning of the TM, its behavior under conditions of stress or toxicity, and 149 

the effect of treatments
37

. Additionally, in vitro models provide a more precise analysis of cell 150 

behavior and molecular mechanisms involved in the pathology than do animal experiments
38

. 151 

This approach allows to investigate specific biological phenomena in isolated cells, 152 

eliminating potential confounding factors present in whole organisms. However, it is crucial 153 

to acknowledge that while in vitro systems provide controlled environments, they cannot fully 154 

replicate the complex conditions and interactions that occur within a living organism. 155 

Technological advances in TM in vitro models can help fill the gap in considering the 156 

mechanistic modifications involved in glaucoma, such as changes in porosity resulting from 157 

alterations in morphology and the mechanical properties of the interaction between TMC and 158 

ECM. 159 

In this literature review, we will provide an overview of existing alternative TM 160 

models to animal experimentation. We will detail the different cell types used, culture modes, 161 

and means to obtain a pathological model. Finally, we will focus on the potential applications 162 

of these different models. 163 

 164 

Available cell types  165 

 166 

Primary cell cultures:  167 

TM is composed of three regions, from the anterior chamber to the Schlemm canal: the uveal 168 

meshwork, the corneoscleral meshwork, and the juxtacanalicular tissue, the location of 169 

greatest resistance to AH outflow. TMC have a different organization in these three regions, 170 



but it is complex to isolate cells from only one of these three regions. Thus, TMC cultures are 171 

generally a mixture of cells from all three regions
 32

.  172 

Cultures of primary human TMC (HTMC) are sampled from donor eye tissue 173 

commonly from a corneal rim discarded from corneal transplant
39

. Whole globe or anterior 174 

segment from normal subjects, developing fetuses, or patients with glaucoma can also be 175 

purchased.   176 

Cultures of TMC from patients with glaucoma are more difficult due to the accelerated 177 

loss of these cells. Nevertheless, they retain their glaucomatous characteristics after culture
40

. 178 

TMC change their morphology after 6 to 8 passages, thus it is recommended to use TMC 179 

from human eyes before the 7th passages. Methods used to validate that cells are TMC is 180 

required for publications including at least responsiveness of myocilin expression by cells to 181 

dexamethasone 
32

.TMC cultures can also come from animal eyes with the limitations that this 182 

brings. 183 

 184 

Immortalized human TM cells 185 

Immortalized TMC lines can be generated with TMC transfected with an original defective 186 

mutant of the SV40 virus
41,42

. However, during the immortalization process, some properties 187 

of the TMC can be lost, for example the myocilin expression. It is recommended that cell line 188 

findings be replicated with non-immortalized TMC
32

.  189 

 190 

Induced pluripotent stem cell-derived trabecular meshwork (iPSC-TM) 191 

The reproducibility of primary cell cultures is a challenge and immortalized cell lines are 192 

considered poorly relevant to TMC physiology and disease patterns. The experimental 193 

transplantation of iPSC-derived TM (iPSC-TM) highlighted the huge therapeutic potential of 194 

these new human cell models, offering perspectives for toxicological or therapeutic 195 

evaluations
43,44

. Moreover, the pathogenesis of the glaucomatous disease is explained by a 196 



TMC loss greater than the physiological age-related cell loss. This loss has been suggested to 197 

affect the ability of the human TM to regulate aqueous humor outflow and to lead to IOP 198 

elevation. In addition to providing a source of reproducible and valuable cells for the 199 

constitution of an in vitro model iPSC-TM cells are promising autologous cell sources that 200 

can be used to regenerate the declining TMC population and function of IOP regulation
45,46

. 201 

 202 

TM progenitor cells 203 

A population of progenitor cells has been identified in Schwalbe's Ring, which is located at 204 

the junction between the corneal endothelium and the anterior portion of the TM
47

