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Neural-Network-based NLOS Identification of 

Angular Clusters at 60-GHz 

Pengfei Lyu, Aziz Benlarbi-Delaï, Zhuoxiang Ren, senior member, IEEE, 

 and Julien Sarrazin, senior member, IEEE 

Abstract—The work in this paper identifies the nature of individual 

angular clusters as line-of-sight (LOS) or non-line-of-sight (NLOS) in indoor 

millimeter-wave channels. The proposed technique utilizes the channel 

knowledge that is readily available from a beam training process in 

directional antenna-based communications. In particular, the behavior of 

five different channel metrics, namely the angular covariance, the time-domain, 

and frequency-domain channel kurtosis, the mean excess delay, and the RMS 

delay spread, is analyzed using maximum likelihood ratio and artificial neural 

network. A noticeable difference between LOS and NLOS clusters is observed 

and assessed for identification. Hypothesis testing shows errors as low as 0.02-

0.003 in simulations and 0.04-0.07 in measurements at 60 GHz in indoor short-

range environments.  

Index Terms—NLOS identification, millimeter wave, 60 GHz, artificial 

neural network, indoor localization, beam training. 

I. INTRODUCTION

Outdoor wireless localization such as Global Positioning System 

(GPS) experiences a great success due to its large-scale application. 

With the booming of the Internet-of-things (IoT), indoor wireless 

positioning applications are found in many fields such as healthcare, 

industrial automation, and smart environment [1]. Localization 

strategies based on existing wireless communication technologies take 

advantage of saving infrastructure costs. Thanks to their wide 

bandwidth, millimeter-wave (mm-wave) communications appear as a 

promising candidate for accurate indoor wireless localization. 

Operation at mm-wave is included in 5G standard. 3GPP release 15 

[2] has defined the use of bandwidth in the 24.25-40 GHz range while

release 17 [3] is currently considering frequencies in the 52.6-71 GHz

spectrum, including the 60 GHz license-free band. The 60 GHz band

is also used in IEEE 802.11ad [4] and IEEE 802.11ay [5] standards

for indoor communications based on channel study [6]. In these

standards, the total bandwidth at 60 GHz is 8.64 GHz [7], which can

provide high positioning accuracy.
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Unfortunately, the attenuation of millimeter waves by typical 

scatterers, such as metal and wood objects [8] and human bodies [9-

11], is very high so that the direct path is frequently obstructed by 

outdoor random building [12, 13] or indoor human activity [14, 15]. 

The probability of mm-wave communications to operate over indirect 

paths is thus significantly enhanced, which in turn leads to biased 

localization metrics such as received signal strength (RSS), angle of 

arrival (AOA), time of arrival (TOA) [16-18], and time difference of 

arrival (TDOA) [19]. Triangulation-based positioning needs a direct 

path between transmitters (Tx) and receivers (Rx) to be accurate [16, 

20]. Since multipath effect in the 3.1-to-10.6-GHz UWB band is rich 

[21-23], signals that have propagated along different paths sum up at 

Rx. In that case, two steps are implemented to mitigate the impact of 

indirect paths on the localization process [24]. First, the receiver 

identifies if a direct path exists with a given transmitter, i.e., line-of-

sight (LOS) scenario, or not, i.e., non-line-of-sight (NLOS) scenario. 

Second, the receiver uses the signal received from LOS transmitters 

only to localize itself and tries to mitigate the error caused by indirect 

paths in the LOS channel. Signal received from NLOS transmitters are 

completely discarded, due to the absence of correct position 

information provided by the direct path. LOS and NLOS channels can 

be discriminated against by RSS [25, 26] or the Rician K-factor for 

instance [27]. This later can be estimated by fitting the measured data 

with Ricean distribution or by a verified second-order moment of the 

received power intensity [28, 29]. Then, NLOS identification makes a 

statistical decision [30] based on the difference between the 

parameters in LOS and NLOS channels [21, 24]. Since RSS and K-

factor typically depend on the Tx-Rx range, additional features are 

used in the literature. For instance in [31], the mean total energy, 

maximum power, amplitude and rise time of the first peak, excess 

delay, RMS delay spread, and the received signal kurtosis (i.e., fourth-

order moment) are introduced as identification metrics. While only a 

subset of those metrics is found to be optimal for identification in [31], 

the work in [32] highlights that using more metrics enables an 

identification more robust to various environments. Thanks to 

multiple-antenna systems, spatial metrics based on AOA have been 

used successfully to perform identification [33]. To jointly make use 

of several metrics in the identification process, common parametric 

hypothesis testing methods such as maximum likelihood ratio (MLR) 

[32], and non-parametric ones [31, 33-37], such as support vector 

machine (SVM) [31], relevance vector machine (RVM) [34], and 

artificial neural network (ANN) [35], are typically employed. More 

recently, artificial intelligence techniques have been used to perform 

channel characterization and identification, as summarized in this 

survey [38, 39]. To facilitate practical implementations, [37] uses only 

the channel state information (CSI) available in 5G communications 

to perform identification. After NLOS identification, some regression 

methods such as least square (LS) or maximum likelihood (ML) [40] 

are used to mitigate the positioning error in NLOS transmissions. 
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Different from the rich multipath channel at low-frequency band, 

the mm-wave channel is sparse [41, 42], which exhibits new NLOS 

identification challenges. To enhance the signal coverage affected by 

serious blockage, beamforming [43, 44], whether fully-digital [45] or 

hybrid [46], is used to look for path(s) with high signal-to-noise-ratio 

(SNR) according to, typically, a discrete multi-beam codebook [47]. 

Identified high-SNR path(s) are used to establish the communication 

link, which also provides higher degrees of freedom for outdoor multi-

user scenarios. This beam training strategy is already included in IEEE 

802.11ad and IEEE 802.11ay [7, 48, 49] and is attracting more 

attention in recent years to accelerate it [50, 51]. Unfortunately, while 

current beam training finds high-SNR links for communication, it is 

not meant for identifying its nature (i.e., LOS or NLOS), as required 

for localization. This shortcoming is addressed in this paper. 

Although many studies report on indoor [52-54] and outdoor [55-

58] localization based on mm-waves, only a few works [59-63] are

dealing with NLOS identification at mm-wave frequencies. To

maintain a low-complexity system, the work in [59, 60] uses a simple

energy detector to mitigate NLOS components in TOA estimations.

