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� Genome-wide association study involved 1,483 biopsied NAFLD

cases and 17,781 controls.

� Main analysis shows genome-wide significance for PNPLA3,
TM6SF2, HSD17B13 and GCKR.

� Sub-analyses show significance near LEPR for NASH and near
PYGO1 for steatosis.

� Except for GCKR, the genome-wide significant signals were
replicated.
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Lay summary
Non-alcoholic fatty liver disease is a
common disease where excessive fat
accumulates in the liver and may
result in cirrhosis. To understand who
is at risk of developing this disease
and suffering liver damage, we
undertook a genetic study to compare
the genetic profiles of people suffering
from fatty liver disease with genetic
profiles seen in the general pop-
ulation. We found that particular
sequences in 4 different areas of the
human genome were seen at different
frequencies in the fatty liver disease
cases. These sequences may help
predict an individual's risk of devel-
oping advanced disease. Some genes
where these sequences are located
may also be good targets for future
drug treatments.
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alcoholic fatty liver disease (NAFLD) remain incompletely un-
derstood. To date, most genome-wide association studies
(GWASs) have adopted radiologically assessed hepatic triglycer-
ide content as the reference phenotype and so cannot address
steatohepatitis or fibrosis. We describe a GWAS encompassing
the full spectrum of histologically characterised NAFLD.
Methods: The GWAS involved 1,483 European NAFLD cases and
17,781 genetically matched controls. A replication cohort of 559
NAFLD cases and 945 controls was genotyped to confirm signals
showing genome-wide or close to genome-wide significance.
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values <−5 × 10−8 at 4 locations (chromosome [chr] 2 GCKR/
C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together
with 2 other signals with p <1 × 10−7 (chr1 near LEPR and chr8
near IDO2/TC1). Case-only analysis of quantitative traits showed
that the PNPLA3 signal (rs738409) had genome-wide significance
for steatosis, fibrosis and NAFLD activity score and a new signal
(PYGO1 rs62021874) had close to genome-wide significance for
steatosis (p = 8.2 × 10−8). Subgroup case-control analysis for
NASH confirmed the PNPLA3 signal. The chr1 LEPR single
nucleotide polymorphism also showed genome-wide signifi-
cance for this phenotype. Considering the subgroup with
advanced fibrosis (>−F3), the signals on chr2, chr19 and chr22
maintained their genome-wide significance. Except for GCKR/
C2ORF16, the genome-wide significance signals were replicated.
Conclusions: This study confirms PNPLA3 as a risk factor for the
full histological spectrum of NAFLD at genome-wide significance
levels, with important contributions from TM6SF2 and HSD17B13.
PYGO1 is a novel steatosis modifier, suggesting that Wnt sig-
nalling pathways may be relevant in NAFLD pathogenesis.
Lay summary: Non-alcoholic fatty liver disease is a common
disease where excessive fat accumulates in the liver and may
020 vol. 73 j 505–515
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result in cirrhosis. To understand who is at risk of developing this
disease and suffering liver damage, we undertook a genetic study
to compare the genetic profiles of people suffering from fatty
liver disease with genetic profiles seen in the general population.
We found that particular sequences in 4 different areas of the
human genome were seen at different frequencies in the fatty
liver disease cases. These sequences may help predict an indi-
vidual's risk of developing advanced disease. Some genes where
these sequences are located may also be good targets for future
drug treatments.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Non-alcoholic fatty liver disease (NAFLD) represents a spectrum
of progressive liver disease characterised by increased hepatic
triglyceride content (HTGC) in the absence of excess alcohol
consumption.1 NAFLD encompasses steatosis (non-alcoholic fatty
liver [NAFL]), steatohepatitis (non-alcoholic steatohepatitis
[NASH]), fibrosis and ultimately cirrhosis. It is strongly associated
with features of the metabolic syndrome (obesity, type 2 dia-
betes mellitus [T2DM] and dyslipidaemia).1 Although common,
affecting approximately 25% of the global adult population, only
a minority of patients with NAFL develop NASH, progress to
significant fibrosis or experience associated morbidity.1,2 NAFLD
is best considered a complex trait where disease phenotype re-
sults from environmental exposures acting on a susceptible
polygenic background comprising multiple independent
modifiers.3