. These 205 

progenitors can be isolated and expanded, and studies have shown that they have the ability to 206 

differentiate into both keratocytes and TMC. Zhang et al. developed an optimized method to 207 

expand multipotent progenitors from human TMC in a two-dimensional (2D) culture followed 208 

by three-dimensional (3D) culture in Matrigel using a modified embryonic stem cell 209 

medium
48

. The expanded cells expressed TM markers, embryonic stem cell (ESC) markers, 210 

and neural crest (NC) markers. Although some markers were lost after passage, the cells 211 

regained the markers when seeded on 3D Matrigel via activation of the canonical BMP 212 

signaling
48

. These cells can be used in an in vitro model system to help better understand how 213 

TM is affected in glaucoma and whether TM progenitor cells may have potential therapeutic 214 

applications for glaucoma. 215 

 216 

Generation of Pathological Models: 217 

 218 

As discussed earlier, obtaining cells from the glaucomatous TM is a challenging task for 219 

researchers, which is why different molecules are used to induce a diseased phenotype.  220 



Applying mechanical stress to the TM can induce changes similar to those observed in 221 

glaucoma. This can be done by stretching or compressing the tissue using a variety of devices. 222 

In a previous study, Schlunck et al. demonstrated that the stiffness of the ECM could alter the 223 

structure of the cytoskeleton of trabecular cells as well as the profiles of certain protein 224 

expressions 
8
.  225 

Various chemicals can be used to induce glaucomatous changes in the TM, such as 226 

transforming growth factor β2 (TGF-β2), and have been shown to contribute to the changes in 227 

the ECM of the TM.  228 

TGF-β2 is a profibrotic cytokine known to be elevated in the aqueous humor of 229 

patients with glaucoma
49,50

. It has been used in many studies as a model of pathological TM 230 

41,42,51–53
. Studies have revealed that TGF-β2 can increase intraocular pressure (IOP) by 231 

promoting the synthesis of certain ECM components by trabecular cells (collagens, 232 

fibronectin) through epithelial-mesenchymal transition in TMC 
54,55

. Furthermore, TGF-β2 233 

can increase cell rigidity by triggering the formation of Cross-linked Actin Networks (CLANs) 234 

via the Rho-GTPase pathway
53,56

. 235 

Hydrogen peroxide (H2O2), another molecule used to induce a glaucomatous phenotype, is a 236 

chemical compound with powerful oxidizing properties and has been shown to promote 237 

cellular senescence, rearrange cytoskeletal structure, and increase proinflammatory mediators 238 

such as IL-6, IL-8, and endothelial–leukocyte adhesion molecule 1 (ELAM-1) in the TM
57

. 239 

Endothelin-1 (ET-1) is another biomarker found in the aqueous humor of patients with 240 

POAG
58,59

. It has been shown that ET-1 can induce TMC contraction in culture and that it can 241 

affect the outflow facility
60,61

. Wang et al. showed that in a cultured HTMC model, treatment 242 

with ET-1 increased the expressions of fibronectin and collagen IV, and that in an ex-vivo 243 

model, IOP increased after ET-1 administration
62

. Zhou et al. also used ET-1 in a whole eye 244 



perfusion system and found a decreased outflow after ET-1 exposition and successfully tested 245 

several pretreatments to reverse this effect
63

. 246 

Benzalkonium chloride (BAK) in vitro induced apoptosis, oxidative stress, and also an IOP 247 

increase, with reduction of aqueous outflow in vivo. BAK enhances all characteristics of TM 248 

degeneration typical of glaucoma and causes degeneration in acute experimental conditions, 249 

potentially mimicking TM degeneration
64

. In an in vitro 3D TM model, Bouchemi et al. 250 

showed that BAK disorganized the TMC and decreased their number resulting in an 251 

enlargement of spaces between cells 
65

.  252 

 253 

Available 3D models:  254 

 255 

3D scaffolds culture 256 

The first successful scaffold was a micro-fabricated SU-8 porous structure, where TMC were 257 

cultured to study steroid-induced glaucoma. Scaffolds with pores of approximately 20 258 

micrometers in thickness, which were seeded with primary HTM cells, were able to imitate 259 

some of the normal tissue functions in vivo. This included being able to induce or reverse 260 

glaucomatous conditions using medication 
66,52,67

. A follow-up study showed that applying a 261 

hyaluronic acid-containing hydrogel coating to the SU-8 scaffold improved cell proliferation. 262 