However, its robustness to various environments is not validated with

measurements. The work in [61] assumes multiple base stations

communicating with a user. However, the channel model used is

obtained with a simplified ray tracing, not accounting for diffuse

scattering effects, which is however a significant contribution at mm-

wave [64]. [63] performs identification by exploiting several metrics

thanks to a learning process based on a random forest algorithm.

While the method appears to be robust to small SNR, the work is

solely based on simulations. The work in [61] is to author’s best

knowledge the only study based on actual experiments at mm-wave.

Based on 28 GHz measurements with quasi-omnidirectional antennas,

it uses similar identification approaches than in UWB. Therefore, as

well as all mm-wave identification, studies [59-63] do not consider the

directional behavior of the channel.

As a general observation, all studies in the UWB or mm-wave band 

aim to identify whether a quasi-omnidirectional channel contains a 

LOS path. In beamforming mm-wave communications, the channel 

contains less information since it is spatially filtered by the directional 

antenna pattern, which could jeopardize identification techniques. 

Furthermore, after the beam training process, the antenna beam is 

steered towards a particular angular cluster whose nature (LOS or 

NLOS) needs to be known for localization purpose.  

Consequently, the main contribution of this paper is the NLOS 

identification of individual angular clusters. This work leverages the 

multiple observations of the channel available thanks to beam training 

to first identify all the angular clusters of a 60 GHz indoor channel. 

Each of them is then classified as LOS or NLOS. Furthermore, this 

paper presents for the first time, to author’s best knowledge, 

experimental identification results obtained using directional antennas 

at mm-wave. The reminder of the paper is organized as follows. In 

section II, the principle of spatial NLOS cluster identification is 

presented, including the different physical features between LOS and 

NLOS transmission, the metrics to identify, and the methods of 

identification. The method is implemented in simulation in section III 

based on the IEEE 802.11ad channel model and results are given and 

discussed. An experimental setup at 60 GHz is used in section IV to 

validate the proposed approach. Finally, section V draws conclusions 

and gives some perspectives of this work. 

II. PRINCIPLE OF SPATIAL NLOS IDENTIFICATION

The NLOS identification proposed in this paper intends to classify each 

cluster of a channel as LOS or NLOS. A LOS cluster is defined as an angular 

cluster that contains the LOS path with possibly some NLOS multipath 

components (MPC). An NLOS cluster is defined as an angular cluster that 

contains only NLOS MPC. The identification is performed by analyzing the 

behavior of five metrics, namely the angular covariance, the time-domain 

and frequency-domain kurtosis, the mean excess delay, and the RMS delay 

spread. This analysis is done in the elevation/azimuth angular domain using 

an estimated power angular spectrum (PAS). The metrics are calculated for 

all individual angular clusters and their statistical distributions are fitted with 

some distributions whose parameters allows for discrimination (LOS or 

NLOS). The general procedure is summarized in Fig. 1 and is detailed in the 

following subsections. 

Fig. 1. Flowchart of spatial NLOS identification with beam training. 

A. Power Angular Spectrum

The beam training procedure to align Tx and Rx beams consists

typically in a channel estimation over the whole angular space in both 

azimuth (ϕ) and elevation (θ) directions. For instance, the IEEE 802.11ad 

standard [7] introduces a beamforming protocol in which the Tx beam 

sweeps over the whole angular space, while the Rx antenna pattern is kept 

quasi-omnidirectional. The Rx antenna sweeps then its beam while the Tx 

pattern is kept quasi-omnidirectional and the link exhibiting the highest 

link budget may be used for communication. This beam training is 

performed according to a fixed codebook, in which the angular sweep 

is done using approximately equal intervals throughout the entire 

space. Beside enabling establishing a link, such procedure enables the 

transmitter and/or the receiver to have the knowledge of the spatial 

representation of the channel, which is leveraged to perform NLOS 

identification. Assuming the Tx antenna pattern omnidirectional, the 

sampled channel impulse response (CIR) estimated at Rx can be written as 

a function of excess delay τ: 

( ) ( )  ( ) ( )
1 1

ˆ sinc 2

L K

l k

i i i

k k
h B l l n       

= =

= −  −  + (1)

where i is the beam index, L is the number of estimated channel taps, K is 

the number of multipath components (MPC), 2B is the finite bandwidth of 

the receiver which sets its time resolution to ∆𝜏 = 1/2𝐵, 𝛿(∙) is the Dirac 

delta function, n(τ) is an additive white Gaussian noise (AWGN), and 

𝛼𝑘
𝑖  is the complex coefficient of the k-th MPC given by: 

( ) ( ), expi i

k r k k k kg a j   = (2) 

where 𝑔𝑟
𝑖 (𝜃𝑘 , 𝜙𝑘) is the Rx antenna gain as experienced by the k-th MPC

whose elevation and azimuth AOA are 𝜃𝑘 and 𝜙
𝑘
 respectively, and 𝑎𝑘 and 

𝜑
𝑘
 are the corresponding amplitude and the carrier phase. From (1), the 

receiver can calculate the channel total power, 𝑃̂, at each beam direction i 

defined by (𝜃𝑖 , 𝜙𝑖), as：

( ) ( )
2

0

1 ˆˆ ,
Ti i i

P h d
T

   =  (3) 

where T=𝐿𝛥𝜏 is the estimated channel duration. Steering the Rx antenna 

beam leads therefore to an estimation of the PAS, defined as the angular 
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distribution of the channel power. An example of the PAS obtained with the 

IEEE 802.11ad conference room scenario [4] is shown in Fig. 2 (Rx antenna 

beamwidth of 10° and step size of 5°). Since the 60 GHz channel is sparse 

[42, 65], the PAS in Fig. 2 is composed with high power clusters and a low 

power background. The first step is to identify and distinguish the different 

clusters in the PAS onto which an analysis is carried out in order to determine 

their nature. 

Fig. 2. Estimated power angular spectrum (in dB) obtained with beam training at Rx. 