Genome-wide association studies (GWASs) have contributed
greatly to our understanding of the genetic contribution to
NAFLD pathogenesis and variability of prognosis.3 Amongst the
loci identified, the non-synonymous single nucleotide poly-
morphism (SNP) in PNPLA3 (phospholipase domain-containing
3) (rs738409),4,5 and more recently, a non-synonymous SNP in
TM6SF2 (transmembrane 6 superfamily member 2)
(rs58542926), originally ascribed to the neighbouring NCAN
gene,5 have been associated with 1H-MRS quantified HTGC.6

Both genetic associations have been replicated in further
studies where they have been associated not only with steatosis,
but also with clinically relevant factors including grade of stea-
tohepatitis and stage of hepatic fibrosis/cirrhosis7,8 and, in the
case of PNPLA3, with the development of NAFLD-related hepa-
tocellular carcinoma.9,10 A number of other associations, with
LYPLAL1, GCKR, and PPP1R3B, have been reported by GWAS
comprising relatively few histologically characterised cases and
are currently less robustly replicated.3,5 A recent study using
exome sequencing11 confirmed a previously reported association
of raised alanine aminotransferase (ALT) with a HSD17B13 SNP
(rs6834314)12 in a general patient population and then demon-
strated that this polymorphism was associated with NAFLD. Two
further studies broadly confirmed this association.13,14

To date, most adequately powered GWASs relevant to NAFLD
have addressed either radiologically determined HTGC4,6,12 or
clinical biochemistry parameters such as ALT.12,15 They have
therefore been unable to address the more clinically relevant
phenotypes of steatohepatitis grade or fibrosis stage (reviewed3).
One GWAS has assessed a large number of histologically char-
acterised patients, reporting associations with both PNPLA3 and
with chromosome 19 close to TM6SF2.16 These patients, however,
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were recruited from bariatric surgery programmes with dietary
restrictions prior to surgery and wedge biopsy collection which
may affect liver histology; in addition such patients tend to be
younger and have a higher average BMI than NAFLD cases more
generally.17 The current study aims to identify genetic modifiers
of steatohepatitis and fibrosis, attaining genome-wide levels of
statistical significance by using a large internationally derived
cohort of patients (with histologically characterised NAFLD and
representing all stages of the disease). We now report the largest
histology-based NAFLD GWAS to date in a cohort of 1,483 Eu-
ropean patients exhibiting the full spectrum of biopsy-proven
NAFLD.

Materials and methods
NAFLD cases
For the main GWAS study, patients were recruited from clinics at
several leading European tertiary liver centres (see
supplementary methods). Additional cases for replication were
recruited at Foundation IRCCS Ca' Granda Ospedale Maggiore
Policlinico, Milan, Italy. The study had the necessary ethical ap-
provals from the relevant national/institutional review boards
(see supplementary methods) and all participants provided
informed consent. All cases were unrelated patients that had
undergone a liver biopsy as part of the routine diagnostic
workup for presumed NAFLD having originally been identified
due to abnormal biochemical tests (ALT and/or gamma-
glutamyltransferase) and/or an ultrasonographically detected
bright liver, associated with features of the metabolic syndrome;
or having abnormal biochemical tests (ALT and/or gamma-
glutamyltransferase) and macroscopic appearances of a stea-
totic liver at the time of bariatric surgery. Full details of inclusion/
exclusion criteria are provided in the supplementary methods.

Controls
We used general population samples with existing genome-wide
genotype data as study controls. For the GWAS, we selected
European ancestry controls (n = 17,781) from multiple sources as
described in the supplementary methods. To replicate GWAS
associations, we used an Italian control cohort (n = 945) con-
sisting of controls described previously18 with some newly
collected individuals. Any that were found to match the Hyper-
genes controls already used in our discovery GWAS were
excluded.