Over time, various technologies and materials have been explored, including traditional 263 

polymeric filters, SU-8 membranes, electrospun nanofibers, and other methods. These 264 

methods offer precise control over morphological characteristics such as porosity and beam 265 

thickness in both 2D and 3D environments. However, the stiffness of the scaffold cannot be 266 

directly controlled using most of these methods. Despite these limitations, 3D cultures have 267 

the potential to create an in vivo-like microenvironment for HTM cell growth. Tissue 268 

engineering aims to produce functional biomimetic replicas of tissues of interest, but only a 269 



limited number of studies have been reported on bioengineered 3D HTM in vitro models. 270 

These models partially mimic normal tissue function and provide a platform for drug testing 271 

and evaluating the effectiveness of different treatment options. Wlodarczyk-Biegun et al. 272 

studied the biofabrication technique of melt electrowriting (MEW), a marriage between 273 

electrospinning and 3D printing, as a means of producing fibrillar and porous scaffolds with 274 

thermoplastic polymers that replicate the multilayer and gradient structure of the natural HTM 275 

68
. HTMC cultured on these scaffolds maintained the phenotype of native HTMC and 276 

infiltrated the scaffolds. However, some may argue that these models are more comparable to 277 

a 2D cell culture system rather than a true 3D model, as they cannot fully replicate the 3D 278 

cell-ECM interface apart from the ECM secreted by the HTM cells grown on top of the 279 

synthetic polymer scaffold. 280 

 281 

Hydrogel‐ based TM scaffolds 282 

Recent research has focused on using hydrogels as scaffolds to study the behavior of HTMC 283 

in response to environmental changes and disease conditions
69,70

. Hydrogels are networks of 284 

crosslinked, hydrophilic polymers used to recapitulate the 3D architecture of organ systems in 285 

tissue engineered models. These materials are so useful in cell culture because they provide a 286 

biocompatible, degradable, hydrated microenvironment that mimics the cell–ECM 287 

interactions of natural tissues. Hydrogel scaffolds offer higher control over the morphology, 288 

stiffness, and 3D environment compared to photolithography and electrospinning, while also 289 

maintaining structural integrity. 290 

Ideally, 3D cell culture matrices can reproduce the features of the ECM to closely 291 

resemble the in vivo environment. The interaction between cells and ECM is essential for a 292 

range of biophysical and biochemical functions, such as the transportation of signaling 293 

molecules, nutrients, and waste metabolites, as well as mechanical integrity. Thus, these 294 



matrices need to reflect the specific ECM characteristics of each tissue for a given application. 295 

Moreover, the mechanical properties of 3D matrices are also significant, as they can directly 296 

influence cell adhesion, thereby affecting both the shape and response of cells
71

.  The 297 

utilization of degradable scaffolds presents an opportunity for more molecular research, as 298 

opposed to permanent ones. Hydrogels can be created using various synthetic or natural 299 

components. In tissue engineering, natural polymers are the most commonly used approach to 300 

developing hydrogels
72

. Collagen, fibrin, and elastin, which are components of the ECM of 301 

the TM, have been used as attachment factors for HTMC to study specific functions and 302 

interactions 
65

. 3D Corning® Matrigel® Matrix (Corning Life Sciences, Tewksbury, MA, 303 

United States) contents several proteins found in extracellular matrix (ECM) such as laminin, 304 

collagen IV, heparin sulfate proteoglycan, and entactin/nidogen
73,74

. Several studies 305 

demonstrated that unlike cells cultured on traditional 2D planar surfaces, cells in 3D scaffolds 306 

are more physiologically relevant concerning in vivo characteristics exhibited by in-vivo 307 

surrogates
75

 (figure 1). Vernazza et al. conducted a study to compare the response of HTMC 308 

in 2D and 3D in vitro models following chronic stress exposure. Their results revealed that 309 