B. PAS Clustering

In propagation channel modeling, peaks, representing impinging

plane waves, are firstly extracted from the channel response and 

clustering is then performed on a discrete representation of the channel, 

whether in time or in space [66]. In this paper, Fig. 2 is directly clustered 

using an image processing-based method described in [67]. The PAS is 

processed as a grayscale image. One pixel i corresponds to one Rx 

antenna beam direction (𝜃𝑖 , 𝜙𝑖) and its value is given by (3). The

pixel size is therefore equal to the steering angular step. To avoid over-

segmentation, the PAS image is first filtered with a set of 

mathematical morphology operations, namely, opening, closing, and 

reconstruction [67]. The technique identifies then the illuminated 

foreground of the PAS 2D map, i.e., the clusters, from the lower 

intensity background thanks to several operations including watershed 

segmentation. Watershed segmentation is an unsupervised clustering 

method that find the local minima centers and local maxima boundaries 

of clusters. In addition to run fast, it does not require the a priori knowledge 

of the cluster number and the use of a power threshold to remove the 

background noise such as in [68]. Furthermore, by avoiding any high-

resolution MPC extraction, [67] preserves the spatial shape of clusters 

which is of importance for NLOS identification. For each cluster n, it results 

in the identification of its contour as shown in Fig. 2. It is then 

straightforward to determine the set of pixels 𝑖 ∈ 𝒬𝑛that belong to a same 

cluster n. 

C. Spatial-Domain Metric: Rp 

The LOS cluster, located in the center in Fig. 2 (θ = ϕ = 0°), exhibits a 

rotational symmetry (according to the Rx antenna beam shape). However, 

in NLOS clusters, this symmetry is usually lost. To illustrate this physical 

phenomenon, a canonical example of Rx beam sweeping simulated with the 

method of moments is shown in Fig. 3. In Fig. 3 (a), the received power 

angular distribution is not affected by scattering objects in the LOS 

transmission. Thus, the PAS exhibits a shape identical to the Rx radiation 

pattern. However, in Fig. 3 (b), the PAS is randomly deformed by the 

distributed scatterers. Even when reflected by smooth reflectors, NLOS 

clusters are affected as seen in Fig. 3 (c). So, the angular spreading 

experienced by NLOS clusters is likely to be different along 𝜙 and θ. 

The spatial distribution of 𝑃̂(𝜃𝑖 , 𝜙𝑖) is therefore assessed to quantify

the difference between LOS and NLOS clusters. By analogy with co- 

variance of joint probability distribution of two variables, a similar 

covariance matrix is introduced to describe the shape of the 2D angular 

clusters while being independent of the absolute received power: 

Fig. 3. Deformation of clusters due to: (a) LOS transmission; (b) random scattering; (c) 

mirror-like reflection. 

2 2
11 12

2 2
21 22



 

 

 
  =
  

(4) 

with σ2, the angular covariance weighted with power of a given cluster 

n, given by: 
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for 𝑖 ∈ 𝒬𝑛. 𝜃𝑖  and 𝜙𝑖 are the azimuth and elevation angle of the i-th

pixel. 𝜃̅𝑛 and 𝜙̅𝑛 are the mean angles of the n-th cluster. By weighting 

the shape of the clusters by 𝑃̂(𝜃𝑖 , 𝜙𝑖), the covariance matrix offers a simple 

mean to quantify its spatial distribution and has been found exhibiting 

superior identification results than higher order moments. As observed 

earlier, the nature of the propagation influences the symmetry of clusters. 

The weighted symmetry is a measurable quantity to evaluate the shape 

of clusters. By analogy to principal component analysis (PCA) in 

statistics, the ratio RP of minimum eigenvalue over maximum 

eigenvalue of the covariance matrix (4) can be used to characterize the 

spatial symmetry of the power-weighted covariance of individual 

clusters: 

( )

( )
1 2

1 2
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max ,
PR

 

 
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where λ1 and λ2 are the eigenvalues with the corresponding eigenvectors 

v1 and v2 through decomposition of covariance matrix (4):  
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Since the variance is not a normalized moment, it increases with the Tx-Rx 

range. However, since it varies uniformly in any angular plane, doing the 
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ratio in (8) makes Rp range independent. One Rp value is consequently 

obtained per cluster which is the first metric used for NLOS 

identification in following sections.  

D. Time-Domain Metrics: Kt, τ
_

, τRMS 

Besides power, intra-cluster features in time and frequency domain also 

differ between LOS and NLOS clusters. An example of the power CIR 

clusters is shown in Fig. 4 (a)0F

1. The first peak is much stronger than the other 

peaks in the LOS situation whereas it is not the case in NLOS where the 

power is more spread over time. The probability density function (PDF) of 

the CIR power distribution in Fig. 4 (a) is shown in Fig. 4 (b). The NLOS 

PDF is more spread than the LOS, which can be observed in the PDF tails.  

      
(a)                                                           (b) 

Fig. 4. (a) CIR and (b) PDF of CIR inside LOS and NLOS clusters using IEEE 

802.11ad channel model of conference room scenario (noiseless case). 

To obtain a metric representative of such effect and being independent to 

the absolute received power, the kurtosis 𝐾𝑡
𝑖  is used to evaluate the shape of 

the PDF of the CIR distribution: 
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where 𝜇|ℎ̂𝑖| is the CIR magnitude mean over excess delay τ of the i-th pixel 

and Eτ[] is the expectation operator over excess delay τ. This time-domain 

kurtosis is therefore the second metric used in this paper to perform NLOS 

identification. The third and fourth metrics are the mean excess delay 𝜏̅𝑖 and 

the RMS delay spread 𝜏rms
𝑖 , calculated as: 
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Because of local random scattering experienced by multipath components 

while reflecting on rough surfaces, NLOS clusters are expected to exhibit 

larger 𝜏̅𝑖 and 𝜏rms
𝑖  values, as typically observed in various channel 

environments [31]. 

E. Frequency-Domain Metric: Kf 

 
1 The simulation conditions are detailed in section III-A. 

In frequency domain, the selective behavior of the channel can be 

observed in the channel frequency response (CFR) in Fig. 5 (a). While the 

CFR appears almost flat in the LOS case, it exhibits fluctuations in NLOS 

case. However, excluding the influence of the absolute received power, the 

difference is less remarkable as illustrated by the CFR PDF1F

2 in Fig. 5 (b). 

Nevertheless, LOS and NLOS PDF still exhibit slightly different 

shapes that are assessed in next sections using the kurtosis of the CFR 

as the fifth identification metric: 
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where 𝜇|𝐻̂𝑖| is the CFR magnitude mean of the i-th pixel and Ef [] is 

the expectation operator over frequency. 

      
(a)                                                           (b) 

Fig. 5. (a) CFR |H(f)| and (b) PDF of CFR inside LOS and NLOS using IEEE 802.11ad 

channel model of conference room scenario (noiseless case). 

