
HAL Id: hal-04470158
https://hal.sorbonne-universite.fr/hal-04470158

Submitted on 21 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Team Cooperative Co-Evolution for a
Multi-Rover Distribution Problem

Nicolas Fontbonne, Nicolas Maudet, Nicolas Bredeche

To cite this version:
Nicolas Fontbonne, Nicolas Maudet, Nicolas Bredeche. Adaptive Team Cooperative Co-Evolution for a
Multi-Rover Distribution Problem. GECCO ’23: Genetic and Evolutionary Computation Conference,
Jul 2023, Lisbon, Portugal. pp.466-475, �10.1145/3583131.3590500�. �hal-04470158�

https://hal.sorbonne-universite.fr/hal-04470158
https://hal.archives-ouvertes.fr

Adaptive Team Cooperative Co-Evolution for a Multi-Rover
Distribution Problem

Nicolas Fontbonne
Sorbonne Université, CNRS, ISIR, LIP6

F-75005 Paris, France
nicolas.fontbonne@sorbonne-

universite.fr

Nicolas Maudet
Sorbonne Université, LIP6

F-75005 Paris, France
nicolas.maudet@lip6.fr

Nicolas Bredeche
Sorbonne Université, CNRS, ISIR

F-75005 Paris, France
nicolas.bredeche@sorbonne-

universite.fr

ABSTRACT
This paper deals with policy learning for a team of heterogeneous
robotic agents when the whole team shares a single reward. We
address the problem of providing an accurate estimation of the
contribution of each agent in tasks where coordination between
agents requires joint policy updates of two (or more) agents. This
is typically the case when two agents must simultaneously modify
their behaviors to perform a joint action that leads to a performance
gain for the whole team. We propose a cooperative co-evolutionary
algorithm extended with a multi-armed bandit algorithm that dy-
namically adjusts the number of agents that should update their
policies simultaneously, aiming both for performance and learning
speed. We use a realistic robotic multi-rover task where agents must
physically distribute themselves on points of interest of different
natures to complete the task. Results show that the algorithm is
able to select the best group size for policy updates that reflects
the task’s coordination requirements. Surprisingly, we also reveal
that coupling between agents’ actions in a realistic setup can also
emerge from interactions at the phenotypical level, hinting at subtle
interactions during learning between the control parameter space
and the behavioral space.

CCS CONCEPTS
• Computing methodologies→ Evolutionary robotics; • The-
ory of computation→Multi-agent reinforcement learning.

KEYWORDS
multi-robots, multi-agent systems, evolutionary robotics, multi-
agent reinforcement learning, multi-armed bandits, marginal con-
tribution, fitness evaluation, cooperative coevolution EA

.

1 INTRODUCTION
Multi-robot systems can be used to tackle tasks where many smaller sub-
tasks have to be addressed, sometimes simultaneously. This means that
robots often have to coordinate their policies so as to perform complemen-
tary actions. This is the case when all robots are part of the same team,
where everyone works towards the same goal. However, the problem of
designing efficient individual robot’s policies is challenging when
the whole team shares a single reward signal, similar to a football team
where all players work together to increase the team’s score. In this setup,
there is a credit assignment problem as information is not directly accessible
to assess a single individual’s contribution to the team’s performance.

, ,
.

Credit assignments in teams of agents have been explored in both theo-
retical setups (e.g., N-person coordination games) and experimental setups
(e.g., Robocup soccer). Early results in theoretical setups showed that solving
an exact formulation is intractable in general as each agent’s contribution
would require averaging the counterfactual marginal contribution on all
possible coalitions [43]. However, many practical implementations have
been proposed throughout the years to estimate the contribution of each
of the agents through approximation [13, 23, 25] or using various kinds of
simplifying assumptions [21, 34, 38, 44, 46, 47, 55]

Learning in Multi-agent systems offers a promising avenue to address
coordination problems in multi-robot systems, especially when the state
and action spaces are continuous, and only partial observations are available
for each robot. In the last few years, multi-robot systems have indeed drawn
a lot of attention from both Multi-Agent Deep Reinforcement Learning
(MADRL) [24] and Evolutionary Collective Robotics [18, 49]. On the one side,
state-of-the-art MARL approaches such as QMIX [40, 41, 45] or MAVEN [31]
make use of a combination of individual policy learning agents and shared
critics to favour coordination towards better performance.

On the other side, Evolutionary Robotics have pursued different re-
search tracks on whether teams of agents are considered homogeneous
(i.e. teams of clones) or heterogeneous. Homogeneous teams are naturally
scalable [8, 48] and fast to evaluate [29], and they have been shown to dis-
play behavioural specialization by exploiting environmental cues, at least
to some extent [12, 20]. When further specialization is required, heteroge-
neous teams nonetheless allow for the necessary flexibility in terms of role
specialization [7, 9, 11, 37, 51].

However, learning methods for multi-robot systems with a single
team-level reward are faced with a dilemma caused by two contra-
dictory issues:

• the problem of over-generalization [52, 53], which a team faces
when the task requires extensive coordination between agents. In
this case, joint policy updates may be necessary to discover efficient
synergies between agents. This can be solved by updating all policies
simultaneously to allow for the discovery of new synergies;
• the problem of exploratory action noise [14, 27, 32], which occurs
when an increase in team performance is observed that follows
multiple agents updating their policy, without any means to iden-
tify who is responsible for such an increase. The actual decrease
in the contribution of one particular agent can be shadowed (and
sometimes caused) by other suddenly more successful agents. This
can be solved by updating only one policy at a time to estimate the
benefit (or loss) provided by the agent executing this policy.

Our hypothesis is that the optimal balance between updating
a single policy or all policies concurrently is contingent upon the
specific problem and may change throughout the learning process.
The contribution of the work presented here takes the form of a multiagent
evolutionary learning algorithmwhere the number of agents that undergoes
policy updates can be changed to match the problem.

A classical robotic domain task is used for comparison and analysis that
involves a team of robots, each following a deterministic learned policy that
maps partial observation as continuous states to continuous actions. The

, , , et al.

tasks used involvemultiple rovers trying to observe a set of points of interest,
some of which require close coordination between sub-part of the team.
Most importantly, these robotic tasks reveal how deceptive a seemingly
simple robotic problem can be: the emergence of coordination may indeed
result from joint policy updates and subtle behavioural interactions.

