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Abstract: Neurological and psychiatric diseases generally have no cure, so innovative non-
pharmacological treatments, including non-invasive brain stimulation, are interesting therapeu-
tic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation
technique involves the application of pulsed magnetic fields to affected brain regions. However,
investigations of magnetic brain stimulation are complicated by the use of many different stimulation
parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches:
(1) clinically used high-intensity stimulation (0.5–2 Tesla, T) and (2) experimental or epidemiologically
studied low-intensity stimulation (µT–mT). Human tests of both approaches are reported to have
beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters
remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain
stimulation from human, animal, and in vitro studies. We identify the common effects of different
stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue;
and describe cellular mechanisms underlying their effects—from intracellular signalling cascades,
through synaptic plasticity and the modulation of network activity, to long-term structural changes
in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain
low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not
available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially
powerful treatment tool for human application.

Keywords: rTMS; LI-rTMS; magnetic stimulation; neuromodulation; non-invasive brain stimulation;
magnetoreceptor

1. Introduction: Why Use Magnetic Fields to Stimulate the Brain?

The human brain is extraordinarily complex, and the mechanisms underlying many
of its functions remain imperfectly understood. Therefore, repairing neuronal dysfunc-
tion or damage remains one of the major challenges in biomedical science, and neural
dysfunction continues to seriously impair the quality of life of affected people. Most neuro-
logical diseases can only be treated with behavioural remediation, and/or pharmacological
treatments, which often have associated side effects. Non-pharmacological, non-invasive
brain stimulation (NIBS) is increasingly tested as a potential therapy in neurology and
psychiatry, with the aim of triggering intrinsic neuromodulatory and brain-repair molecular
and cellular mechanisms.

One approach to extrinsic brain stimulation is the application of pulsed electromag-
netic fields to the human brain [1,2] (Figure 1). Because this stimulation was first observed
and then used in humans, fundamental studies on stimulation parameters and cellular
mechanisms were not initially undertaken. As a consequence, there are no universally
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defined stimulation protocols, and therefore functional outcomes of magnetic brain stimu-
lation are variable between subjects and studies, and underlying molecular mechanisms
remain ill defined [3–6]. Information about these underlying cellular mechanisms is neces-
sary if we aim to identify the most appropriate stimulation protocols for different brain
areas; at different life stages (e.g., child, adult, or aged); and in different pathological
conditions, e.g., developmental disorder, injury, or neurodegenerative disease [7,8].
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There are two major approaches to NIBS (Figure 2). The first uses trains of high-in-
tensity magnetic pulses (0.5–2 Tesla, T), known as repetitive transcranial magnetic stimu-
lation (rTMS), to induce focal neuronal activation (Figure 2A), which temporarily modifies 
cortical excitability (the readiness for neurons to be activated), cognition, and behaviour 
[4,6]. It is assumed that mechanisms of activity-dependent plasticity and/or the entrain-
ment of the waves of neuron activity (neural oscillations) modulate activity between brain 
regions [6,11]. However, because of the high voltages required to generate these magnetic 
fields, the stimulation frequency is limited by the time needed to recharge the coil, so in 
practice, 20 Hz is almost the maximum frequency [4,6]. There are significant other limita-
tions to high-intensity stimulation (e.g., risk of seizures, requirement for a hospital setting, 
etc.) [4,6]. A second, alternative approach (Figure 2B,C) involves the application of low-
intensity transcranial current stimulation or weak pulsed magnetic fields [3] to modify 
neuronal responses (neuromodulation) throughout the brain, which also induces similar 
short-term effects on cortical excitability and behaviour but without triggering direct neu-
ronal firing [3,12]. However, the clinical outcomes of diffuse neuromodulation are disap-
pointing [13]. Thus, neither of these approaches provides flexibility in stimulation proto-
cols and the targeting of a specific brain region necessary to treat dysfunctional neural 
circuits. 

Figure 1. Overview of electromagnetic induction in TMS: (A) A brief pulsed current flows through a
coil generating a magnetic field, which passes through the skull and induces a secondary current,
which stimulates the brain. Image adapted from [9], with permission. (B) The electric field (E) within
the brain runs through cortical folia essentially perpendicular to the descending pyramidal neuron
axons. Image adapted from [10], with permission. (C) Microscopically, the secondary current can
locally alter the axon membrane potential and therefore activate neuronal firing (image adapted
from [10], with permission).