F. Time- and Frequency-Domain Metrics Extraction per Cluster 

While Rp is evaluated per cluster, the remaining metrics are 

calculated for each pixel i. In order to obtain a single value for each 

identified cluster n, an averaging is performed such as: 

 
( )

1

n

i

i Qn

M M
card Q 

=   (14) 

where Mi is either 𝐾𝑡
𝑖 , 𝜏̅𝑖 , 𝜏rms

𝑖 , or 𝐾𝑓
𝑖 . Consequently, a set of five 

metrics {Rp, 𝐾𝑡 , 𝜏̅, 𝜏rms , and 𝐾𝑓} exists per cluster and is used for 

identification. 

G. Statistical Model and Decisions 

Since clusters are affected by randomly distributed scatterers in an 

indoor scenario, the metrics associated with LOS clusters (R
los 

P , K
los 

t , τlos, 

τ
los 

rms, and K
los 

f ) and NLOS clusters (R
nlos 

P , K
nlos 

t , τnlos, τ
nlos 

rms , and K
nlos 

f ) are 

stochastic variables. Therefore, the identification is a hypothesis testing: 

a LOS propagation hypothesis is defined as the null hypothesis, H0, 

while the alternative hypothesis, H1, is NLOS propagation:  

0

1

LOS propagation with , , , , and 

NLOS propagation with , , , , and 

los los los los los
P t rms f

nlos nlos nlos nlos nlos
P t rms f

H R K K

H R K K

 

 

：

：
 (15) 

Two classifiers are investigated to test the above hypothesis: MLR and 

ANN. The aim of MLR is to test the probability distribution from which 

2 The simulation conditions to obtain the PDF are detailed in section III-A. 
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the likelihood with the observations is sampled. The features are 

modeled by conditional PDFs, f (M | θlos) and f (M | θnlos) with parameter 

vectors θlos and θnlos for LOS and NLOS propagation, respectively. 

The hypothesis (15) is then written as:  
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ˆ ˆ |

ˆ ˆ |

los
j j j

nlos
j j j

H M f M

H M f M

：

：




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where M̂j are the j-th observed metrics: RP, Kt, τ, τrms, or Kf. The PDFs 

expressions used for all M̂j are the same. Specifically, generalized 

extreme value (GEV) are used for both simulation and measurement, 

as detailed in next sections. The parameters θj of the above PDFs are 

estimated by fitting a set of training M̂j with maximum likelihood 

estimation. With the estimated parameters, the hypothesis is tested by 

comparing which likelihood (LOS or NLOS) is larger at an individual 

testing M̂j under the trained PDFs. Since the unique difference between 

the LOS and NLOS PDFs for a given feature M̂j is the parameter θj, 

the testing becomes the comparison between the likelihood of 

parameters (θj
los or θj

nlos) for a given M̂j. Therefore, the comparison is 

achieved by the likelihood ratio of the PDF parameter θj at a given 

testing M̂j (R̂P, K̂t, τ̂, τ̂rms, or K̂f ):  

 ( )
( )
( )

0

1

ˆ;
ˆ = 1

ˆ;
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Hj j

j nlos
Hj j

M
L M

M




 (17) 

where (θj
los; M̂j) and (θj

nlos; M̂j) are likelihood functions of the 

statistical parameter θj at a given testing M̂j for LOS and NLOS 

propagation, respectively. Therefore, the joint likelihood ratio of R̂P, 

K̂t, τ̂, τ̂rms, and K̂f  is:  

 ( )
( )
( )

0

1

ˆ;
ˆ ˆ ˆˆ ˆ, , , , = 1

ˆ;
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Hj j

P t rms f nlos
Hj ji
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M
  




 (18)  

 

Fig. 6. Architecture of the ANN used for NLOS identification. 

The second investigated method to classify the features is based on a 

machine learning tool, namely, the ANN. All identification metrics 

used in this study are calculated from a PAS directly clustered with 

image processing technique. Therefore, no high-resolution parameter 

estimation has been used. In these conditions, it was found in [33] that 

the ANN performs well in LOS/NLOS identification, which motivates 

its choice here. Its choice is further motivated by its lower complexity 

which makes it run faster than Random Forest (RF) in [69], Expectation 

Maximization for Gaussian Mixture Models (EM-GMM), LS-SVM in 

[70], and Convolution Neural Network (CNN) in [71]. The ANN is 

constructed with one input layer, two hidden layers, and one output layer, 

as shown in Fig. 6. It adopts a feed-forward architecture where the nodes 

of neighbor layers are all connected, while the nodes of nonadjacent 

layers are not linked (no backward cycles). Although more layers may 

exhibit superior classification performance, the convergence 

efficiency reduces accordingly while the computational complexity 

increases. It has been observed empirically that this 2-hidden-layer 

model is sufficient to exhibit interesting performance with low error 

probabilities as shown in Section IV. 

The whole network in Fig. 6 can be expressed as: 

 ( )( )( )3 32 21 21 1 1 2 3sig sig sig=   + + +a LW LW IW M b b b  (19) 

The input is the parameter vector M1 = [R̂P, K̂t, τ̂, τ̂rms, K̂f]T. There are 

ten neurons in all hidden layers. The input weighting matrix in the first 

hidden layer IW11 is a 105 matrix. LW21 in the hidden layer, LW 32 

in the output layer are respectively 1010 and 102 weighting 

matrices. b1, b 2, and b 3 are the bias vectors in layers 1, 2, and 3, 

respectively. An activation function maps the input set to an output set. 

For null hypothesis testing, the output set of the whole network has to 

be {-1, 1}, while the output of the linear weighted combination part is 

a real set. Therefore, the activation of output is a map ℝ → {-1, 1}. 

The simplest activation function is a step function. However, the step 

function introduces a non-derivative singularity at the origin. To avoid 

this issue, the activation functions in the hidden layers are both 

nonlinear tangent sigmoid function sig(x) = 2 / [1 +exp(-2x)] – 1. The 

curve linearly increases in the range of [-1, 1], while approximately 

being constant to +1 at the top bound and to -1 at the bottom bound. 