We propose combining a Cooperative Coevolution Evolutionary
Algorithm with a multi-armed Bandits Algorithm in order to automat-
ically adjust the amplitude of policy updates during the course of learning,
to guess which best trade-off should be operated to maximize both the dis-
covery of synergies between agents and the reliability of credit assignment
for the agents’ contribution to the performance of the team.

In the rest of the paper, previous works are presented that propose
solutions for various formulations of the problem to provide an accurate
estimation of the contribution of each member of a team, using more or
less strong assumptions on the a priori knowledge on the task to be done.
We then describe two algorithms for the general case and the multi-robot
tasks used for evaluation. Finally, results are shown with both algorithms,
emphasizing the particularities arising when agents’ trajectories are coupled
with one another, and the benefits of automatically tuning the number of
agents that should simultaneously update their policies.

2 RELATEDWORK
Learning complex coordination in a team of agents is a challenging prob-
lem, which several methods have tried to address. These approaches can
be classified depending on the amount of background knowledge available
prior to learning. For example, the D++ algorithm [38] makes strong as-
sumptions about the problem to be solved as requirements for coordination
are supposed to be known beforehand (e.g. the number of robots required at
a specific location). D++ considers the presence of counterfactual agents at
specific times and locations to compute the reward of agents with respect to
their possible (rather than actual) contribution to the team’s performance.
Counterfactual agents are virtual agents used to compute the reward of
actual agents as if they were not alone. This is particularly relevant for
tasks that require coordination among agents who pursue a similar goal
(e.g. observing a particular point of interest). However, its requirements for
prior knowledge limit its applicability.

Other approaches aim at marginalizing or decomposing the global re-
ward in order to estimate the contribution of each individual to the team
performance [47]. The difference reward algorithm [3] is a translation in
terms of reward shaping [33] of the Wonderful Life Utility [54]. The goal is
here to extract one agent’s marginal contribution by subtracting a counter-
factual reward, as if the agent performed a default action, from the gained
reward. It can be formalized as:

𝑑 (𝑖) (𝒂) = 𝑟 (𝒂) − 𝑟 (𝒂
𝑎 (𝑖)←𝑎 (𝑖) ′) (1)

With 𝒂 the joint actions of all agents, and 𝑟 (𝒂) is its corresponding global
reward. 𝑟 (𝒂

𝑎 (𝑖)←𝑎 (𝑖) ′) is the global reward when agent 𝑖 perform a default
action 𝑎 (𝑖) ′ instead of the action its policy dictates. 𝑑 (𝑖) is then, for agent 𝑖
the advantage of using its policy instead of a default action, freed from the
impact of other agents. This method has been successfully applied in several
domains including air traffic control [15], rover navigation [5, 28], satel-
lite coordination [1], distributed sensor networks [26, 50], communication
system optimization [2], and robot swarm coordination [19].

Multi-Agent Deep Reinforcement Learning combines the decentralized
execution of agents’ actions and a centralized critic used to approximate
the agents’ contributions. For example, the QMIX algorithm [39, 42] uses a
neural network to map a joint value function to individual value functions.
Assuming a counterfactual action is available, the Counterfactual Multi-
Agent Policy Gradients algorithm (COMA) [21] estimates the contribution of
any single agent by comparing team performance with each agent playing
its true action versus the same agent playing the counterfactual action
baseline.

Reward shaping can also be used to compute counterfactual rewards for
actions that were not taken by agents. This is achieved by using a model
of the reward function and the CLEAN shaping structure [27]. One ap-
proach is to compare the score of the current action with a new exploratory
counterfactual action 𝑎 (𝑖) ′:

𝑐1(𝑖) (𝒂) = 𝑟
(
𝒂
𝑎 (𝑖)←𝑎 (𝑖) ′

)
− 𝑟 (𝒂) (2)

This results in the opposite of the difference reward, which was calculated
by comparing the reward of the current action to a default counterfactual.
Combining these two approaches, a second version of the CLEAN reward
can be obtained. This consists of comparing an exploratory action 𝑎 (𝑖) ′ to a
default action 𝑎 (𝑖) ′′:

𝑐2(𝑖) (𝒂) = 𝑟
(
𝒂
𝑎 (𝑖)←𝑎 (𝑖) ′

)
− 𝑟

(
𝒂
𝑎 (𝑖)←𝑎 (𝑖) ′′

)
(3)

This calculation is used to update the agent’s policy. Only the non-exploratory
action is visible to other agents, which promotes coordination among them
as individual exploration does not impact others.

Additionally, limiting the number of concurrently learning agents across
each epoch can be beneficial for reducing agent noise [14]. In this case,
agents update their policies depending on a probability that depends on
their predicted impact.

In the next Section, we elaborate on works presented here to propose a
method that requires neither a priori knowledge of the task nor the definition
of a default counterfactual action baseline. Similar to the CLEAN reward,
we compare different strategies for the team. However, we also enable the
modulation of the number of agents simultaneously undergoing a policy
update to reduce the exploratory action noise.

3 ALGORITHM
To address the compromise between over-generalization and exploratory
action noise, we propose an extension of the Cooperative Co-Evolution
Algorithm (CCEA) [30, 35, 36] where the number of agents that are updated
at each generation is modulated. We propose two algorithms: (1) the CC-
(1+1)-ES𝑘fixed algorithm updates the policy of a fixed number of agents per
learning iteration, and (2) the CC-(1+1)-ES𝑘adaptive algorithm dynamically
adapts the number of agent’s policies updated per learning step. The two
algorithms are described in Figure 1, and both are extensions of our previous
work [22] to the domain of the continuous state, action and parameter spaces
for robotics problems.

3.1 CC-(1+1)-ES𝑘fixed with Fixed Policy Updates
CC-(1+1)-ES𝑘fixed runs a collection of (1+1)-ES algorithms in parallel. Each
(1+1)-ES algorithm 𝑖 provides the policy parameters 𝜃 (𝑖) for its corre-
sponding agent 𝑖 . The whole team is evaluated together, and the score
is provided for the team. If 𝐹 is the policy evaluation function, we note
𝑓 = 𝐹 (𝜃 (0) , . . . , 𝜃 (𝑁 −1)) the score of a team composed of 𝑁 agents.

Each (1+1)-ES algorithm maintains a population of two individuals [10],
a parent 𝜃 (𝑖)parent and a child 𝜃 (𝑖)child. Both are candidate policy parameters for
agent 𝑖 . The parent is replaced when the child outperforms it, using the
possibly noisy team-level score obtained during evaluation. A new child
is created by applying mutation to the new parent. If the child does not
outperform its parent, it is replaced by a new child mutated from the current
parent.