Histology
Liver biopsy specimens (at least 1.6 cm length and ~1 mm
diameter) were formalin-fixed and paraffin-embedded. Tissue
sections (5 lm-thick) were routinely stained with haematoxylin
and eosin and trichrome stain to visualise collagen. All cases
were recruited at tertiary centres where liver biopsies were
routinely assessed according to accepted criteria by experienced
liver pathologists and scored using the well validated NIDDK
NASH-CRN system.19 To ensure optimum data quality, biopsies
were retrieved from archival storage where possible (78% of
cases) and scored centrally by an expert liver pathologist from
the FLIP/EPoS central pathology team (DT, ADB, PB), as described
in detail previously.20 Where archival samples were unavailable
for central reading, the local liver pathologist's scores were used.
To maximise insights into the specific pathophysiological pro-
cesses that occur as NAFLD progresses, 6 phenotypes of interest
were studied: degree of steatosis (S0-3); degree of ballooning
020 vol. 73 j 505–515
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Table 1. Characteristics of the cohort (n = 1,483).

Patient demographic and clinical characteristics

Age (years) (mean ± SD) 50.1 ± 13.0
Sex (% female) 47.30%
BMI median, kg/m2 (IQR) 35.19 (29.1–39.7)
T2DM, n (%) 593(40.0)*

Histologic characteristics

Steatosis, n (%)
0 53 (3.6)
1 483 (32.6)
2 541 (36.5)
3 390 (26.3)
Missing 16 (1.1)

NAS score, n (%),
0 19 (1.3)
1 138 (9.3)
2 225 (15.2)
3 258 (17.4)
4 271 (18.3)
5 283 (19.1)
6 178 (12.0)
7 80 (5.4)
8 15 (1.0)
Missing 16 (1.1)

Disease activity score, n (%)
0 255 (17.2)
1 285 (19.2)
2 418 (28.2)
3 308 (20.8)
4 166 (11.2)
5 35 (2.4)
Missing 16 (1.1)

NASH, n (%)
Yes 836 (56.4)
No 631 (42.5)
Missing 16 (1.1)

Fibrosis, n (%)
0 432 (29.1)
1 350 (23.6)
2 312 (21.0)
3 240 (16.2)
4 147 (9.9)
Missing 2 (0.13)

NAS, non-alcoholic fatty liver disease activity score; NASH, non-alcoholic steatohe-
patitis; T2DM, type 2 diabetes mellitus.
*For T2DM, 5 (0.33%) missing.
(B0-2); degree of lobular inflammation (I0-3); severity of NASH
activity (calculated as ‘disease activity’ = hepatocyte ballooning
(B0-2) + lobular inflammation (I0-3) and also an overall NAFLD
activity score ‘NAS’ combining all 3 parameters (NAS0-8)); and
stage of fibrosis (F0-4).

Genotyping
DNA was prepared from blood samples collected with EDTA as
described previously.21 GWAS genotyping was carried out in 2
phases. For phase I, genotyping was performed initially using the
Illumina OmniExpress BeadChip by Edinburgh Clinical Research
Centre. To obtain data for additional exomic SNPs, further gen-
otyping of these samples was performed using the Illumina
HumanCoreExome BeadChip (Aros, Denmark). Genome-wide
genotyping of the phase II cases was performed using the Illu-
mina OmniExpressExome BeadChip by the Edinburgh Clinical
Research Centre. A total of 721,078 markers shared across the
batches passed quality control (see supplementary methods).
SNP imputation was performed as described in detail in the
supplementary methods.

The top associated SNPs were further confirmed in replication
cases using TaqMan� SNP genotyping assays (ThermoFisher
Scientific, Waltham, MA) in accordance with the manufacturer's
recommendations. If an assay could not be designed for the SNP
showing the strongest signal for the region, a suitable proxy SNP
was chosen (https://ldlink.nci.nih.gov/?tab = home).