The activation function of the output layer is a normalization function 

sig(x) = exp(x) / exp(x). It proportionally maps an input vector into 

a range of [0, 1]. ANN training aims to optimize the weighting 

matrices and the bias vectors to minimize the error e between the 

training result a3 and the marked label y whose values are either 0 

(LOS) or 1 (NLOS) using gradient descent calculated with error-back-

propagation algorithm: 

 ( )
2

3= −e y a  (20) 

III. SIMULATION RESULTS 

A. Simulation Conditions 

The simulation follows the procedure in Fig. 1. The PAS is firstly 

obtained by beam training using the IEEE 802.11ad channel. The 

channel is built-in conference scenario where a pair of Tx and Rx are 

placed on a table at the center of a conference room with an area of 4.3 m 

 3 m  3 m [4]. The scenario is as per as the beam training strategy: the 

Tx antenna is omnidirectional, while the directional Rx antenna rotates 

across the whole angular space with a scanning step of 5o. The beam 

pattern of the antenna model is a single main lobe with a symmetric 

Gaussian shape. The half-power beamwidth (HPBW) of the Rx antenna 

is taken as 10o. A sampling frequency of 7 GHz (Δτ = 0.14 ns) is used 

in the IEEE 802.11ad channel model generation. 2000 Monte Carlo 

simulations are performed to obtain enough data for a statistical 

description of the performance with Tx-Rx distance ranging from 2 to 3 

meters. Half of the simulated channels contains a LOS cluster while the 

other half contains only NLOS contributions. Among the realizations, 

1000 are chosen randomly for training and the other 1000 are used for 

hypothesis testing. The obtained PAS are clustered with the watershed 

algorithm in [67]. The cluster metrics are calculated according to (4) - 

(14). The AWGN noise in (1) is added to the generated channel with a 

constant power over the whole PAS. Unless stated otherwise, the SNR 

is set to 20 dB with respect to the largest received power among all 

(𝜃𝑖 , 𝜙𝑖) beam positions. 

B. Statistical Characteristics of Metrics 

The statistical behavior of covariance eigenvalue ratio RP, time-domain 

kurtosis Kt, mean excess delayτ, RMS delay spread τrms, or frequency- 

domain kurtosis Kf is described with PDF that is fitted with GEV 

distributions. The expression of GEV PDF and CDF are given by: 
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Fig. 7. PDF and CDF of simulated covariance eigenvalue ratios RP. 

  

(a) 

  

(b) 

Fig. 8. PDF and CDF of simulated (a) time-domain kurtosis Kt and (b) frequency-

domain kurtosis Kf. 

where θj = {γj, μj, σj} are the parameters corresponding to the j-th metric 

used in the likelihood functions in (17) and (18). GEV is used to obtain 

reference parameters to be used for classification in the next section. 

Monte Carlo simulations and fitted GEV distributions are given in Fig. 7-

9 where a fair agreement can be observed. For the spatial eigenvalue ratio 
of power covariance matrix R̂P, it can be qualitatively observed in Fig. 7 

that the LOS clusters exhibit a large symmetry as the PDFs tend to rapidly 

grow when the min/max eigenvalue ratios reach 1. In particular, it is 

observed that 90 % of the min/max eigenvalue ratios in LOS transmission 

is concentrated in a range from 0.6 to 1. For NLOS clusters, PDFs appear 

more uniformly distributed and there is no specific tendency for min/max 

eigenvalue ratios to be equal to a particular value. This shows that the 

spatial shape of NLOS cluster metrics is less consistent. The LOS cluster 

behavior is also observed in the LOS CDF curves, where an exponential-

like increase occurs as ratios get close to 1. The wide min/max eigenvalue 

ratios spread observed in the NLOS PDF is represented by the almost 

linear behavior of the NLOS CDF curves. These results mean that, as 

expected, statistically, the channel metric R̂P behaves similarly in both 

azimuth and elevation planes in LOS clusters, while it is stochastically 

affected by the random scattering in NLOS clusters and therefore behave 

differently in both angular planes. The LOS and NLOS CDF curves are 

clearly different from each other, and there is only 31% probability that 

LOS and NLOS PDF overlap which indicates a promising indicator for 

LOS/NLOS discrimination. The PDF and CDF of time- and frequency-

domain kurtosis, Kt and Kf, are shown in Fig. 8. 90% of Kt values in 

NLOS clusters are lower than 201 as shown in Fig. 8 (a), while it is 

only 8.4% in LOS clusters. However, LOS and NLOS PDFs exhibit a 

18% overlap. So a certain ambiguity can arise for identification, 

especially in the [150, 300] range. In frequency-domain, 99% of Kf 

values in NLOS clusters are distributed in the [2.57, 3.49] range, 

which entirely covers the [2.68, 3.18] range that contains 99% of LOS 

Kf values as seen in Fig. 8 (b). The LOS and NLOS CDF are therefore 

not too different. The clearer distinction offered by Kt over Kf is 

consistent with the example of PDFs shown in Fig. 4 (b) Fig. 5 (b). 

  

(a) 

  
(b) 

Fig. 9. PDF and CDF of simulated (a) mean excess delayτ and (b) RMS delay spread 

τrms. 

The PDF and CDF of mean excess delayτ and RMS delay spread 

τrms are shown in Fig. 9 (a), where the difference in LOS and NLOS 

statistical behavior can be observed. 83% of LOS clusters exhibit 

mean excess delays less than 15 ns whereas only 7% of LOS clusters 

do so. However, the difference in LOS/NLOS behavior in terms of 

RMS delay is not so clear as seen in Fig. 9 (b). PDFs overlap over a 

large area in the range 11 ns to 20 ns. So, on one hand, the diffusion 
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in NLOS clusters introduces a larger excess delay, while on the other 

hand, the strong mm-wave attenuation faced by the diffused 

components does not increase much the RMS delay spread. The 

parameters of the GEV distribution and the root mean squared error 

(RMSE) between fitted and empirical CDF are listed in TABLE I. The 

RMSE of LOS and NLOS CDF is lower than 0.0841 and 0.0451 

respectively. 