The mutation operator depends on the problem. In the application we
tackle, the mutation operator chooses with probability 𝑝 = 0.2 between
a Gaussian mutation operator on all parameters of an agent, and with
probability 1 − 𝑝 = 0.8 a uniform mutation operator of a subset of its
parameters. The Gaussian mutation operator applies a perturbation centred
on the current parameter value, with a variance 𝜎 :

𝜃 ← N(𝜃, 𝜎)

Adaptive Team Cooperative Co-Evolution for a Multi-Rover Distribution Problem , ,

Figure 1: The CC-1+1-ES algorithm. Each square represents some policy parameters 𝜃 (𝑖) . In this example, 𝑘 = 2. Agents 0 and 2
are randomly selected and then mutated to produce new children. These children are evaluated alongside the parents of agents
1 and 3 to produce the team score 𝑓

(0,2)
child . If it is greater or equal to the previously evaluated team score (𝑓parent), the children are

kept, or else they are discarded. The top red part represents the choice of 𝑘 in the 𝑘adaptive version of the algorithm.

And the uniform mutation operator on range R of a subset𝑉𝑚 of𝑚 ran-
domly selected parameters is defined as:

𝜃 [𝑖] ← U(R) ∀𝑖 ∈ 𝑉𝑚
At each new generation, 𝑘 agents among 𝑁 are drawn and randomly

changed in the team, with 0 < 𝑘 ≤ 𝑁 . The 𝑘 new children are kept only if
they increase the team score. Therefore, the expert’s challenge is finding the
most efficient size 𝑘 of agents to change in each generation before learning
starts.

3.2 CC-(1+1)-ES𝑘adaptive with Adaptive Updates
So far,𝑘 is pre-determined by the user andmay benefit from prior knowledge
about the task regarding possible necessary coupling between agents’ policy
updates. However, such prior knowledge may not be available. In particular,
a relevant value of 𝑘 depends on the problem and on the current state of
the optimization (e.g., broad initial search steps vs. refined tuning near the
optimal solution).

To address this, the CC-(1+1)-ES𝑘adaptive allows for adapting 𝑘 during
evolution. The value of 𝑘 is modified at each generation using the multi-
armed bandit learning algorithm EXP3 (Exponential-weight algorithm for
Exploration and Exploitation [6]). This method allows choosing among
a set of possible values for 𝑘 , according to the performance gains they
allowed. It uses an egalitarianism factor 𝛾 , which allows modulating the
exploration or the exploitation. A 𝛾 closer to 0 indicates more exploitation
of the best-performing group size 𝑘 , while a 𝛾 closer to 1 will allow more
exploration and 𝑘 will be drawn almost uniformly. The full algorithm is
shown in Fig. 1 with the multi-armed bandit for dynamic selection in red.
As using 𝛾 = 0.1, 0.5 or 0.9 yielded similar results, we only show results
obtained with 𝛾 = 0.1.

4 EXPERIMENTAL SETUP
4.1 Task and Environment
To study the dynamics of these algorithms, we devise a rover exploration
task inspired by [4] (and used in further research [16, 17, 56]). It is a good
abstraction of a search and retrieve robotic task, where an unknown en-
vironment must be explored to retrieve specific objects or resources. The
goal here is for a team of rovers to reach some points of interest (POI) that
would give the most rewards.

Four rovers start in a small aggregate in the center of an area with some
random variation of coordinates and orientation. Each rover senses both
its teammates and points of interest (POI) if close enough. The team is
expected to coordinate to observe POIs to maximize the score. It depends
on the nature of the POIs and the number of rovers that end up observing
each POI. Table 1 provides details on the location and orientation of the
robots, which are also represented by small coloured squares in Figure 2.

Parameter Value
Agent 0 x,y,orient. 𝑥 ∈ [0, 0.5], 𝑦 ∈ [0, 0.5], 𝛼 ∈ [0, 𝜋2]
Agent 1 x,y,orient. 𝑥 ∈ [−0.5, 0], 𝑦 ∈ [0, 0.5], 𝛼 ∈ [𝜋2 , 𝜋]
Agent 2 x,y,orient. 𝑥 ∈ [−0.5, 0], 𝑦 ∈ [−0.5, 0], 𝛼 ∈ [𝜋, 3𝜋4]
Agent 3 x,y,orient. 𝑥 ∈ [0, 0.5], 𝑦 ∈ [−0.5, 0], 𝛼 ∈ [3𝜋4 , 2𝜋]
Number of POIs 10
POI Radius 2 px
POI distance to center 13 px

Table 1: Initial range values for locations of rovers and POI.

Ten POIs placed in a circle around the robots’ starting position. The
agents have𝑇 steps to reach a POI, after which the team reward is computed.
Each POI delivers some reward if the 𝑛 agents that visit it are in their radius
of observation = 2. Each POI can be of either of two types:

• solo-POI: 𝑟 = 1 if 𝑛 ≥ 1;
• duo-POI: 𝑟 = 3 if 𝑛 ≥ 2.

The team thus obtains a global reward 𝑅 equal to the sum of all rewards
delivered by the POI, 𝑅 =

∑
POI 𝑟 .

We devise two different setups, which are illustrated in Figure 2 and
characterized as follows:

• Setup 1: 10 solo-POI are placed in a circle around the center of the
arena. The maximal score is attained if each agent moves to a unique
POI. The number of POIs is larger than the number of agents, and
the task requires a low level of coordination between agents.
• Setup 2: 8 solo-POI and 2 duo-POI are placed in a circle around the

center of the arena. The 2 duo-POI are aligned on the horizontal axis.
There are three equilibria in which teams may end up, i.e. situations
from which the behavioural change of a single agent will either
decrease or leave an unchanged score. The first two equilibria are

, , , et al.

suboptimal: (a) agents may spread among solo-POIs, for a score of
4, and (b) agents may split among 2 solo-POIs and 1 duo-POIS for a
score of 5. The single optimal equilibrium is reached when agents
pair together two by two and spread on the two duo-POIs for a score
of 6. The task is assumed to require a high level of coordination
between agents.