RNA sequencing and in vitro studies
RNA sequencing
RNA sequencing data on samples from 206 liver biopsies from
patients with NAFLD, as described elsewhere (Govaere et al.,
submitted), was used to further investigate the functional sig-
nificance of HSD17B13 variants.

Bioluminescent retinol dehydrogenase assays for HSD17B13
Retinol (75 lM; Sigma-Aldrich, St. Louis, Missouri, USA) was
incubated with recombinant HSD17B13 (TP313132; Origene,
Maryland, USA) for 1 h at room temperature in the presence of
0.5 mM NAD in 200 mM Tris-HCl, pH7.5. As a control, the known
HSD17B13 substrate b-estradiol (75 lM) was incubated in par-
allel assays. NADH production was measured by Bioluminescent
NAD/NADH-GloTM Assay (Promega, Wisconsin, USA) according to
manufacturer's guidelines.

Statistical analysis
We used principal component analysis (PCA) of the genome-
wide genotype data to investigate the ancestry of the cases and
controls; this showed the expected north/south variation
commonly seen across Europe22 but, importantly, suggested
adequate matching between cases and controls (Fig S1A and Fig
S1B). Case/control analysis and quantitative trait analysis of
GWAS data was performed as described in detail in the
supplementary methods, using a linear mixed modelling
approach with the incorporation of the top 5 principal compo-
nents as covariates to adjust for any population stratification.
Examination of the resulting genome-wide QQ plots and
genomic control inflation factors (k)23 (see Results) indicated
that this adjustment adequately corrected for any population
differences.

Significance of findings in the replication cohort was assessed
by calculation of odds ratios, 95% confidence intervals and
Journal of Hepatology 2
p values by univariate analysis and multiple logistic regression
using PLINK.24

Results
Clinical characteristics of the cases
Clinical details of the NAFLD cases included in the main GWAS
are summarised in Table 1. The replication cohort details are
shown in Table S1. All cases in both cohorts were of white Eu-
ropean ethnicity. The percentage with advanced fibrosis (stage
F3 or F4) was similar in both cohorts (p >0.05) but other pa-
rameters including age, BMI, T2DM, sex and incidence of NASH
were different.

Overall NAFLD case-control analysis
The overall NAFLD case-control analysis is presented as a Man-
hattan plot (Fig 1). PCA scattergrams for cases and controls are
shown in Fig S1 and the QQ plot of the association results in
Fig S2. As summarised in Table 2, 4 different regions (on
020 vol. 73 j 505–515 507
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Fig. 1. Manhattan plot from imputed GWAS case-control analysis. Included
1,483 NAFLD cases and 17,781 controls. Threshold for genome-wide signifi-
cance was taken to be 5 × 10−8. The first 5 principal components were included
as covariates. Genome-wide significant signals are indicated by blue arrows
with those showing p in the range 1 × 10−7 to 5 × 10−8 shown by grey arrows.
GWAS, genome-wide association study; NAFLD, non-alcoholic fatty liver dis-
ease. (This figure appears in color on the web.)
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chromosomes 2, 4, 19 and 22) passed conventional genome-wide
significance (p <5 × 10−8) with 2 other regions (on chromosomes
1 and 8) showing p values <1 × 10−7 (for LocusZoom plots see Fig
S3). Data presented in Fig. 1 were obtained from imputation
analysis. Primary case-control analysis without imputation
showed similar signals in chromosomes 2, 4, 19 and 22 only but
no additional signals at p <1 × 10−7 (Fig. S4 and Table S2).
Correction of the imputed data for sex in addition to the first 5
principal components used in the main analyses did not result in
large changes in p value (Table S3). Together, these results point
to PNPLA3, TM6SF2, HSD17B13 and the GCKR/C2ORF16 region
being the major risk factors for disease susceptibility with
borderline signals for chromosome 1 near LEPR and for chro-
mosome 8 adjacent to IDO2 and TC1(C8orf4). In view of the well-
established strong association of PNPLA3 rs738409 with NAFLD,
additional analysis using a model conditioning on this SNP was
Table 2. Summary of top findings in the NAFLD case-control analysis.