3D TMC cultured on Matrigel exhibited a higher sensitivity to the production of intracellular 310 

reactive oxygen species induced by hydrogen peroxide treatment compared to 2D cultures. 311 

Furthermore, the 3D models demonstrated a more precise regulation of apoptosis triggers and 312 

cell adaptation mechanisms than the 2D models 
33

.  Another scaffold-based approach by 313 

Osmond and colleagues utilized HTMC cultured on various collagen scaffolds containing 314 

different glycosaminoglycans (GAGs) and different pore architectures to better understand 315 

how HTMC respond to changes in their extracellular environment. The cellular response was 316 

assessed by quantifying cellular proliferation and the expression of fibronectin, an important 317 

extracellular matrix (ECM) protein. Fibronectin plays a crucial role in organizing ECM 318 

proteins both among themselves and with trabecular cells, thereby contributing to the 319 



resistance of outflow 
76–78

. The pore architecture of the scaffolds was altered using the freeze-320 

casting technique to make both large and small pores that are aligned or with a non-aligned 321 

random structure. The composition of the scaffolds was altered with the addition of 322 

chondroitin sulfate and/or hyaluronic acid. It was found that HTMC grown on large pore 323 

scaffolds proliferate more than those grown on small pores. There was an increase in the 324 

fibronectin expression with the incorporation of GAGs, and its morphology was changed by 325 

the underlying pore architecture. These works offer a better understanding of how human 326 

TMC behave in response to alterations in their microenvironment and highlight the 327 

importance of the mimicry of the 3D strucutre
79–81

. However, the study did not explore how 328 

the constructs would react under conditions that induce glaucoma. Furthermore, if the 329 

accumulation of extracellular matrix (ECM) proteins is a characteristic feature of the 330 

pathogenic process in glaucoma, it is important to highlight that cell proliferation is not
77,82

. 331 

Therefore, it is crucial to determine whether cells can survive under normal conditions on 332 

these new substrates. However, it should be noted that the ability to proliferate does not 333 

necessarily indicate an appropriate glaucoma model. 334 

3D bioprinting can produce a variety of architectural patterns on a wide array of biomaterials. 335 

Li and colleagues developed a hydrogel using a tissue-engineering approach for HTM. The 336 

hydrogel consisted of ECM biopolymers and normal HTMC obtained from a donor. By 337 

mixing HTMC with collagen type I, hyaluronic acid (HA), and elastin-like polypeptide (ELP) 338 

- each containing photoactive functional groups - researchers were able to create HTM 339 

hydrogels in various sizes and shapes. Short UV cross-linking, mediated by photo-initiators, 340 

was used to solidify the hydrogels. To induce glaucomatous changes, dexamethasone (DEX) 341 

was administered, and the therapeutic effects of the ROCK inhibitor Y27632 were evaluated
83

. 342 

To create an in vitro 3D TM scaffold for potential use as a tissue scaffold in glaucoma 343 

patients after trabeculectomy, Waduthanthri et al. developed a hydrogel peptide called 344 



MAX8B which partly mimics the motif of cellular integrins and enables interactions with 345 

ECM components 
84

. The scaffold material demonstrated the ability to undergo shear-thinning 346 

and exhibited biocompatibility, facilitating appropriate growth and proliferation of TMC in 347 

tightly packed cell monolayers resembling typical TMC morphology. Moreover, the MAX8B 348 

scaffold was utilized in an in vitro perfusion system to investigate the impact of 349 