Figure 2: The two setups explored in this study. Setup 1 has
10 solo-POI organized in a circle around the center. We refer
to this setup as the 10 solo-POI setup. Setup 2 has the same
circular configuration, but the POI on the horizontal axis
are duo-POI. We refer to this setup as the 8 solo 2 duo-POI
setup. In bothfigures, the small coloured square in themiddle
represents the initialization area of the agents described in
Table 1. Blue represents the initialization area of agent 1;
orange represents agent 2; green represents agent 3; and red
represents agent 4.

4.2 Robot model
Agents in the experiment represent robots subject to a kinematic model,
with an action space 𝐴 and observation space 𝑂 . Concerning the action
space, it is a question of controlling a velocity vector. Thus, the agents have
a 2-dimensional action space 𝐴 where the two dimensions represent speed
(𝑎0 ∈ [0, 1] for [stop, maximum speed]) and angular speed (𝑎1 ∈ [−1, 1]
for [clockwise, anti-clockwise]).

Their observation space𝑂 is composed of :
• 3 sensors per POI that get information about their distance, angle
and type;
• 2 sensors per rover that get information about their distance and
angle.

Thus, for our setups with 10 POI and 4 rovers, we obtain an observation
vector of dim(𝑂) = 38 dimensions.

4.3 Policy
The agent’s policy 𝜋 maps observations o ∈ 𝑂 to actions a ∈ 𝐴. For that
purpose, we use a discrete artificial neural network with one hidden layer as
the main policy structure. Figure 3 details the full topology between inputs
and outputs, and the number of parameters. This architecture imposes
a relatively large number of free control parameters 𝜃 that need to be
optimized. In the present case, this means 𝑑𝑖𝑚 (𝜃) = 658 parameters.

5 RESULTS
This section describes the results of applying the CC-1+1-ES algorithms
to the two setups described earlier. We first evaluate the performance of
the CC-(1+1)-ES𝑘fixed algorithm with different values of 𝑘 to assert the

...

1 1

Figure 3: Architecture of the policy function. Each sensor
gives information about the distance to the obstacle and the
type of POI detected if within range. The policy is a multi-
layered neural network, with 38 dimensions as input, a hid-
den layer of 16 dimensions plus a bias term for each layer.
Hyperbolic tangent (tanh) is used as an activation function.
The action dimension is 2. The number of parameters is 658.

relevance of tuning the number of joint policy updates depending on the
problem at hand. We also provide further experimental studies to uncover
the dynamics of coordination between robots. Secondly, we conduct an
experimental study of the CC-(1+1)-ES𝑘adaptive algorithm in order to show
that the value of 𝑘 can indeed be dynamically tuned over time to match the
requirement for the problem at hand.

The environment is stochastic, as the same policy parameters can lead
to different trajectories and score outcomes due to the random variation in
initial conditions. In order to provide a fair estimation of team performance,
we compute and use the expected return as a policy evaluation function
𝐹 (𝜽) of the team parameters 𝜽 .

𝐹 (𝜽) = E
𝜏∼𝝅𝜽

[𝑅 (𝜏)] (4)

In practice, this means the return (or fitness) of a single trajectory𝑅 (𝜏) is
the sum of the rewards given by the POIs for this particular evaluation as de-
scribed in Section 4.1. During all the following experiments, we use the term
score (as it is more general than the term fitness) to refer to the experimental
approximation of 𝐹 (𝜽) by sampling multiple trajectories from different
initial conditions (see Section 4.1). More precisely, each score represents the
average return of the trajectories from 16 different initial conditions that
are kept constant from one generation to another. Using as many different
repetitions for evaluation ensures that agents learn policies that generalize
behaviour regardless of initial conditions. Table 2 lists parameters and values
used in all experiments. All code is available on a repository at removed for
review. Each experiment is performed with 16 independent runs to account
for algorithmic stochasticity.

5.1 Setup 1: Coordination via Specialization
In the first setup, each of the 10 points of interest provides a reward of
𝑟 = 1 if at least one agent comes close enough. The maximum team score
of 4 is reached if agents spread out on different points of interest. In this
setup, agents are not required to perform complex coordination except for
avoiding each other to reach separate POI.

With respect to the number of simultaneous policy updates, it is not
clear a priori which value of 𝑘 should allow the fastest convergence and
best performance. A value of 𝑘 = 1 is less destructive as it ensures that
a policy is updated only if it is better. However, using 𝑘 > 1 allows for a
more exploratory learning strategy, which may not be a problem as optimal

Adaptive Team Cooperative Co-Evolution for a Multi-Rover Distribution Problem , ,

Parameter Value
POI parameters
Number of POI 10
Radius 2
Distance from center 13
Agents parameters
Number of agents 4
Sensor maximum distance 30 px
Maximum velocity 𝑣max 1 px/steps
Maximum angular velocity 𝜔max 60 degrees/steps
Number of steps per evaluation𝑇 15
Controller
Initialization range [−2, 2]
Sensory inputs 38
Hidden layer 1
Hidden size 16
Control outputs 2
Total number of parameters 658
Algorithm parameters
Number of initial conditions per eval. 16
Gaussian mutation probability 𝑝 0.2
Gaussian mutation size 𝜎 0.1
Uniform mutation volume𝑉𝑚 25%
Uniform mutation range R [−2, 2]
Egalitarianism factor 𝛾 for EXP3 0.1

Table 2: Experimental parameters

policies are largely independent: save for avoiding each other, the task does
not require robots to perform complex coordination behaviours.

In order to provide a fair comparison, we use two control experiments
built from classic models featured in the literature:

• heterogeneous team with simultaneous policy updates. This cor-
responds to using 𝑘 = 4, where all policies are updated simultane-
ously aiming for maximal exploration (see [51] for a comprehensive
overview of genetic composition);
• homogeneous team. In this scheme, all individuals are clones, mean-

ing they use the same control parameters. This scheme is particularly
well-fitted when the score is assigned to the whole team, as the trick
is to consider the team as a single agent, rather than a composite.
A successful policy update is then guaranteed to be beneficial for
the whole team at once. This approach has been shown by others to
provide some level of behavioural specialization [20].

Figure 4 shows the evaluation for group sizes of 𝑘 = 1, 𝑘 = 2, 𝑘 =

4 (control 1) and a ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 team (control 2). All versions of the
algorithm could reach optimal performance in at least one run out of 16,
but displayed very different dynamics and overall performance both in
speed and quality. 𝑘 = 1 is the fastest to converge, followed by 𝑘 = 2,
which is twice slower when the median value is considered. Both control
experiments 𝑘 = 4 and ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 are significantly slower, and their
medians never get even close to the maximum score. They struggle in terms
of the number of runs that discover the optimal strategy. Indeed, there is
a single run for each control that reaches the optimal score while using
𝑘 = 1 and 𝑘 = 2 lead to all runs converging towards teams with optimal
performance.