There are two major approaches to NIBS (Figure 2). The first uses trains of high-
intensity magnetic pulses (0.5–2 Tesla, T), known as repetitive transcranial magnetic
stimulation (rTMS), to induce focal neuronal activation (Figure 2A), which temporar-
ily modifies cortical excitability (the readiness for neurons to be activated), cognition, and
behaviour [4,6]. It is assumed that mechanisms of activity-dependent plasticity and/or the
entrainment of the waves of neuron activity (neural oscillations) modulate activity between
brain regions [6,11]. However, because of the high voltages required to generate these
magnetic fields, the stimulation frequency is limited by the time needed to recharge the coil,
so in practice, 20 Hz is almost the maximum frequency [4,6]. There are significant other
limitations to high-intensity stimulation (e.g., risk of seizures, requirement for a hospital
setting, etc.) [4,6]. A second, alternative approach (Figure 2B,C) involves the application
of low-intensity transcranial current stimulation or weak pulsed magnetic fields [3] to
modify neuronal responses (neuromodulation) throughout the brain, which also induces
similar short-term effects on cortical excitability and behaviour but without triggering
direct neuronal firing [3,12]. However, the clinical outcomes of diffuse neuromodulation
are disappointing [13]. Thus, neither of these approaches provides flexibility in stimulation
protocols and the targeting of a specific brain region necessary to treat dysfunctional neural
circuits.
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composed of a custom coil (copper wire 0.2 mm, 1400 turns) on a flexible plastic support (grey ring) 
strapped around the head with the positive magnetic pole upwards (from [3], with permission). (C) 
Electric field magnitude, induced by low field magnetic stimulation (LFMS) in four transverse slices 
of the human brain, was calculated by applying the finite element method on a human head model 
placed inside the LFMS coil (adapted from [14], with permission). 
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well as the focal nature of high-intensity rTMS (Figure 3). Acute effects of 10 min LI-rTMS 
show changes to the resting state network (regional activity at rest, shown with functional 
brain imaging (fMRI)) [16] and the modulation of visual evoked responses to concurrent 
visual stimuli [17]. Also, chronic (2-week) LI-rTMS can induce neural circuit plasticity, 
stimulating collateral axon outgrowth and reinnervation to denervated cerebellar Purkinje 
cells in a stimulus-specific manner [18]. LI-rTMS can also remove abnormal neural con-
nections. For example, ephrin-A2A5−/− knockout mice lack key axon guidance cues and, as 
a result, have disrupted topography in visual pathways and abnormal visual tracking be-
haviour [19]. Two-week LI-rTMS (10 mT; BHFS; 10 min/day) decreased the number of 
abnormal projections in subcortical [15] and cortical visual circuits [20], corrected the de-
fective visual tracking [15], and improved accuracy in a visual learning task [21]. Im-
portantly, the effects of this type of stimulation are frequency/rhythm-dependent [18,22], 
similar to the effects of high-intensity rTMS. Moreover, magnetic stimulation at these 
lower neuromodulatory intensities has a wider range of possible stimulation parameters 
[23,24]. 
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held over the human motor cortex to deliver high-intensity TMS with a small central “hotspot” (red)
surrounded by a large area of cortex exposed to a much lower field (green) (from http://www.loe.
fu-berlin.de/en/dine/labs/tms/index.html, accessed on 2 October 2023). (B) Drawing of an LFMS
device composed of a custom coil (copper wire 0.2 mm, 1400 turns) on a flexible plastic support (grey
ring) strapped around the head with the positive magnetic pole upwards (from [3], with permission).
(C) Electric field magnitude, induced by low field magnetic stimulation (LFMS) in four transverse
slices of the human brain, was calculated by applying the finite element method on a human head
model placed inside the LFMS coil (adapted from [14], with permission).