SNP Chromosome A1

rs12077210* 1 T
rs1260326* 2 T
rs1919127* 2 C
rs2068834 2 C
rs9992651 4 A
rs13118664 4 T
rs139648192 8 T
rs58542926* 19 T
rs8107974 19 T
rs17216588 19 T
rs10500212 19 T
rs738409* 22 G

7,412,561 imputed SNPs included; total number of cases and controls = 19,264. ORs wer
from back-transformation of FaST-LMM p-values and PLINK ORs.
OR, odds ratio; SNP, single nucleotide polymorphism.
*Denotes validated SNP following imputation. The first 5 principal components were in
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performed. This analysis gave broadly similar findings to those
summarised in Table 2 with no new signals (data not shown).

Quantitative trait analysis of NAFLD phenotypes
Case-only analyses assessing relevance of genotype to grade of
steatosis (assessed as predefined ‘disease activity’ and ‘NAS’) and
stage of fibrosis were also performed using the imputed data.
Results of these analyses are shown in Fig. 2 with the most sig-
nificant signals summarised in Table 3 (for QQ and LocusZoom
plots see Figs. S5 and S6). The primary data without imputation
are summarised in Fig. S7 and Table S4. For steatosis, NAS and
fibrosis as quantitative traits, signals with p <10−10 were detected
for PNPLA3 rs738409 and other SNPs in this region of chromo-
some 22. For steatosis, a signal with p = 8.2 × 10−8 on chromo-
some 15 (rs62021874 in PYGO1) was also detected (Table 3). This
variant is in complete linkage disequilibrium with a missense
variant rs11858624 which also showed a signal close to signifi-
cance (p = 1.7 × 10−7). No signals reached conventional genome-
wide significance (p <5 × 10−8) for disease activity score alone or
when ballooning or inflammation were considered as individual
traits (Fig. S8). The effect of correction of the imputed data for
clinical covariates was also assessed for each trait (Table S5),
giving results very similar to those obtained originally.

To further assess the relevance of genotype to particular
NAFLD phenotypes, the contribution to NAFLD progression of the
4 major genetic risk factors identified in the case-control GWAS
was assessed by calculating a combined genetic risk score based
on summing the allele count (with no weighting by effect size)
for PNPLA3 rs738409, TM6SF2 rs58542926, GCKR rs1260326 and
HSD17B13 rs9992651 and relating the resulting score to grade of
steatosis, NAS and fibrosis stage (Fig. S9). Trend tests by linear
regression showed that there was a statistically significant rela-
tionship between the value of the semi-quantitative steatosis/
NAS/fibrosis scores and the value of the genetic risk score for all
3 phenotypes, with the most significant relationship (p = 4.68 ×
10−13) detected for fibrosis stage (Fig S9). Those with a risk score
of 2 (n = 216) had a mean fibrosis score of 1.27 (SE 0.08)
compared with 1.94 (SE 0.09) for a risk score of 5 (n = 260).

Additional subgroup case-control analysis
Since both steatohepatitis and advanced fibrosis are clinically
important phenotypes in NAFLD,25 additional case-control ana-
lyses were undertaken including cases with NASH only (n = 836)
Gene p value OR (95% CI)

LEPR 5.62E−08 1.484 (1.287–1.711)
GCKR 1.06E−10 1.278 (1.186–1.377)
C2orf16 5.61E−10 1.290 (1.190–1.398)
ZNF512 8.49E−11 1.302 (1.202–1.410)
HSD17B13 2.78E−08 0.744 (0.671–0.826)
HSD17B13 1.41E−08 0.740 (0.667–0.821)
- 5.20E−08 1.538 (1.317–1.796)
TM6SF2 2.05E−11 1.609 (1.400–1.849)
SUGP1 2.58E−12 1.632 (1.423–1.872)
- 7.25E−14 1.612 (1.423–1.827)
PBX4 3.40E−12 1.549 (1.369–1.752)
PNPLA3 1.45E−49 1.827 (1.687–1.979)

e obtained from logistic regression in PLINK and confidence intervals were calculated

cluded as covariates.