The first observation from these results is that, as postulated in the intro-
duction of this paper, balancing the number of policy updates is critical to
getting the best team performance. Larger values of 𝑘 experience degrada-
tion in performance due to concurrent exploration by multiple agents. This
tends to add noise during the learning process since the evaluation varia-
tion will depend on the modification of several agents. These are similar to

Figure 4: Performance of the algorithm with fixed 𝑘 = 1, 2, 4
and the homogeneous team on Setup 1. Top: each curve rep-
resents the median on 16 independent replications. Bottom:
The four figures represent the learning curves of the sixteen
independent replications of the four cases studied.

the exploratory action noise highlighted by [14, 27], which is completely
avoided for the lower value of 𝑘 = 1, and near-completely with 𝑘 = 2.

The second observation is that the canonical homogeneous team compo-
sition approach falls largely behind using 𝑘 = 1 and 2 in the heterogeneous
team composition. While the need for coordination between agents might
seem limited at first, agents still have to observe different points of interests.
With homogeneous team composition, this requires learning a policy that
can both target a single point of interest and avoid any point of interest
already being observed. This can be an issue with agents sharing the same
policy as coordination may be more challenging to achieve, a problem that
will be explored further in the following Sections.

5.2 Setup 2: Coordination via Limited Synergies
The second setup also features 10 point of interest, with 2 special points
of interest (the duo-POIs) that must be observed by 2 agents to provide a
reward of 𝑟 = 3 points. As in the previous setup, agents may split among the
normal points of interest (the 8 solo-POIs) for a sub-optimal maximal score
of 4. In order to obtain the best score, the team must split into two groups,
one for each duo-POIs, for a maximum score of 6. The obvious pitfall is
that observing solo-POIs is a local optimum from which improvement can
be attained only if two agents simultaneously change their behaviours to
converge towards the same unoccupied duo-POI (see Section 4.1).

Figure 5 shows the score for group sizes of 𝑘 = 1, 𝑘 = 2, 𝑘 = 4 (control
1) and a homogeneous team (control 2). Figure 5-top shows that median
values for the four methods converge to a final score of 5, with 𝑘 = 4 ending
slightly below this score. The homogeneous team composition is the fastest
to converge, followed by 𝑘 = 2 and 𝑘 = 1, which is counter-intuitive as one

, , , et al.

0 100000 200000 300000 400000 500000
evaluations

0

4
5
6

sc
or

e

k = 1
k = 2

k = 4
homogeneous

0 250000 500000

0

4
5
6

sc
or

e

k = 1

0 250000 500000

k = 2

0 250000 500000
evaluations

0

4
5
6

sc
or

e

k = 4

0 250000 500000
evaluations

homogeneous

Figure 5: Performance of the algorithm with fixed 𝑘 = 1, 2, 4
and the homogeneous team on Setup 2. Top: each curve rep-
resents the median on 16 independent replications. Bottom:
The four figures represent the learning curves of the six-
teen independent replications of the four cases studied. The
vertical dotted lines indicate when a specific number of in-
dependent runs were able to reach a score 𝑓 ≥ 5: 1/4 of the
runs (thin), 1/2 (bold) and 3/4 (thin).

would have expected both the ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 and 𝑘 = 1 to fail at capturing
even one duo-POI. Moreover, all methods converge to suboptimal team
performance, with a score of 5 corresponding to the team observing 1 duo-
POIs and 2 solo-POIs. 𝑘 = 2 (as well as 𝑘 = 4, at least to some limits) could
have been expected to learn successful teams able to capture both duo-POIs
by jointly updating policies of more than one agent. This does not seem to
be the case at least when median values are considered.

The picture is very different when we look at independent runs for each
experiment (the four graphs in Fig 5-bottom). 𝑘 = 1 and 𝑘 = 2 outperform
the two control experiments by both succeeding at reaching the optimal
score of 6 (2 runs out of 16 for each method). This means that teams can
capture both duo-POIs, a feat that is never achieved with either 𝑘 = 4 or
the homogeneous team. Moreover, 𝑘 = 2 is faster to converge than 𝑘 = 1
in general (median values and proportion of runs than reach the threshold
score of 5).

These results confirm the conclusion obtained with the first setup regard-
ing the benefit of limiting the number of policy updates when confronted
with a task that requires agents to coordinate. However, it is surprising that
the level of coordination obtained with 𝑘 = 1 is sufficient to reach optimal
team performance. By construction, the task was meant to require that two
agents change their behaviours simultaneously, abandoning a suboptimal
yet stable equilibrium (which is here illustrated by team scores of either 4 or
5, which are visible in the curves) in order to reach the optimal equilibrium
(𝑠𝑐𝑜𝑟𝑒 = 6). The next Section provides an analysis as to why 𝑘 = 1 is able

to learn optimal policies even if strong coordination is required to solve the
task.

5.3 Coordination in the Phenotypical Space

Trajectories of agents on the 16 evaluations runs before and
after the score surpasses 4

Trajectories of agents on the 16 evaluations runs before and
after the score surpasses 5

before transition to
score > 4

after transition to
score > 4

mutation of
agent 2

mutation of
agent 3

before transition to
score > 5

after transition to
score > 5

agent 0 agent 1 agent 2 agent 3

a

b

duo 1
duo 2
solo 1
solo 2
solo 3
solo 4
solo 5
solo 6
solo 7
solo 8

PO
I

0 100000 200000 300000 400000 500000
evaluations

0

5

sc
or

e a
b4

6

Figure 6: Impact of single mutations on the agents’ be-
haviours in Setup 2 for 𝑘 = 1. Top: results from a single
run (run #6) where the score reaches the maximal value of 6,
along with the distribution of the POI throughout learning
for one of the initial conditions out of 16. Red and blue lines
indicate that respectively one and two agents occupy these
POI. Bottom: Trajectories of agents from the 16 initial condi-
tions before and after a single agent’s policy update yields
a significant score increase. The team switches (a) from 4
solo-POIs observed to 2 solo-POIs and 1 duo-POIs observed
and (b) from 2 solo-POIs and 1 duo-POIs to 2 duo-POIs.