Finally, we have developed focal low-intensity magnetic stimulation (LI-rTMS; [15]),
which benefits from the wide range of stimulation parameters of weak magnetic fields
as well as the focal nature of high-intensity rTMS (Figure 3). Acute effects of 10 min
LI-rTMS show changes to the resting state network (regional activity at rest, shown with
functional brain imaging (fMRI)) [16] and the modulation of visual evoked responses to
concurrent visual stimuli [17]. Also, chronic (2-week) LI-rTMS can induce neural circuit
plasticity, stimulating collateral axon outgrowth and reinnervation to denervated cerebellar
Purkinje cells in a stimulus-specific manner [18]. LI-rTMS can also remove abnormal
neural connections. For example, ephrin-A2A5−/− knockout mice lack key axon guidance
cues and, as a result, have disrupted topography in visual pathways and abnormal visual
tracking behaviour [19]. Two-week LI-rTMS (10 mT; BHFS; 10 min/day) decreased the
number of abnormal projections in subcortical [15] and cortical visual circuits [20], corrected
the defective visual tracking [15], and improved accuracy in a visual learning task [21].
Importantly, the effects of this type of stimulation are frequency/rhythm-dependent [18,22],
similar to the effects of high-intensity rTMS. Moreover, magnetic stimulation at these lower
neuromodulatory intensities has a wider range of possible stimulation parameters [23,24].

Figure 3. Focal LI-rTMS delivery in mice: (A) Custom-built stimulation coil (8 mm diameter; blue)
and its relation to the mouse’s head for cerebellar stimulation. Modified from [18], with permission.
(B) Coil with the cover removed to show the wire coil and its support. (C) Coil position for bilateral
stimulation of the visual cortex (top, grey circle, V1). (D) Diagram of magnetic field intensities (in
mT) in the mouse head. The magnetic field is relatively focal to the visual cortex; (B–D) are adapted
from [20], with permission.

The availability of these different magnetic stimulation techniques reinforces the need
to understand the molecular underpinnings of the effects of magnetic fields on brain cells
at high or low intensity and with different stimulation parameters, in order to develop new
protocols for different pathologies. This is particularly true for low-intensity stimulation
because, in the absence of overt neuronal firing, there is concern that the observed effects
may be a placebo effect rather than real. Here, we review some basic biology combined

http://www.loe.fu-berlin.de/en/dine/labs/tms/index.html
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with animal and clinical studies to compare what is known about mechanisms underlying
the effects of high- or low-intensity pulsed magnetic field stimulation on neurons. We
consider parameters such as intensity, frequency, and pattern, in order to better understand
the potential advantages and disadvantages of different stimulation approaches for hu-
man neurological and psychiatric disease. Intriguingly, low- and high-intensity magnetic
stimulation techniques appear to share many cellular mechanisms. However, we will not
address the vast literature on clinically applied TMS, except to illustrate some of the likely
underlying mechanisms.

2. Magnetic Brain Stimulation Parameters Determine Outcomes

Transcranial magnetic stimulation is based on Faraday’s principles of electromagnetic
induction. A stimulating coil is held over a subject’s head, and a brief pulsed (time-varying)
primary current flows through the coil and generates a changing (time-varying) magnetic
field perpendicular to the primary electric current. The magnetic field passes through
the subject’s scalp and skull with negligible attenuation and induces a secondary electric
current, parallel to but in the opposite direction from the coil’s current, and thus stimulates
the brain [25] (Figure 1). The magnetic field decreases rapidly with distance from the
coil; thus, the cortex and subcortical white matter are assumed to be the principal neural
elements stimulated.

The outcomes of rTMS are influenced by a large number of stimulation parameters, as
well as characteristics of individual subjects’ brains (Figure 4).
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Figure 4. Factors influencing the effects of transcranial magnetic stimulation (TMS): (A) TMS pulse
parameters that can be tailored for a desired outcome: pattern, frequency, and pulse shape. Coil type,
orientation, and distance from the head also alter outcomes. (B) A subject’s brain characteristics,
including cortical activation state, also influence the outcomes of a given TMS protocol. The different
colours in the upper panel represent connections between different brain regions. © Malfeda Loreti
and Tom Dufor, used with permission.

2.1. Types of Coil

Coil designs available for clinical TMS are usually either classic round coils or figure-
of-eight coils [26,27]. These coils produce magnetic fields of different shapes, which will
determine the area with the highest intensity stimulation (“hotspot”), the total area stimu-
lated, and the stimulation depth [28,29].