TABLE I  
PARAMETERS OF GEV DISTRIBUTION OBTAINED TO FIT THE CDF 

Metrics Parameters LOS NLOS 

RP 

γp -1.2056 -0.5521 

μp 0.8828 0.4835 

σp 0.1381 0.2905 

RMSE 0.0841 0.0263 

Kt 

γt -0.1926 -0.0737 

μt 235.3 102.4 

σt 26.94 48.56 

RMSE 0.0156 0.0037 

Kf 

γf -0.2859 -0.0698 

μf 2.946 2.886 

σf 0.0875 0.1469 

RMSE 0.0204 0.0451 

τ 

γτ -0.0460 -0.1508 

μτ 12.34 19.42 

στ 1.705 3.983 

RMSE 0.0078 0.0139 

τrms 

γrms -0.0414 -0.1549 

μrms 12.58 12.85 

σrms 1.457 2.848 

RMSE 0.0049 0.0079 

C. Performance of NLOS Identification 

The performance of the classifiers is evaluated with the probability of 

incorrect decisions for a set of testing data. According to statistical 

decision theory, for a null hypothesis testing, the error can be classified as 

two types: type I error (reject the true null hypothesis H0) and type II error 

(non-reject the false alternative hypothesis H1). So according to (15), a 

type I error is a LOS transmission identified as NLOS and a type II error 

is an NLOS transmission classified as LOS. The error is evaluated by 

comparing the type of transmission decided by the classifiers with the 

actual type of transmission and results are shown in TABLE II. The 

performance is given for SNR = 20 dB and three angular step sizes, 

namely, 1°, 5°, and 10°, for which the corresponding beamwidths are 

respectively 5°, 10°, and 20°. 

TABLE II  

SIMULATED NLOS IDENTIFICATION FOR VARIOUS ANGULAR STEP SIZES 

 (SNR = 20 DB) 

Method M̂j 
1° step 5° step 10° step 

I II I II I II 

MLR 

RP 0.050 0.138 0.154 0.197 0.200 0.278 

Kt 0.016 0.060 0.040 0.125 0.048 0.173 

Kf 0.080 0.402 0.152 0.671 0.100 0.616 

τ 0.022 0.037 0.094 0.097 0.144 0.152 

τrms 0.178 0.237 0.242 0.447 0.146 0.477 

all 0.018 0.012 0.048 0.024 0.052 0.051 

ANN all 0.010 0.001 0.027 0.005 0.036 0.009 

Error results differ with metrics and classification methods. Using 

metrics individually with MLR, the time-domain kurtosis leads to the 

lowest errors except for type II error with 5° and 10° steps whereτ 

performs slightly better. Using all metrics improves results, especially for 

type II errors. Interestingly, while individual metrics exhibit lower type I 

errors than type II, using all metrics leads to the opposite, i.e., lower type 

II errors than type I. ANN performs better than MLR for both type I and 

II errors. Indeed, different from simply comparing the probability with 

MLR, the relation among the metrics is discovered by ANN and gives 

more information regarding LOS and NLOS differences. Like with MLR, 

ANN exhibits lower type II errors than type I. As a general trend, the larger 

the angular step size, the worst the performance. However, using all 

metrics, identification errors remain low, less than 0.052 with MLR and 

0.036 with ANN.  

TABLE III shows results for lower SNR values, i.e., 15 dB and 10 dB, 

with a 5° step size. It can be observed that the SNR influence depends on 

the individual metric and the type of error. For instance, decreasing SNR 

increases Rp, Kt andτ type II errors while Kt type I error 

remains constant. Kf  type II error remains very large regardless the SNR. 

Whileτ and τrms type II errors depends on SNR, no general trend is 

observed. Using all metrics, identification errors remain low, with ANN 

performing better than MLR for all SNR values. TABLE III also reports 

on mixed SNR, which represents a more practical scenario. In this case, the 

SNR is randomly chosen between 10 and 20 dB for each channel realization 

for both training and testing data sets. Results show low errors which suggest 

robustness to SNR variation.  

TABLE III  

SIMULATED NLOS IDENTIFICATION FOR VARIOUS SNR (STEP SIZE = 5°) 

Method M̂j 
SNR = 15 dB SNR = 10 dB Mixed SNR 

I II I II I II 

MLR 

RP 0.142 0.262 0.130 0.366 0.132 0.280 

Kt 0.040 0.133 0.040 0.143 0.036 0.129 

Kf 0.184 0.604 0.218 0.696 0.154 0.619 

τ 0.156 0.144 0.178 0.130 0.152 0.142 

τrms 0.222 0.611 0.196 0.563 0.212 0.669 

all 0.064 0.039 0.032 0.046 0.050 0.032 

ANN all 0.014 0.003 0.012 0.009 0.025 0.003 

TABLE II and III results are compared with those obtained in the 

literature from simulated quasi-omnidirectional channels. In the UWB 

band, it is observed that identification in indoor environments with 

CIR kurtosis exhibits lower error probability (0.01 in [32] to 0.19 in 

[33] for type I errors and 0.033 in [32] for type II errors) than with 

mean excess delay (0.115 and 0.137 in [32] for type I and II errors 

respectively) or with RMS delay spread (0.264 in [32] to 0.31 in [33] 

for type I errors and 0.11 in [32] to 0.276 in [35] for type II errors). 

This trend is similar to results shown in this paper, with Kt leading to 

better performance than mean excess delay and RMS delay for any 

type of errors. Interestingly, individual cluster identification, as 

presented in this paper, using mean excess delay can achieve lower 

error probability when narrow-beam antennas are considered. In [61], 

identification performed with mean excess delay at 60 GHz on the 

omnidirectional IEEE 802.11ad channel model (with SNR = 10 dB) 

using random forest method achieves probabilities of 0.44 and 0.2 for 

type I and II errors, respectively, while identification with RMS delay 

spread achieves probabilities of 0.21 and 0.3 for type I and II errors, 

respectively. By comparing these results with TABLE III with MLR, 

it is observed that for the same channel model and the same SNR = 

10 dB, cluster-based identification leads to lower type I error 

probability with mean excess delay but higher type II error probability 

with RMS delay. So, depending on the considered scenarios and the 

frequency band, the metrics that lead to the highest identification 

performance are not necessarily the same between identifications 

based on omni-directional channels or angular clusters. Overall, 

results obtained using several metrics with MLR are in the same order 
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as the ones obtained by simulation on omnidirectional channels in the 

3.1-6.3 GHz in [32] where 0.021 type I and 0.041 type II errors are 

reported. 