Each agent perceives the others during the experiment and may either
ignore or be influenced by their teammates. Consequently, simultaneous

Adaptive Team Cooperative Co-Evolution for a Multi-Rover Distribution Problem , ,

0

4
5
6

sc
or

e

k = 1

∏
>

k = 2

∏
>

k = 4

∏
>

0 500000
evaluations

0

4
5
6

sc
or

e

0 500000
evaluations

0 500000
evaluations

Figure 7: Comparison of the CC-1+1-ES algorithm with fixed
𝑘 = 1, 2 and 4 on Setup 2 with either a soft (>=) or strict
(>) selection operator. Top: median values with soft or strict
selection. Bottom: scores for each of the 16 independent repli-
cations for the strict selection (see Fig. 5 for comparison).

modification of multiple agent trajectories can arise even if a single agent
updates its policy. Rather than occurring purely during joint policy updates,
coordination may arise between agents solely due to one agent influencing
another. This is observed in the second setup when learning with 𝑘 = 1.

Figure 6 shows examples of trajectories for all agents with 𝑘 = 1, ex-
tracted from a run where the team reaches the optimal score. The two
graphs on Fig.6-top show performance during learning and the distribution
of agents among the points of interest starting from one initial condition
used during evaluation (taken randomly out of the 16 initial conditions).
It confirms the switch from one equilibrium to a better one as two agents
jointly stop observing distinct solo-POIs and start observing the same duo-
POI.

Figure 6-bottom features trajectories of agents for all 16 initial conditions
for this particular run before and after two events: (a) when the team
observes its first duo-POI and (b) when the team reaches optimal distribution
over the two duo-POIs. Fig. 6-bottom-(a) show how the policy update of
a single agent (here, agent no.2) changes the behaviour of other agents
whether this change is slight (agents no.0 and no.3 marginally changes
trajectories but still observe the same POI) or with significant impact on the
score (agent no.1 switches and now observe a duo-POI, jointly with agent
no.2). Similarly, Fig.6-bottom-(b) show the same team transitioning to the
optimal team coordination behaviour.

It is interesting to note that the right panel of Fig. 6-bottom-(a) and the
left panel of Fig. 6-bottom-(b) show different team trajectories while they
come from the same run and corresponds to a similar outcome (𝑠𝑐𝑜𝑟𝑒 = 5).
This is due to the selection operator used in our evolutionary algorithm,
which conserves a policy update as long as it yields a better or similar score
than previously. This "soft" selection operator enables genetic drift, that
is, the possibility to explore different behavioural strategies with a similar
score.

Figure 7 shows results obtained using either the default "soft" selection
operator (ie. a strategy change is kept if it does not worsen team perfor-
mance) or a "strict" operator (ie. a strategy change is kept only if it improves
team performance). Using a "strict" selection operator, that is, when policy
updates are kept only if the team score improves, turns out to be detrimen-
tal for 𝑘 = 1. It significantly reduces the overall performance for 𝑘 = 1 as
the median remains stuck to a score of 4, which corresponds to the worse
sub-optimal equilibrium. 𝑘 = 2 moderately suffers from using a strict selec-
tion operator, as performance increase is only delayed. Nevertheless, the
algorithm using 𝑘 = 2 can still learn optimal team strategies. At the same

time, 𝑘 = 1 now fails at completing this task (only one run reaches the
sub-optimal score of 5).

Due to the complex and counter-intuitive effect of the genotype-phenotype
mapping at work in a robotic task where robots interact, it is no surprise
that choosing a priori the number of policy updates to perform per learning
step is challenging. In the next Section, we present results using an adaptive
method for dynamically choosing the 𝑘 value of our algorithm.

5.4 Adaptive group size
An important lesson from the previous results is that different setups require
different values for the number of policies to be updated simultaneously. In
the general case, it can be challenging to guess to which value 𝑘 should be
set, and it is natural to aim for an adaptive method that would automatically
tune the value of 𝑘 to match the problem at hand.

In this Section, we evaluate the CC-1+1-ES𝑘adaptive algorithm presented in
Section 3. CC-1+1-ES𝑘adaptive extends the algorithm used so far by encapsu-
lating the EXP3Multi-Armed Bandit algorithm in order to dynamically tune
the number of policies that should be updated, based on results obtained so
far.

Figure 8 shows the median on 16 independent runs of the score for the
CC-1+1-ES𝑘adaptive algorithm, along with results shown previously with the
original CC-1+1-ES𝑘fixed algorithm with 𝑘 = 1, 2 and 4 for reference (see
Fig. 4 and 5, here with transparent curves).

Results show that the adaptivemethod closelymatches the best-performing
algorithm with fixed 𝑘 (median values, first row), though it is a bit slower
to reach the best value. This is expected as the cost of exploration cannot
compete with an algorithm initialized with the best value for 𝑘 . This is con-
firmed by looking at the independent runs (second row): in both setups, the
adaptive version is shown to be able to reach the optimal team behaviours
on par with the non-adaptive method using the optimal value for 𝑘 , and
without the burden to guess this value prior to learning.

Figure 8: Performance of the CC-1+1-ES𝑘adaptive algorithm 𝑘 in
the two setups. Top: median scores. Previous results shown
with transparent curves. Bottom: scores for each of the 16
replications. The vertical dotted lines indicatewhen a specific
number of independent runs are able to reach a score 𝑓 ≥ 5:
1/4 of the runs (thin), 1/2 (bold) and 3/4 (thin).

6 CONCLUSION
In this paper, we addressed the problem of estimating the contribution of
robotic agents when performance is measured at the level of the team.When
several agents update their policy simultaneously, it is difficult to identify

, , , et al.

a single agent’s contribution to the team, even though joint updates are
necessary to find synergies when a high level of coordination is required.
We proposed an algorithm that automatically balances the number of agents’
policies that should be updated at each learning step in order to discover
the degree of coordination required, without requiring prior assumptions
on the task at hand.

ACKNOWLEDGMENTS
This work is funded by ANR grant ANR-18-CE33-0006.

REFERENCES
[1] Adrian K Agogino, Chris HolmesParker, and Kagan Tumer. 2012. Evolving

distributed resource sharing for cubesat constellations. In Proceedings of the 14th
annual conference on Genetic and evolutionary computation. 1015–1022.