2.2. Stimulation Intensity

In current clinical practice, rTMS aims to induce neuronal firing in the targeted cortical
region. The intensity of rTMS applied is in the range of 0.5–2 T and is usually determined
with the cortical resting motor threshold (RMT) [6]. This is defined as the minimal inten-
sity at which TMS over M1 reliably induces enough action potential firing to produce a
detectable electromyographic motor evoked potential (MEP) around 100 µV or a visible con-
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traction in the target muscle [30]. MEP amplitude is therefore used as an indirect measure
of cortical excitability and increases with increasing stimulation intensity [31]. In contrast,
low-field magnetic stimulation (LFMS) parameters are usually in the µT-mT range [3].
Although MEPs have been used to measure the effect of LFMS [32], the more commonly
used read-out is electroencephalography (EEG) brain oscillations. In a comparison between
the effects of 1.5 and 10 Hz stimulation at 20–40 µT, 10 Hz induced a greater increase in
EEG power (oscillation amplitude). Notably, stimulation at specific electromagnetic field
frequencies influences EEG power in the same frequency range [33]. Thus, alpha and beta
EEG bands are entrained by corresponding LFMS frequencies [34], which is consistent with
EEG entrainment by high-intensity rTMS [11,35].

Comparisons between rTMS studies are complicated by the fact that applied stimulus
strength depends on (a) intrinsic differences in cortical excitability that alter the RMT [36]
and (b) the device used, since stimulation intensity is usually expressed as the percentage
of maximal stimulator output inducing RMT rather than as a voltage or magnetic field
in Tesla/Gauss [31,37]. Moreover, the target brain area will necessarily be surrounded by
tissue exposed to lower-intensity magnetic stimulation, which will also induce its own
effects on the associated neurons and their circuits.

2.3. Frequency and Pattern of Magnetic Stimulation Pulses

Irrespective of stimulation intensity, whether in the Tesla or milliTesla range, the
temporal spacing between repeated magnetic stimuli (rTMS frequency) is the most widely
studied parameter of magnetic stimulation because of the known effects on cortical excitabil-
ity. For clinical high-intensity rTMS, high frequencies (≥5 Hz) increase cortical excitability,
and low frequencies (≤1 Hz) decrease it [36–38]. Theta burst stimulation (TBS) is a complex
pattern (three-pulse 50 Hz bursts repeated at 5 Hz) that can be delivered as continuous
(cTBS) or intermittent (iTBS) trains; cTBS exerts inhibitory effects, and iTBS exerts excitatory
effects on cortical excitability [38]. Both iTBS and cTBS induce the sustained modulation of
human cortical excitability, even when delivered at a lower intensity and shorter duration
than classical high- and low-frequency rTMS [38–40]. Finally, when stimulation intensity is
low (e.g., mT), pulses can be delivered at a wide range of frequencies, which are generally
within a 10–100 Hz range [3].

All rTMS protocols, whether at high or low intensity, simultaneously modulate multi-
ple cortical circuits [39,41], inducing mixed inhibitory and excitatory effects [42]. Indeed,
the total number of pulses delivered, and the interval between the blocks of stimulation, re-
sult in the recruitment of different cortical interneuron networks [43] to increase or decrease
the effects of TBS on cortical excitability [44,45], and this may explain some inter-individual
variability [43].

3. Potential Cellular Mechanisms Mediating the Effects of Magnetic Stimulation

An understanding of the mechanisms underlying rTMS will help to fine-tune protocols
in order to optimally activate appropriate neural repair mechanisms, depending on the
individual subject, the neural network targeted, and the pathology involved. Studies using
different stimulation intensities show that many cellular mechanisms are shared between
high and low intensity.

3.1. Synaptic Plasticity

TMS simultaneously activates a large number of neurons in local circuits; thus, a
mixture of pre-synaptic and post-synaptic neurons are activated [46]. It modulates cortical
excitability beyond the simulation period [4] as indicated by EEG [47,48], regional cerebral
blood flow [49,50], and blood oxygen level-dependent (BOLD) activation patterns [51]. All
of these changes suggest synaptic and network plasticity. This plasticity induced by rTMS
is influenced by the prior activation of the neural circuit. This is in accordance with the
concept of metaplasticity, which facilitates or inhibits plastic change, stabilises synapses,
or adjusts cellular activity in the context of prior activity [52]. An important component is
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homeostatic synaptic plasticity, which adjusts synaptic strength to maintain stable neural
activity. Several rTMS studies have shown that previous activity in the stimulated network
influences the observed outcomes [53], i.e., prior stimulation “primes” the circuit and
influences the subsequent stimulation effects [54,55].