Dexamethasone on the outflow facility of the trabecular meshwork proving the effectiveness 350 

of this three-dimensional (3D) model as a platform for drug testing
84

. 351 

 352 

Spheroids 353 

Although 3D culture techniques have gained popularity for their ability to better mimic in 354 

vivo environments, there are some limitations when it comes to replicating physiological and 355 

pathological conditions of human TM. This is because the use of scaffolds in 3D cultures is 356 

not reflective of the absence of such structures in human TM. However, 3D spheroid cell 357 

cultures have recently emerged as a promising alternative to conventional 2D cell cultures, 358 

particularly as in vivo models for various diseases. These spheroids allow for more 359 

intercellular interactions in a 3D space, potentially resulting in protein networks that resemble 360 

those found in real tissues. This makes it possible for 3D spheroids to replicate biological 361 

features associated with real tissues. 362 

The spheroid model of TM refers to a 3D culture system that mimics the structural and 363 

functional properties of the TM in the eye. HTMC have been cultured as spheroids in vitro to 364 

study their role in glaucoma. These spheroids have been shown to exhibit features of the TM 365 

in vivo, such as the presence of ECM components and cytoskeletal proteins. These spheroids 366 

have been shown to respond to mechanical stress and exhibit physiological responses similar 367 

to those observed in vivo. These spheroids have been shown to be structurally and 368 

functionally similar to the TM in vivo and have been used to study the effects of various drugs 369 



on TMC behavior. 3D HTM spheroids became significantly and differently smaller and stiffer 370 

in response to TGF-β2 or dexamethasone stimulation
41,85

. Watanabe et al. successfully 371 

obtained 3D HTM spheroids and found that TGFβ2 significantly induced the down-sizing and 372 

stiffness of 3D spheroids from human orbital fibroblasts, and those effects were substantially 373 

inhibited by a ROCK-inhibitor.
42,86

 374 

 375 

Outflow studies 376 

Perfusion studies of outflow in HTMC began in the late 1980s and have since evolved to 377 

include a range of techniques and models. One of the earliest studies involved the use of 378 

filters to culture HTMC and measure hydraulic conductivity using a pressure/flow circuit
87

. 379 

This study led to further investigations into the biomechanics of HTMC. The perfusion 380 

system developed by Yubing Xie's group enabled continuous pressure monitoring at different 381 

flow rates to investigate the effects of drugs such as Lat-B, ROCK inhibitors, or TGFβ2
52,66,67

. 382 

As previously mentioned, 3D culture models of TMC are superior to 2D models due to the 383 

ability to enable cell-cell and cell-ECM interactions. However, these 3D models fail to 384 

reproduce the dynamic continuous supply of nutrients, oxygen, and removal of metabolic 385 

waste products. Recent advances propose models that combine the benefits of 3D culture with 386 

milli-fluidic techniques to improve the physiological relevance of the culture and address the 387 

issues related to cell responses under static culture conditions. Microfluidic systems allow for 388 

the creation of a 3D microenvironment that mimics the in vivo conditions of the TM, 389 

including the presence of shear stress and fluid flow. Recently, the MAX8 peptide-hydrogel 390 

scaffold and a 3D Matrigel® model have been tested in perfusion chambers to evaluate their 391 

use as artificial TM scaffolds
39,84

. 392 

In their closed-circuit in vitro model developed by Tirendi et al., 3D-HTMCs cultured 393 

in Matrigel were provided with a continuous medium supply. This was achieved by 394 



connecting single-flow bioreactor culture chambers to a peristaltic pump. The milli-fluidic 395 

technology as well as the 3D culture model mimicked cell responses found in vivo as a result 396 

of the increase in outflow resistance 
57

. This type of model can be used to investigate the 397 

effects of various factors on TM function, such as mechanical stress and changes in ECM 398 

composition. 399 

 400 

Ex vivo models 401 

Ex vivo models, specifically perfusion studies, utilizing animal eyes such as pigs, 402 

cows, and primates, have been instrumental in advancing our understanding of glaucoma 
88–91