[2] Adrian K Agogino, Chris HolmesParker, and Kagan Tumer. 2012. Evolving large
scale UAV communication system. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation. 1023–1030.

[3] Adrian K Agogino and Kagan Tumer. 2004. Efficient Evaluation Functions for
Multi-rover Systems. In Genetic and Evolutionary Computation – GECCO 2004,
Kalyanmoy Deb (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–11.

[4] Adrian K Agogino and Kagan Tumer. 2004. Efficient evaluation functions for
multi-rover systems. InGenetic and evolutionary computation conference. Springer,
1–11.

[5] Adrian K Agogino and Kagan Tumer. 2008. Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains. Autonomous Agents and Multi-Agent
Systems 17, 2 (2008), 320–338.

[6] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
2002. The Nonstochastic Multiarmed Bandit Problem. SIAM J. Com-
put. 32, 1 (2002), 48–77. https://doi.org/10.1137/S0097539701398375
arXiv:https://doi.org/10.1137/S0097539701398375

[7] Gianluca Baldassarre, Stefano Nolfi, and Domenico Parisi. 2003. Evolving mobile
robots able to display collective behaviors. Artificial life 9, 3 (2003), 255–267.

[8] Cristobal Baray. 1997. Evolving cooperation via communication in homogeneous
multi-agent systems. In Proceedings Intelligent Information Systems. IIS’97. IEEE,
204–208.

[9] Arthur Bernard, Jean-Baptiste André, and Nicolas Bredeche. 2016. To cooperate
or not to cooperate: why behavioural mechanisms matter. PLoS computational
biology 12, 5 (2016), e1004886.

[10] Hans-Georg Beyer and Hans-Paul Schwefel. 2002. Evolution strategies - A
comprehensive introduction. Natural Computing 1, 1 (2002), 3–52.

[11] Josh C Bongard and Chandana Paul. 2000. Investigating morphological symmetry
and locomotive efficiency using virtual embodied evolution. In From Animals
to Animats: The Sixth International Conference on the Simulation of Adaptive
Behaviour. Citeseer.

[12] Bobby D Bryant and Risto Miikkulainen. 2003. Neuroevolution for adaptive
teams. In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., Vol. 3.
IEEE, 2194–2201.

[13] Jianbo Chen, Le Song, Martin JWainwright, andMichael I Jordan. 2018. L-shapley
and c-shapley: Efficient model interpretation for structured data. arXiv preprint
arXiv:1808.02610 (2018).

[14] Jen Jen Chung, Scott Chow, and Kagan Tumer. 2018. When less is more: Reducing
agent noise with probabilistically learning agents. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems. 1900–
1902.

[15] Leonardo LBV Cruciol, Antonio C de Arruda Jr, Li Weigang, Leihong Li, and
Antonio MF Crespo. 2013. Reward functions for learning to control in air traffic
flow management. Transportation Research Part C: Emerging Technologies 35
(2013), 141–155.

[16] Gaurav Dixit and Kagan Tumer. 2022. Behavior Exploration and Team Balancing
for Heterogeneous Multiagent Coordination. In Proceedings of the 21st Interna-
tional Conference on Autonomous Agents and Multiagent Systems. 1578–1579.

[17] Gaurav Dixit, Nicholas Zerbel, and Kagan Tumer. 2019. Dirichlet-Multinomial
Counterfactual Rewards for Heterogeneous Multiagent Systems. In 2019 Interna-
tional Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE, 209–215.

[18] Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, and A.E. Eiben.
2015. Evolutionary Robotics: What, Why, and Where to. Frontiers in Robotics
and AI 2, March (2015), 1–18. https://doi.org/10.3389/frobt.2015.00004

[19] Yinon Douchan, Ran Wolf, and Gal A Kaminka. 2019. Swarms can be rational.
In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems. 149–157.

[20] Eliseo Ferrante, Ali Emre Turgut, Edgar Duéñez-Guzman, Marco Dorigo, and
Tom Wenseleers. 2015. Evolution of Self-Organized Task Specialization in Robot

Swarms. PLoS Computational Biology 11, 8 (2015), e1004273. https://doi.org/10.
1371/journal.pcbi.1004273

[21] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. 2017. Counterfactual Multi-Agent Policy Gradients.
arXiv:1705.08926 [cs.AI]

[22] Nicolas Fontbonne, Nicolas Maudet, and Nicolas Bredeche. 2022. Cooperative
co-evolution and adaptive team composition for a multi-rover resource allocation
problem. In Genetic Programming: 25th European Conference, EuroGP 2022, Held
as Part of EvoStar 2022, Madrid, Spain, April 20–22, 2022, Proceedings. Springer,
179–193.

[23] Christopher Frye, Colin Rowat, and Ilya Feige. 2020. Asymmetric Shapley values:
incorporating causal knowledge into model-agnostic explainability. Advances in
Neural Information Processing Systems 33 (2020), 1229–1239.

[24] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A survey and
critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (2019), 750–797.

[25] Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. 2020. Causal
shapley values: Exploiting causal knowledge to explain individual predictions
of complex models. Advances in neural information processing systems 33 (2020),
4778–4789.

[26] Chris HolmesParker, Adrian K Agogino, and Kagan Tumer. 2013. Exploiting
structure and utilizing agent-centric rewards to promote coordination in large
multiagent systems.. In AAMAS. 1181–1182.

[27] Chris HolmesParker, Mathew E Taylor, Adrian K Agogino, and Kagan Tumer.
2014. Clean rewards to improve coordination by removing exploratory action
noise. In 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), Vol. 3. IEEE, 127–134.

[28] Matt Knudson and Kagan Tumer. 2010. Coevolution of heterogeneous multi-robot
teams. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation. 127–134.

[29] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler.
1997. Co-evolving soccer softbot team coordination with genetic programming.
In Robot Soccer World Cup. Springer, 398–411.

[30] XiaoliangMa, Xiaodong Li, Qingfu Zhang, Ke Tang, Zhengping Liang,Weixin Xie,
and Zexuan Zhu. 2019. A Survey on Cooperative Co-Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation 23, 3 (2019), 421–441. https:
//doi.org/10.1109/TEVC.2018.2868770

[31] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019.
MAVEN: Multi-Agent Variational Exploration. In Advances in Neural Informa-
tion Processing Systems, Vol. 32. https://proceedings.neurips.cc/paper/2019/file/
f816dc0acface7498e10496222e9db10-Paper.pdf

[32] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Indepen-
dent reinforcement learners in cooperative markov games: a survey regarding
coordination problems. The Knowledge Engineering Review 27, 1 (2012), 1–31.