Magnetic stimulation-induced plasticity can be either excitatory or inhibitory depend-
ing on which neuronal population is most affected by the stimulation protocol. In vitro
studies of high-intensity repetitive magnetic stimulation (rMS; i.e., the magnetic field is
not transcranial) on organotypic rodent hippocampal slice cultures have delivered direct
evidence of LTP induced by high-frequency rMS (10 Hz) [56–58]. This induced LTP is
durable (2–6 h) and occurs at excitatory synapses on proximal dendrites, in association with
the remodelling of small dendritic spines and increased receptor clusters; it also requires
voltage-gated ion channels, NMDA receptors, and calcium [56,58], similar to classical
electrophysiological LTP. Moreover, rTMS can also strongly inhibit cortical networks [25],
through modulating inhibitory interneuron activity [46,59,60].

Different stimulation patterns affect distinct interneuron populations appropriate to
their observed effects on cortical excitability (e.g., MEP). According to the pattern applied,
rTMS modulates the inhibitory interneuron expression of the immediate early genes c-fos
and zif268 [46,61,62], GABA-synthesising enzymes GAD65 and GAD67 [46,60,63], and
calcium-binding proteins [59,63,64]. Stimulation patterns that increase cortical excitability,
such as 10 Hz and iTBS stimulation, not only induce Ca2+-dependent signalling [56,58,59,65,66]
but also depress inhibitory circuits by reducing parvalbumin (PV) expression in fast-spiking
interneurons (FSIs) [62,67–69] and destabilising GABA receptors to reduce GABAergic
synaptic strength [66]. In contrast, cTBS and 1 Hz (“inhibitory” protocols) predominantly
alter calbindin (CB) expression [67,68]. This interneuron sensitivity to TMS develops with
FSI maturation between P30 and 40 in mice (equivalent to human adolescence) when
perineuronal nets stabilise the cortical synaptic network [64,70].

Taken together with the effects at excitatory synapses, these fundamental experiments
reveal the complex biology of brain magnetic stimulation; for example, an excitatory
effect may include increased synaptic plasticity in excitatory circuits along with reduced
inhibitory activity.

3.2. Acute Effects on Neuronal Properties
3.2.1. Membrane Potential and Spontaneous Activity

Magnetic stimulation can change the membrane potential of targeted neurons either di-
rectly, or indirectly via interneurons [4,71]. Both whole-cell recordings and voltage-sensitive
dyes show that magnetic pulses initiate a transient current into neurons through voltage-
gated sodium channels [72,73]. The electric field induced by high-intensity rTMS (0.5–2 T)
is known to be sufficient to produce neuronal activation, i.e., action potentials (see above).
Although the electric field induced by weak rTMS (~10 mT) was assumed to be below the
neuronal activation threshold, some stimulation pulses (~25%), are nonetheless followed by
action potentials when weak rTMS is applied [71]. An increase in the intracellular calcium
following excitatory protocols [72] progressively increases activity in a large population of
neurons that weakens inhibitory action and stimulates excitatory circuits through NMDA
receptors [65,74]. Depending on the stimulation pattern, weak rTMS modulates neuronal
excitability and changes the membrane potential [71].

These rapid changes to the membrane potential and neuronal excitability may ex-
plain how high-frequency rTMS reverses age-related reduction in neuronal excitability and
cognitive function [75], which are partly due to a hyperpolarised resting membrane poten-
tial [76] and greater after hyperpolarisation [77,78]. Also, rTMS modifies voltage-gated Ca2+

channel (VGCC) activity [75], which improves synaptic plasticity in aged neurons [79].

3.2.2. Activation of Cryptochrome Magnetoreceptors

The knowledge that low-intensity magnetic fields can generate action potentials in
neurons is very recent [71]. In contrast, the basic biology of magnetic fields has been studied
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in various systems, addressing the direct interaction between external magnetic fields and
the biological system. However, this knowledge has not previously been integrated into
the domains of human or animal rTMS/LFMS.