To illustrate why ANN outperforms MLR, the correlations, ρlos and ρnlos, 

among the different metrics are calculated for LOS and NLOS clusters 

respectively. Results are shown in matrix (24) and (25). The ρij coefficient 

corresponds to the correlation between the i-th and the j-th metrics of the 

metric vector M̂ =  [R̂P, K̂t, τ̂, τ̂rms, K̂f]T. 

 
cov( , )

ij

i j

i j

M M


 
=  (23) 
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 (25) 

Some correlation values are relatively large, such as ρ
los 

32  = -0.5108 

and ρ
los 

43  = 0.5496, meaning that some metrics are correlated between 

each other’s. This correlation is not taken into account by the MLR 

approach since the probability density functions assume the metrics to 

be independent. However, the correlation among metrics is indeed 

modeled in the ANN, which better describes the relationship between 

the metrics M̂ and the nature of the cluster, thereby explaining why 

ANN outperforms MLR. Overall, correlation values are larger in LOS 

clusters than in NLOS ones, the reason being that the NLOS scattering 

is much more random than the LOS one. 

It is to be noted that although learning can be done off-line, 

identification needs to be performed in real-time for localization 

applications. As an example, clustering a 5°-step PAS, calculating the 

five metrics, and identifying the clusters as LOS or NLOS takes 

3.2 ms for clustering, 0.02 ms for MLR-based identification and 

0.15 ms for ANN-based identification with a laptop with 2.6 GHz 

CPU frequency and 8 GB RAM. This appears fast enough to consider 

performing identification in real time. 

D. Influence of The Training Data Set 

To investigate the influence of the training data set upon the 

identification performance, its size is varied according to a ratio 

ranging from 0.01 to 1 with respect to the previously used data set of 

1000 channel realizations. A ratio of 1 corresponds to the previous 

case, i.e., 1000 realizations for training 1000 for testing, while a ratio 

of 0.01 corresponds to 10 realizations used for training and 1990 for 

testing. For each ratio, 100 Monte Carlo simulations are performed 

wherein the training samples are randomly selected. The results are 

shown in Fig. 10. Identification performance remains constant with ratio 

as low as 0.1, which suggests that 100 realizations appear sufficient for a 

robust training. As this ratio get lower, the MLR technique has an 

increasing type I error, i.e., most clusters are identified as NLOS, 

regardless their true nature, while ANN has an increasing type II error, i.e., 

most clusters are identified as LOS. 

 
Fig. 10. Influence of the training data set size on type I and II error probabilities. 

IV. EXPERIMENTAL VALIDATION 

A. Measurement Conditions 

To validate the proposed approach, experiments are conducted in a 

laboratory environment. Measurements are performed in a quasi-rectangle 

room in a microwave wireless facilities lab at Sorbonne University. The 

size of the room is approximately 10.25 m  7.52 m. The distance between 

the ground and the ceiling is 2.93 m. The floor plan of the measuring 

environment is illustrated in Fig. 11. Measurements are randomly 

implemented in the zones which are marked as closed circles in the floor 

plan: direct paths are blocked in green circles and unblocked in red circles. 

Both Tx and Rx are in the same zone for a given set of experiments with 

the distance between Tx and Rx ranging from 0.5 to 2.5 meters. A total of 

100 PAS samples are measured. Since this represents a relatively small 

data set (a single PAS measurement about 3.5 hours), bootstrapping 

method is used to artificially augment it [72]. 30 samples are randomly 

extracted from the population as a set, while 20 samples are randomly 

extracted from the rest to construct the testing set. After repeating the 

training and testing 10 times, the final model and testing performance are 

obtained by averaging results over the 10 training and testing. 

7.52 m

1
0
.2

5
 m

Faraday 

anechoic 

chamber

LOS measuring 

zones

NLOS zones

 

Fig. 11. Floor plan of the experiments. 

The measurement configuration set-up aims at emulating a beam 

training strategy as shown in Fig. 12. A vector network analyzer (VNA) 

is used to measure the propagation channel, between Tx and Rx antennas. 

Tx antenna is a quasi-omnidirectional dipole antenna with 2 dB gain, 

while the Rx antenna is a directional horn antenna with about 10o HPBW 

and 24 dB gain. The beam training is achieved with Rx spatial scanning 

in vertical and horizonal directions by an azimuth motor and an elevation 

motor respectively. The sweeping steps are 5o in both directions. The 

parameters are listed in TABLE IV. An example of measured PAS is 

shown in Fig. 13, along with the identified clusters, within which the 

type of propagation is tested. 
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(a)                                                        (b) 

Fig. 12. (a) Schematic and (b) photo of the measurement system. 

 

Fig. 13. Example of measured PAS in dB with clusters identified by watershed 

segmentation. 

TABLE IV  

PARAMETERS OF THE PURPOSED MEASUREMENT SYSTEM 

Bandwidth 8.64 GHz 

Time resolution Δτ 0.12 ns 

Frequency resolution 11.5 MHz 

Transmit power 4 dBm 

Noise level -100 dBm 

Rx beam width (E/H plane) 10.1o / 13.1o 

Tx beam width (E/H plane) 360 o / 60 o 

Tx antenna gain 2 dB 

Rx antenna gain 24 dB 

Sampling range in azimuth [-180o, 180 o] 

Sampling range in elevation [-45 o, 90 o] 

Spatial sampling interval 5o 

B. Statistical Characteristics of Metrics 

 

Fig. 14. PDF and CDF of measured covariance eigenvalue ratios RP. 

 
3  Unlike in simulations, the ratio differs from 1 as the antenna beamwidth is not 

identical in both angular planes. 

 
(a) 

 
(b) 

Fig. 15. PDF and CDF of measured (a) time-domain kurtosis Kt and (b) frequency-

domain kurtosis Kf . 

 
(a) 

 
(b) 

Fig. 16. PDF and CDF of measured (a) mean excess delay τ and (b) RMS delay 

spread τrms. 

The PDF and CDF of the measured covariance eigenvalue ratio RP 

is shown in Fig. 14. The LOS eigenvalue ratio concentrates near 0.7 2F

3 

while the NLOS eigenvalue ratio is more spread in the 0-1 range. This 

is consistent with simulation results in Fig. 7 and a clear difference 
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between LOS and NLOS behavior can be observed. The statistical 

distribution of the measured time-domain kurtosis Kt and frequency-

domain kurtosis Kf are presented in Fig. 15. In Fig. 15 (a), Kt statistics 

exhibit a similar behavior than in simulation (Fig. 8 (a)) 90% of Kt 

values are smaller than 120 in NLOS clusters while it is only 4% in 

LOS clusters. The difference in Kf distributions in LOS and NLOS 

clusters is lightly higher than in Fig. 8 (b). 65% of LOS propagation 

CFR kurtosis is smaller than 120.  