[33] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance
Under Reward Transformations: Theory and Application to Reward Shaping. In
Proceedings of the Sixteenth International Conference on Machine Learning (ICML
’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 278–287.

[34] Julien Perolat, Bilal Piot, and Olivier Pietquin. 2018. Actor-critic fictitious play in
simultaneous move multistage games. In International Conference on Artificial
Intelligence and Statistics. PMLR, 919–928.

[35] Mitchell A Potter and Kenneth A De Jong. 1994. A cooperative coevolutionary
approach to function optimization. In International Conference on Parallel Problem
Solving from Nature. Springer, 249–257.

[36] Mitchell A Potter and Kenneth A De Jong. 2000. Cooperative Coevolution: An
Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation
8 (2000), 1–29.

[37] Matt Quinn, Lincoln Smith, Giles Mayley, and Phil Husbands. 2002. Evolving
formation movement for a homogeneous multi-robot system: Teamwork and role-
allocationwith real robots. COGNITIVE SCIENCE RESEARCH PAPER-UNIVERSITY
OF SUSSEX CSRP (2002).

[38] Aida Rahmattalabi, Jen Jen Chung, Mitchell Colby, and Kagan Tumer. 2016. D++:
Structural credit assignment in tightly coupled multiagent domains. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
4424–4429.

[39] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
Weighted qmix: Expanding monotonic value function factorisation for deep
multi-agent reinforcement learning. Advances in neural information processing
systems 33 (2020), 10199–10210.

[40] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
Weighted QMIX: Expanding monotonic value function factorisation for
deep multiagent reinforcement learning. In Advances in Neural Informa-
tion Processing Systems. https://proceedings.neurips.cc/paper/2020/hash/
73a427badebe0e32caa2e1fc7530b7f3-Abstract.html

[41] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-
sation for Deep Multi-Agent Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning. http://proceedings.mlr.press/v80/

https://doi.org/10.1137/S0097539701398375
https://arxiv.org/abs/https://doi.org/10.1137/S0097539701398375
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.1371/journal.pcbi.1004273
https://doi.org/10.1371/journal.pcbi.1004273
https://arxiv.org/abs/1705.08926
https://doi.org/10.1109/TEVC.2018.2868770
https://doi.org/10.1109/TEVC.2018.2868770
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
http://proceedings.mlr.press/v80/rashid18a.html
http://proceedings.mlr.press/v80/rashid18a.html

Adaptive Team Cooperative Co-Evolution for a Multi-Rover Distribution Problem , ,

rashid18a.html
[42] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. PMLR, 4295–4304.

[43] Lloyd S Shapley. 1953. A Value for n-person Games. Annals of Mathematical
Studies 28 (1953), 307–317. https://doi.org/10.1515/9781400881970-018

[44] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-
agent reinforcement learning. In International conference on machine learning.
PMLR, 5887–5896.

[45] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-
agent reinforcement learning. In International Conference on Machine Learning.

[46] Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. 2010. Ad
Hoc Autonomous Agent Teams: collaboration without pre-coordination. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (Atlanta,
Georgia) (AAAI’10). AAAI Press, 1504–1509.

[47] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl
Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks For Cooperative
Multi-Agent Learning Based On Team Reward. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (Stockholm,
Sweden) (AAMAS ’18). International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 2085–2087.

[48] Vito Trianni and Marco Dorigo. 2006. Self-organisation and communication
in groups of simulated and physical robots. Biological cybernetics 95, 3 (2006),
213–231.

[49] Vito Trianni, Stefano Nolfi, and Marco Dorigo. 2008. Evolution, Self-organization
and Swarm Robotics. In Swarm Intell. 163–191. https://doi.org/10.1007/978-3-
540-74089-6{_}5

[50] Kagan Turner. 2006. Designing agent utilities for coordinated, scalable and robust
multi-agent systems. In Coordination of Large-Scale Multiagent Systems. Springer,
173–188.

[51] Markus Waibel, Laurent Keller, and Dario Floreano. 2009. Genetic team composi-
tion and level of selection in the evolution of cooperation. IEEE transactions on
Evolutionary Computation 13, 3 (2009), 648–660.

[52] Ermo Wei and Sean Luke. 2016. Lenient learning in independent-learner sto-
chastic cooperative games. The Journal of Machine Learning Research (2016).
https://www.jmlr.org/papers/v17/15-417.html

[53] Rudolf Paul Wiegand. 2003. An Analysis of Cooperative Coevolutionary Algo-
rithms. Ph. D. Dissertation. George Mason University. http://l.academicdirect.
org/Horticulture/GAs/Refs/PhD_Wiegand&Jong_2003.pdf

[54] D. Wolpert, Kagan Tumer, and K. Swanson. 2000. Optimal Wonderful Life Utility
Functions in Multi-Agent Systems.

[55] David H.Wolpert and Kagan Tumer. 2008. An introduction to collective intelligence.
Technical Report. NASA. 1–88 pages. arXiv:9908014v1 [cs]

[56] Nick Zerbel and Kagan Tumer. 2020. The Power of Suggestion. In Proc. of the 19th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2020). 1602–1610.

http://proceedings.mlr.press/v80/rashid18a.html
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1007/978-3-540-74089-6{_}5
https://doi.org/10.1007/978-3-540-74089-6{_}5
https://www.jmlr.org/papers/v17/15-417.html
http://l.academicdirect.org/Horticulture/GAs/Refs/PhD_Wiegand&Jong_2003.pdf
http://l.academicdirect.org/Horticulture/GAs/Refs/PhD_Wiegand&Jong_2003.pdf
https://arxiv.org/abs/9908014v1

	Abstract
	1 Introduction
	2 Related work
	3 Algorithm
	3.1 CC-(1+1)-ESkfixed with Fixed Policy Updates
	3.2 CC-(1+1)-ESkadaptive with Adaptive Updates

	4 Experimental setup
	4.1 Task and Environment
	4.2 Robot model
	4.3 Policy

	5 Results
	5.1 Setup 1: Coordination via Specialization
	5.2 Setup 2: Coordination via Limited Synergies
	5.3 Coordination in the Phenotypical Space
	5.4 Adaptive group size

	6 Conclusion
	Acknowledgments
	References