Interaction between magnetic fields and biological tissues—magnetoreception—allows,
amongst other functions, for orientation to the ambient geomagnetic field [80–82] and the
regulation of circadian rhythms [83]. This phenomenon involves cryptochrome (CRY;
Figure 5), which is widely conserved across species [84,85]. CRY transduces electromag-
netic signals through the activation of its FAD cofactor followed by electron transfer from
a conserved triad of tryptophan residues [86,87]. This stimulation induces conforma-
tional changes in the cryptochrome protein, thus removing its inhibition of Clock/Arntl
transcriptional activity [88], and generates a radical pair [80,89], which in turn generates
reactive oxygen species (ROS; Figure 5) [90,91]. Both ROS and changes to gene expres-
sion are induced by rTMS [92,93], and the increase in ROS requires CRY [93]. Moreover,
the olivocerebellar reinnervation induced by LI-rTMS after a lesion is abolished in CRY
double-knockout mice [18].
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3.3. Intracellular Cascades Modified by Magnetic Fields
3.3.1. ROS Production and Regulation of Oxidative Stress

ROS production is considered an early response to LFMS exposure [92,97,98]. ROS
were originally characterised as harmful to cells, but accumulating evidence shows that
at physiological concentrations, they participate in signal transduction, Ca2+ release from
intracellular stores, and the fine-tuning of cellular signalling [99].

In normal cells, magnetic stimulation effects on ROS production show small amplitude
changes (30–60%) in either direction; this “low-level” oxidative modulation is compatible
with non-toxic and even protective effects of magnetic field exposure [92,98]. Moreover,
when neurons are already stressed, e.g., after ischaemia, the small modulation of ROS
via LFMS activates reparative antioxidants [97] and heat shock protein pathways [100] to
reduce oxidative damage.

3.3.2. Intracellular Ca2+ Concentration and Downstream Signalling

Signalling cascades underlying magnetic stimulation often involve intracellular cal-
cium [101,102]. Induced action potentials increase intraneuronal calcium through voltage-
gated calcium channels (VGCCs), and synaptic activity can increase calcium influx through
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NMDA receptors, which may partially explain changes to neural activity [72,103–105].
Magnetic stimulation has also been shown to increase calcium release from intracellular
stores [22,101] through the action of ROS [106].

Calcium activates various enzymes, and at least two of these, namely calmodulin-
dependent kinase II (CAMKII) and calcineurin, regulate the initiation and maintenance of
LTP and LTD, respectively [107]. Both CAMKII and calcineurin are activated by the same
Ca2+/calmodulin complex [108]. Calmodulin very rapidly buffers calcium, activating and
inactivating CAMKII/calcineurin in parallel with neuronal firing [109], thus providing
a potential mechanism to mediate the effects of pulsed magnetic fields. Indeed, in vitro,
10 Hz rTMS upregulates CAMKII [110], and calcineurin underlies post-stimulation changes
in inhibitory synaptic responses [66]. Ca2+ also regulates nitric oxide through calmodulin
binding and neuronal nitric oxide synthase activation [111], which regulates synaptic
plasticity and network function [15,20,65,112,113].

These studies suggest that calcium dynamics are involved at the early stage of rTMS-
induced plasticity. Calcium signalling due to rTMS-induced neuronal activity increases
calcium-dependent kinase cascades, leading to immediate-early gene (IEG) expression.
This in turn activates the expression of target genes, leading to long-term functional and
structural modifications to neurons [114] (Figure 6).
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3.3.3. Immediate-Early Gene Expression

Immediate-early genes (IEGs) are rapidly induced, transiently expressed genes [115,116].
Changes in their expression were first associated with rTMS when 1 Hz stimulation to
human-derived neuron-like cells increased intracellular cAMP; CREB phosphorylation; and
the downstream expression of neuronal plasticity associated IEGs, c-fos, and zif268 [117].