. 403 

These models offer valuable insights into the dynamics of aqueous humor outflow and 404 

provide a platform to investigate the effects of various experimental interventions on the 405 

disease. By perfusing the enucleated eyes with a controlled flow of fluid, researchers can 406 

mimic physiological conditions and measure parameters such as intraocular pressure and 407 

outflow facility. These models have helped elucidate the mechanisms underlying glaucoma 408 

and evaluate potential treatments
63,89

. For example, Zhou et al. developed a platform to 409 

simultaneously evaluate outflow facility and its time- and dose-dependent responses to 410 

treatments of 20 eyes. They used whole porcine and bovine eyes to develop a perfusion 411 

system and studied the regulation of outflow facility by endothelin-1, nitric oxide donor, and 412 

sphigosine1-phosphate 
63

. 413 

However, it is important to acknowledge the limitations of ex vivo models. They do not fully 414 

replicate the complex in vivo environment of the eye, including interactions with surrounding 415 

tissues and systemic factors. Additionally, the use of animal eyes may introduce species-416 

specific differences that may not fully reflect human physiology. Given these limitations and 417 

the fact that they do not represent an alternative to the reliance on animal experimentation, we 418 

will primarily focus on human models.  419 



The human anterior segment perfusion culture model is a valuable tool for studying the TM 420 

and aqueous humor outflow in glaucoma
89,92,93

. Ex vivo models possess several significant 421 

benefits compared to other models, including their ability to maintain the structure of 422 

pathways and their capacity to facilitate analysis in nearly ideal physiological conditions
94

. 423 

Outflow facility measurements can be performed ex vivo or in vivo, with ex vivo 424 

measurements offering a simpler approach by avoiding confounding factors that are difficult 425 

to control. However, in vivo measurements are more representative of real-life conditions. 426 

Bahler et al. used perfusion organ culture of human anterior segments to study the 427 

effect of prostaglandin on the trabecular outflow. Since this human anterior segment culture 428 

model lacks a choroid or functional ciliary body, the uveoscleral pathway is absent. This 429 

simplification facilitates the analysis by directly assessing the sclera's impact on outflow 430 

facility
93

. 431 

Peng et al. have created an ex vivo model of human corneal rim for perfusion culture 432 

experiments as an alternative to the human anterior segment perfusion culture model. This 433 

model can be used to study the TM and aqueous humor outflow in glaucoma while improving 434 

cost and availability. The corneal rims were affixed to 3D-printed perfusion culture plates and 435 

perfused in constant flow mode. Pressure changes were recorded using a computerized system. 436 

TM stiffness of corneal rims treated with dexamethasone was significantly higher than in the 437 

control group
95

.  Additionally, the model allows histology or immunohistochemistry of the 438 

TM to investigate biomechanical changes or treatments. 439 

Baudouin et al. examined TM specimens using immunohistology and reverse transcriptase–440 

polymerase chain reaction. Trabecular specimens of glaucomatous patients showed extremely 441 

low densities of trabecular cells and the presence of cells expressing fractalkine and 442 

fractalkine receptor and their respective mRNAs
64

. These explants methods have the 443 

advantages to retain tissue architecture and cellular interactions closer to in vivo conditions as 444 



opposed to traditional cell culture methods. They are suitable for studying tissue responses 445 

and drug effects at the cellular level
96

. The low cell count of TMC in TM explants from 446 

glaucomatous patients can be circumvented by using TM from healthy donors and exposing 447 

them to TGF-β2.  The addition of TGF-β2 to healthy TM permits reproduction of the changes 448 

in TM cell cytoskeletal organization and ECM compaction, while providing sufficient 449 

material for a transcriptomic study
2,82,97

. 450 

 451 

Discussion 452 

This article discusses the importance of developing models of TM, a structure within the eye 453 

that plays a crucial role in regulating IOP, to study the pathophysiology of glaucoma. The TM 454 

is a dynamic filtration system that helps regulate IOP by controlling the outflow of aqueous 455 

humor. 456 

Developing new 3D in vitro models is crucial to studying TM pathophysiology in 457 

glaucoma. They mimic the physiological microenvironment of the TM, providing a more 458 

physiologically relevant model than traditional 2D cell culture methods
98

. 459 

One of the key advantages of these 3D models is that they reduce the need for animal studies, 460 

which can be costly, time-consuming, and ethically challenging
15,30

. In vitro models can be 461 

used as a complementary tool to animal studies, as they can provide useful data on 462 

mechanisms and drug efficacy before moving to animal models or clinical trials. 463 