020 vol. 73 j 505–515
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Fig. 2. Manhattan plots from imputed GWAS analysis on the basis of quantitative traits. Included 1,483 NAFLD cases. Threshold for genome-wide significance
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range 1 × 10−7 to 5 × 10−8 shown by grey arrows. GWAS, genome-wide association study; NAFLD, non-alcoholic fatty liver disease; NAS, NAFLD activity score. (This
figure appears in color on the web.)
and fibrosis stage F3 and F4 only (n = 386). The findings for both
phenotypes are summarised in Fig. 3 and Table 4 (for QQ and
LocusZoom plots see Fig. S10 and S11). For NASH, signals
showing p values of <5 × 10−8 were detected for chromosome 1
(LEPR) and chromosome 22 (PNPLA3) (Table 4). For LEPR
rs12077210, the p value of 4.4 × 10−9 was lower for NASH than for
NAFLD overall (Table 2). A second novel chromosome 1 signal
(rs80084600) with p = 7.1 × 10−8 located in an intergenic region
downstream of phospholipase A2 group IVA (PLA2G4A) was also
detected. The SNPs in chromosomes 2, 4 and 19 that were sig-
nificant in the main case-control analysis showed p values in the
region of 2 × 10−7 so came close to significance for NASH. For
fibrosis stages F3 and F4, chromosome 2, 19 and 22 signals
showing p values of <5 × 10−8 were detected but the signals from
the main case-control analysis detected previously for chromo-
somes 1, 8 and 4 showed p values >1 × 10−7. For HSD17B13
rs9992651 (chromosome 4), the p value was 1.16 × 10−5.

Replication of GWAS signals and investigation of additional
possible NAFLD risk factors
A replication cohort of 559 Italian NAFLD cases was assembled
from a different centre to the discovery cohort. Allele frequencies
for selected SNPs in these cases were compared with those for
Italian controls. Findings for 8 separate loci giving signals with
Journal of Hepatology 2
p <1 × 10−7 in either the main GWAS or the quantitative trait
studies are summarised in Table 5. The PNPLA3, TM6SF2 and
HSD17B13 signals seen in the main GWAS replicated (p <0.05) but
we found only borderline effects or no significance for 4 other
loci. However, the PYGO1 signal, which was associated with
steatosis by quantitative trait analysis, showed a significant as-
sociation in the analysis in the same protective direction as
observed for steatosis. The GCKR/C2Orf16 signal did not replicate
either in the main replication cohort (Table 5) or in a subgroup of
replication cases (n = 134) with fibrosis stage 3 or 4. Due to the
relatively low number of NASH cases in the replication cohort, we
did not seek to replicate the novel rs80084600 signal seen for this
phenotype. Multiple logistic regression analysis with adjustment
for PNPLA3 rs738409 and TM6SF2 rs58542926 (Table 5) generated
similar findings to the univariate analysis, apart from small de-
creases in p values for the HSD17B13 and PYGO1 signals.

Results for selected variants reported recently by others as
risk factors for NAFLD but which had not shown p values of <1 ×
10−7 in the current GWAS were also extracted from the main
case-control analysis. Only rs2642438 in MARC1 (mitochondrial
amidoxime-reducing component 1) and rs28929474 in AAT
(alpha1-antitrypsin) showed p values <0.05 (Table S6). For
rs2642438, the p value was 6 × 10−6 with a protective odds ratio
of 0.816, in line with that reported previously.26
020 vol. 73 j 505–515 509



Table 3. Summary of top findings in quantitative trait analysis.