Robust evidence for increases in IEG expression via magnetic stimulation now ex-
ists. Notably, c-fos expression was increased in cultured cortical neurons via 1 Hz and
10 Hz rTMS [22]. In addition, c-fos upregulation was specifically strong in those neurons
undergoing biological responses to LI-rTMS (e.g., reinnervation [18]). In vivo, Zif268 ex-
pression was increased in almost all cortical areas after iTBS but only in the primary motor
and sensory cortices after 10 Hz rTMS [61]. A recent study also showed that c-fos increases
can be found in connected cortical regions [62].
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These gene expression changes occur in a time course with distinct phases. In the
awake rat [118], the administration of 3 min iTBS to the cortex increased c-fos and GAD65
expression over 20 min, indicating the strong activation of excitatory and inhibitory neurons.
This was followed by a phase (20–80 min) of reduced inhibitory activity, as reflected by
decreased GAD67, PV, and CB expression. Then, finally (after 160 min), c-fos expression
disappeared, suggesting the end of the iTBS-induced cortical facilitation [118]. As the
number of iTBS stimulation blocks, or intervals between them, were changed, so did the
profiles of gene expression [46,60], consistent with the effects of different TBS stimulation
parameters on human cortical excitability [44,45].

These regional and stimulation-specific changes to gene expression introduce a funda-
mental aspect to rTMS that is not yet applied in clinical practise: each brain region, with
its individual neuron populations and microcircuity, will respond differently to any given
stimulation protocol.

3.4. Long-Lasting Brain Plasticity

An important component of magnetic stimulation’s therapeutic potential is that it
modulates cortical excitability beyond the simulation period [4], indicating the induction
of mechanisms for long-lasting plasticity, such as growth factor expression, alterations to
dendritic spines, and neurogenesis.

3.4.1. Brain-Derived Neurotrophic Factor and Other Gene-Expression Changes

The brain-derived neurotrophic factor (BDNF) is probably the most-studied neu-
rotrophin in the rTMS field. The BDNF is widely expressed in the CNS and is essential for
normal brain development and function [119] including the induction of LTP through Ca2+

and IEG expression [120,121]. Its link to rTMS is shown by reduced BDNF in CRY-deficient
mice [122] and poor responsiveness to TMS in BDNF Val66Met allele carriers [123], as
well as increased serum BDNF after long-term rTMS [124]. However, studies of increased
BDNF after the administration of acute rTMS to depressed patients yield inconsistent
results [125–127].

Animal studies generally support this view, but they also reveal the greater complexity
of BDNF regulation. In the acute phases of stimulation, changes to BDNF expression are
frequency- and state-dependent. High (20 Hz), but not low (1 Hz), frequency rTMS at high
intensity increased BDNF expression in awake rats but reduced the BDNF in anesthetised
rats, highlighting the importance of neural activation state during stimulation [5,128]. After
repeated rTMS sessions over several weeks, BDNF expression increased in hippocampal
neuron cultures [129], in the brains of adult and aged rodents [116,130], and in those with
stroke or vascular dementia [131,132]. In addition, at lower stimulation intensity, the
BDNF is increased in the tectum and cortex in parallel with LI-rTMS-induced visual circuit
reorganisation [15,20].

Moreover, changes in the expression of other genes, including apoptosis and neurite
outgrowth genes, were observed following LI-rMS in vitro [22], consistent with neuron
survival and neurite branching. Finally, the upregulation of axon outgrowth and synap-
togenesis genes are induced only through LI-rTMS frequencies, inducing olivocerebellar
reinnervation [18].

3.4.2. Dendritic Spine Plasticity

Another long-term correlate of synaptic plasticity affected by magnetic stimulation
is the modification of dendritic spines, whose morphology changes with synaptic activity.
Consistent with this, 10 Hz rTMS to hippocampal slices altered dendritic spine size, in
agreement with its induction of LTP [58], and high-frequency LI-rTMS increased spines in
Purkinje neurons [133].
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3.4.3. Neurogenesis

Neurogenesis in the subventricular zone and the hippocampal dentate gyrus subgran-
ular zone is an important part of neural circuit plasticity [134]. High-frequency stimulation
(15–50 Hz) over a few weeks increases newborn neurons in these zones [135–137], including
promoting their differentiation [104,105] and survival [103,138]. How rTMS induces neuro-
genesis is unknown, although BDNF upregulation and/or excitatory neuronal activity are
both likely mechanisms [136,137].