The PDF and CDF of measured excess delayτ and RMS delay spread 

τrms are shown in Fig. 16. Both measured average excessed delay and 

RMS delay spread of LOS propagation do not exhibit PDF as narrow 

as in simulations in Fig. 9. Indeed, in measurements, LOS clusters 

contain usually some multipath due to possible reflections in the 

vicinity of the antennas. However, whileτ behavior is similar than 

simulations, the difference between LOS and NLOS τrms distributions 

is more obvious in measurements than in simulations. Despite this, the 

shapes of the LOS and NLOS PDFs for all five metrics are different 

from each other and suggest a possible NLOS identification. 

The parameters of the GEV distributions used for fitting and the 

RMSE for the five statistical features are shown in TABLE V. For all 

metrics, RMSE is lower than 0.08 in LOS and than 0.05 in NLOS.  

TABLE V 

MEASURED PARAMETERS OF GEV DISTRIBUTION 

Metrics Parameters LOS NLOS 

RP 

γP -0.4704 -0.4474 

μP 0.6918 0.4712 

σP 0.1288 0.2400 

RMSE 0.0824 0.0103 

Kt 

γt -0.4421 -0.0989 

μt 136.4 106.7 

σt 7.722 5.995 

RMSE 0.0267 0.0073 

Kf  

γf -0.2298 -0.2521 

μf 111.3 88.11 

σf 13.42 15.02 

RMSE 0.0186 0.0178 

τ 

γτ -0.2487 -0.3547 

μτ 6.931 8.093 

στ 0.4484 0.5253 

RMSE 0.0241 0.0250 

τrms 

γrms -0.2293 -0.5289 

μrms 8.541 9.167 

σrms 0.2322 0.1874 

RMSE 0.0253 0.0489 

C.  Performance of NLOS Identification 

TABLE VI  

MEASURED PROBABILITIES OF ERROR TESTED FOR NLOS IDENTIFICATION 

Methods Metrics Type I Type II 

MLR 

RP 0.1050 0.2418 

Kt 0.0200 0.0573 

Kf 0.2598 0.1228 

τ 0.1900 0.1111 

τrms 0.1750 0.1228 

RP Kt Kfτ τrms 0.1319 0.0183 

ANN [RP , Kt , Kf, τ , τrms] 0.0669 0.0408 

To evaluate the performance of classification, the probabilities of 

type I and type II errors are shown in TABLE VI. The single metric 

that performs the best identification is Kt like in simulation. More 

metrics benefit to reduce the probability of misidentification. Type I 

and II errors using MLR are 0.1319 and 0.0183 respectively. Type I 

and II errors with ANN are 0.07 and 0.04 respectively, which, unlike 

simulations, outperforms MLR for type I errors only.  

Due to weaker differences between the LOS and NLOS behavior in 

measurements than in simulations, identification errors are slightly 

larger. Another possible source of degradation can be due to the horn 

antenna that exhibits some side-lobes in the E-plane, which can lead 

to interferences in the elevation plane of the measured PAS. Those 

interferences are not necessarily identified as clusters, such as the ones 

at φ = 0° near the LOS cluster in Fig.13, but could anyway disturb the 

clusters’ spatial behavior. Overall, performance appears reasonable.  

As a comparison, the CIR kurtosis, the mean excess delay, and the 

RMS delay spread used for identification at 28 GHz In [61] lead to 

total (type I+II) error probabilities of 0.3799, 0.2188, and 0.3360, 

respectively. Corresponding performance from TABLE VI are 0.0773, 

0.3011, and 0.2978, respectively. Therefore, while kurtosis of an 

omnidirectional mm-wave channel in [59] led to poorer identification 

performance than time domain metrics, it is the opposite with the 

angular cluster-based identification proposed in this paper. This 

observation is also compliant with simulation results in section III-C. 

Results obtained with ANN are in the same order as the ones obtained 

experimentally in the 3.1-6.3 GHz in [31] where a 0.08 type I and a 

0.09 type II errors are reported.  

V. CONCLUSION 

Due to wideband and enhanced spatial properties (thanks to 

directive antennas), the millimeter band is an excellent candidate for 

accurate indoor localization. However, because of severe blockage 

effects at these frequencies, transmissions over indirect paths are 

necessary, thereby introducing large errors in the positioning process. 

To partly mitigate those errors, the nature of propagation, i.e., LOS or 

NLOS, over which the wireless link is established is a key indicator. 

This paper reports a method for LOS/NLOS identification of all 

individual clusters existing in the whole angular channel space of a 

60 GHz communication using directive beam scanning antennas. 

Based on the beam training strategy in IEEE 802.11ad where both Tx 

and Rx antennas scan the whole angular space, a power angular 

spectrum (PAS) is obtained at the receiver. This readily available 

knowledge is here used to assess the spatial behavior of five different 

channel metrics, namely the angular covariance, the time-domain and 

frequency-domain channel kurtosis, the mean excess delay, and the RMS 

delay spread. Using these metrics, a noticeable difference between LOS and 

NLOS clusters is observed. The maximum likelihood ratio (MLR) and 

artificial neural network (ANN) are operated as classifiers. Training and 

testing are performed at 60 GHz, in simulation, using the IEEE 802.11ad 

conference room channel model and in measurement, using a VNA-based 

experimental setup. ANN is found to outperform MLR in most situations. 

Type I error, being a LOS transmission identified as NLOS, is, in simulation, 

about 0.05 using MLR and 0.02 using ANN, and in measurements, about 

0.13 using MLR and 0.07 using ANN. Type II error, being an NLOS 

transmission identified as LOS, is, in simulation, about 0.03 with MLR and 

0.003 with ANN, and in measurements, about 0.02 using MLR and 0.04 

using ANN. These relatively low error values are similar to the ones 

obtained in the literature (e.g., [31], [32]) where identification is 

performed on quasi-omnidirectional channels, not considering the 

antenna’s spatial filtering behavior in directional mm-wave 

transmission. Consequently, results obtained in this paper show that it 

is possible to perform NLOS identification of individual angular 

clusters at mm-wave frequencies in indoor environments. As a 

perspective to this work, further experiments should be conducted to 

assess the proposed approach in longer range scenarios. Furthermore,  
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a deeper analysis on the optimal ANN architecture could be conducted 

depending on the considered scenario and different machine learning-

based algorithm, such as random forest, should be compared in terms 

of identification performance 
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