SNP Chromosome A1 Gene Phenotype n p value
(no clinical covariates)

Beta (95% CI)

rs738409* 22 G PNPLA3 Steatosis 1,469 2.37E−09 0.183 (0.123–0.243)
rs62021874 15 T PYGO1 Steatosis 1,469 8.16E−08 −0.303 (−0.414 to −0.192)
rs11858624* 15 T PYGO1 Steatosis 1,469 1.64E−07 −0.295 (−0.406 to −0.185)
rs738409* 22 G PNPLA3 Fibrosis 1,481 7.58E−11 0.318 (0.222–0.414)
rs738409* 22 G PNPLA3 NAS 1,467 8.78E−09 0.364 (0.240–0.488)

Results for 7,900,223 imputed SNPs. First 5 principal components were included as covariates. ORs were obtained from logistic regression in PLINK and confidence intervals
were calculated from back-transformation of FaST-LMM p-values and PLINK ORs.
SNP, single nucleotide polymorphism.
*Validated directly by genotyping.
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Fig. 3. Manhattan plots from imputed GWAS case-control analysis of NASH
and severe fibrosis (F3/F4). Threshold for genome-wide significance was
taken to be 5 × 10−8. The first 5 principal components were included as
covariates. Panel A. NASH analysis. 836 cases and 17,781 controls. Panel B. F3/
F4 analysis. 386 cases and 17,781 controls. Genome-wide significant signals are
indicated by blue arrows with those showing p in the range 1 × 10−7 to 5 × 10−8

shown by grey arrows. GWAS, genome-wide association study; NASH, non-
alcoholic steatohepatitis. (This figure appears in color on the web.)
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EQTL analysis and studies on expression of GWAS signals in
liver biopsies from different NAFLD stages
While the signals seen for NAFLD relating to PNPLA3, TM6SF2 and
GCKR are already well-established risk factors for this disease
from population studies4–6,27 and studies on functional signifi-
cance,28–30 evidence for functional significance for the other
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signals is limited. The relationship of rs9992651 and rs72613567
in HSD17B13 with gene expression was evaluated by sequencing
RNA samples from liver biopsies. Three different HSD17B13
transcripts were detected (Fig. S12), including a full-length
transcript with all 7 exons, a variant with exon 2 deleted and a
variant without exon 6. Based on genotype for rs9992651 from
the RNA sequencing data, the variant without exon 6 was
generally not detectable in homozygotes for the reference G
allele but was expressed at a higher level in homozygotes for the
minor A allele and also heterozygotes. The ability of recombinant
HSD17B13 to oxidise retinol13 was also confirmed (Fig. S13).

Other loci showing associations in the case-control studies
including rs12077210 in LEPR (intronic), rs139648192 on chro-
mosome 8 and rs80084600 on chromosome 1 could not be
investigated by RNA sequencing due to their locations. The
borderline significant rs11858624 in PYGO1 (Table 3) is a
missense variant (P299H). Analysis with data obtained from
GTEx (https://gtexportal.org/home/) indicated no difference in
RNA expression between rs11858624 homozygous wild-types
and heterozygotes in liver tissue (Fig. S14).
Discussion
This study is the largest GWAS to date on histologically charac-
terised NAFLD enrolled in a hepatology setting that addresses the
full disease spectrum from steatosis to cirrhosis. This contrasts
with the only previous GWAS involving more than 1,000 histo-
logically characterised cases, which was in a predominantly fe-
male bariatric cohort with extreme obesity but relatively mild
NAFLD.16 Furthermore, that study only considered grade of
steatosis, not the more clinically relevant phenotypes of steato-
hepatitis or fibrosis.16 The current study confirms the well-
established signals in PNPLA3, TM6SF2 and GCKR, together with
the more recently reported HSD17B13 signal.11 The findings for
GCKR are in line with several candidate gene studies on NAFLD
however, this is the first GWAS study reporting this 4 gene
combination as NAFLD risk modifiers.