These data indicate that magnetic brain stimulation induces a series of effects on
the brain from modulating neuron network excitability to altering neuronal intracellular
signalling and gene expression. These intrinsic modifications, e.g., synaptic plasticity
or BDNF upregulation, are known to have positive effects on injured and dysfunctional
brain systems and support the applicability of rTMS to treat brain pathology. Moreover,
many processes underlying rTMS/LI-rTMS are essentially similar whether the stimulation
is at high intensity or low intensity. Thus, while there is initial evidence that magnetic
stimulation can repair abnormal and damaged neural circuits, appropriate stimulation
parameters remain to be identified for each lesion type and region affected [18].

4. Relevance of Magnetic Stimulation to Neuropsychiatric Treatment

Extensive research has already been carried out on the application of magnetic stimu-
lation to treat human neuropathology [3–6,10] and the combined information from areas
as diverse as plant and insect biology, in vitro models, animal and human studies using
both high- and low-intensity stimulation show that common processes are involved. These
include Ca2+ signalling, IEG expression, BDNF upregulation, altered gene expression, and,
possibly, the activation of magnetoreceptors. Accordingly, because these cellular processes
are common to both types of magnetic stimulation, it seems likely that rTMS and LFMS/LI-
rTMS represent a continuum of the same treatment strategy, and thus information from
both fields should be combined to optimise the understanding, and therefore potential
application, of magnetic brain stimulation. In this context, we suggest that cortical and
subcortical low-intensity stimulation that surrounds an rTMS “hotspot” [28] contributes to
the behavioural effects of the high-intensity stimulus.

In addition, identifying cellular processes modified via magnetic stimulation—such as
Ca2+ signalling and ROS production, both of which are toxic in high concentrations—can
also explain how rTMS has the potential to induce adverse effects. Not only does longer
duration and higher-intensity stimulation provide no benefit for psychiatry patients [139]
and kill neurons in mice [129], but prolonged environmental exposure to weak magnetic
fields has also been associated with negative symptoms and even neurodegenerative
disease [140,141]. Therefore, rising concentrations of such molecules as nitric oxide or ROS
may provide suitable biomarkers for defining maximum safe stimulation protocols.

Lastly, since rTMS is already used clinically, if high- and low-intensity magnetic stimu-
lation processes form a continuum of neurostimulation activating common mechanisms,
is there a place for low-intensity magnetic stimulation beyond anecdotal interest? We
think so, given the fact that even focal LI-rTMS is sufficient to induce marked neurobio-
logical effects and that some of its mechanisms—through modified neuronal activity and
magnetoreceptor activation—have been identified. The greater range of stimulation param-
eters open to LI-rTMS, and consequently more refined protocols for different pathologies
and different brain areas, reinforce suggestions that it is a promising therapeutic tool [24]
beyond what has already been shown for depression [5,14,142,143]. Furthermore, using
low-intensity magnetic fields would avoid the need for high-voltage electric sources and
treatment restrictions in the hospital setting. However, despite what we presented in this
review, a systematic investigation of the effects of precisely defined stimulation parameters
on biological processes at the system, circuit, and cellular level is missing. A multidis-
ciplinary approach combining electronics, mathematical modelling, and neuroscience is
required to elucidate the most appropriate protocols for different brain regions and different
pathologies.
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Abbreviations

BDNF Brain-derived neurotrophic factor
BHFS Biomimetic high-frequency stimulation
CAMKII Calmodulin-dependent kinase II
CB Calbindin: a calcium-binding protein
CREB cAMP response element-binding protein
CRY Cryptochrome
EEG Electroencephalography
FAD Flavin adenosine dinucleotide
fMRI Functional magnetic resonance imaging
FSI Fast-spiking interneurons
GABA Gamma amino butyric acid
GAD Glutamic acid decarboxylase;
IEG Immediate-early gene
LFMS Low-field magnetic stimulation
LI-rTMS Low-intensity repetitive magnetic stimulation
LTP Long-term potentiation
M1 Primary motor cortex
MEP Motor evoked potential
NMDA receptors N-methyl-D-aspartate receptors are a subtype of glutamate receptors
PV Parvalbumin: a calcium-binding protein
RMT Resting-motor threshold
ROS Reactive oxygen species
TMS Transcranial magnetic stimulation
TBS Theta-burst stimulation; continuous (cTBS) or intermittent (iTBS)
VGCC Voltage-gated calcium channel
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