While in vitro models offer several advantages, they also have limitations that need to 464 

be considered. One of the main challenges is that in vitro models may not fully recapitulate 465 

the complexity of the TM in vivo, such as interactions with other tissues and the influence of 466 

systemic factors. To address this limitation, researchers often use a multiplicity of models to 467 

collect data for a particular question. For example, to study the modification of ECM, a 468 

natural hydrogel medium that closely resembles the components of TM ECM is more 469 



interesting than a synthetic one. As it provides a more physiologically relevant environment 470 

that can better mimic the ECM interactions in the TM. Similarly, a microfluidic bioreactor 471 

can be used to study the effect of sheer stress or biomechanical impact on TMC
66,99

. This type 472 

of model allows researchers to control the flow of fluids and apply mechanical forces to the 473 

cells, providing more accurate simulations of the TM microenvironment. A comparison of 474 

innovative 3D TM models and measured outcomes is presented in supplementary table 1. 475 

Furthermore, biomimetic 3D in vitro models, in addition to enhancing our 476 

understanding of TM tissue biology and outflow pathology, have the potential to be used 477 

therapeutically for restoring compromised TM function
100

. Promising research has 478 

demonstrated the effectiveness of stem cell therapy in repairing TM tissue and preserving 479 

vision in glaucoma patients 
46

. Moreover, the presence of TM progenitor cells capable of 480 

differentiating into functional TM cells further supports the potential for tissue repair
101,102

. 481 

Advanced biofabrication techniques allow for the creation of scaffolds that closely mimic the 482 

native ECM and provide cues for stem or progenitor cell differentiation, replicating cellular 483 

responses observed in vivo
103

. By incorporating biomaterials alongside TM progenitor cells, 484 

the development of a delivery system for effective stem cell therapy can be facilitated. 485 

In conclusion, the use of multiple models that can better replicate the different aspects 486 

of the TM in vivo can provide more robust and accurate data. By using a combination of in 487 

vitro, ex vivo, and in vivo models, researchers can gain a more comprehensive understanding 488 

of glaucoma pathology and develop better treatments for this disease. 489 

However, it is important to consider the limitations of non-animal. The progress made 490 

in the alternative models presented in this study does not imply that we can completely 491 

eliminate the need for animal experimentation at present. In vivo experiments enable a 492 

substantial prediction of the effect of hypotonic treatment on IOP, even if the organization of 493 

their outflow system is not totally similar to that of humans
16

. These alternative models are 494 



still in their early stages and may not fully replicate the complexity of the TM or its 495 

interactions within the eye. They may not provide the same comprehensive data as animal 496 

models, particularly in terms of assessing IOP, estimating natural flow rate, accessing the 497 

outflow facility, evaluating cellularity, tissue integrity, and capturing natural expression 498 

profiles as it would be in a living in vivo system. Additionally, organ culture has a significant 499 

limitation whereby the regulation of IOP relies solely on external manipulative regulations, 500 

lacking intrinsic regulation in enucleated eyes. Nonetheless, despite these current limitations, 501 

the progress made in developing these alternative models is encouraging. While they may not 502 

completely replace the need for animal models, they do hold the potential to significantly 503 

reduce their utilization, provided of course that the trabecular cells used are not derived from 504 

animals. 505 

Overall, this progress in in vitro and ex vivo models offers a promising tool for studying the 506 

TM in glaucoma and reducing the need for animal studies. While it has limitations, it provides 507 

a more physiologically relevant model than traditional 2D cell culture methods, and its 508 

potential applications in drug discovery and testing make it a valuable addition to glaucoma 509 

research. 510 

 511 
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Figure 1: Confocal microscopy image of the 3D cultured pHTMCs in Matrigel. The pHTMC is 840 

organized in a mesh conformation with interconnections and the formation of intercellular spaces. 841 

Actin fibers are stained in red by phalloidin, membranes with DiO (green), and nuclei with DAPI 842 

(blue). Magnification 200X. 843 
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