HSD17B13 has been reported to be relevant to NAFLD with
several variants associated with decreased risk.11,13 The current
study found a protective effect against NAFLD generally, with
the strongest effect related to the SNPs rs9992651 and
rs13118664. These SNPs are in non-coding regions of HSD17B13
but are in strong linkage disequilibrium with rs72613567,
which is associated with a single base-pair insertion that has
been suggested to be of functional significance in relation to
RNA splicing.11 The current study confirms that an HSD17B13
isoform lacking exon 6 is associated with rs9992651 and a
protective effect against NAFLD; consistent with a report
020 vol. 73 j 505–515

https://gtexportal.org/home/


Table 4. Summary of top findings from case-control analysis for NAFLD cases with NASH or with fibrosis scores F3 and F4 only.

SNP Chromosome Gene p value (no clinical covariates) OR (95% CI)

NASH
rs12077210 1 LEPR 4.42E−09 1.671 (1.390–2.008)
rs80084600 1 – 7.08E−08 1.977 (1.543–2.533)
rs1260326 2 GCKR 3.78E−07 1.302 (1.176–1.442)
rs9992651 4 HSD17B13 2.92E−07 0.718 (0.633–0.815)
rs13118664 4 HSD17B13 2.37E−07 0.716 (0.631–0.813)
rs58542926 19 TM6SF2 1.90E−07 1.606 (1.344–1.919)
rs8107974 19 SUGP1 1.36E−07 1.609 (1.348–1.920)
rs738409 22 PNPLA3 2.58E−44 2.053 (1.856–2.271)

Fibrosis F3/F4
rs1260326 2 GCKR 4.07E−10 1.678 (1.427–1.974)
rs56255430 19 – 2.11E−10 1.863 (1.538–2.257)
rs738409 22 PNPLA3 5.66E−31 2.374 (2.051–2.748)

N = 18,167 (Cases = 386, Controls = 17,781), covariate model includes first 5 principal components. ORs were obtained from logistic regression in PLINK and confidence intervals
were calculated from back-transformation of FaST-LMM p-values and PLINK ORs.
NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; OR, odds ratio; SNP, single nucleotide polymorphism.

Table 5. Genotype frequencies in replication cohort.

Gene SNP Case frequency Control frequency

Univariate analysis

Multiple logistic regression
adjusting for PNPLA3
rs738409 and TM6SF2

rs58542926

Odds ratio p value Odds ratio p value

LEPR rs12077210 0.05877 0.05983 0.98 (0.71–1.35) 0.91 0.96 (0.69–1.34) 0.81
GCKR rs1260326 0.5407 0.5305 1.04 (0.90–1.21) 0.59 1.08 (0.92–1.27) 0.36
C2ORF16 rs1919127 0.382 0.3566 1.12 (0.96–1.30) 0.16 1.1 (0.94–1.29) 0.25
HSD17B13 rs72613567 0.2101 0.2462 0.81 (0.68–0.97) 0.025 0.78 (0.64–0.95) 0.013
IDO2 /TC1(C8orf4) rs79137099 0.03789 0.03891 0.97 (0.66–1.44) 0.89 1.05 (0.6–1.59) 0.83
PYGO1 rs11852624 0.05144 0.0709 0.71 (0.52–0.98) 0.035 0.67 (0.48–0.96) 0.027
TM6SF2 rs58542926 0.08813 0.05027 1.83 (1.36–2.45) 4.63E−05 n.a. n.a.
PNPLA3 rs738409 0.4436 0.2754 2.10 (1.80–2.45) 6.60E−21 n.a. n.a.

Significance of findings was assessed by calculation of odds ratios, 95% confidence intervals and p values by univariate analysis (chi-square test) and multiple logistic regression
using PLINK.
SNP, single nucleotide polymorphism.
showing a similar splicing pattern with the SNPs rs6834314
and rs7261356713 but differing from that described in the
original report.11 Consistent with that recent study,13 we also
show the HSD17B13 gene product possesses retinol dehydro-
genase activity. Retinol metabolism is a complex multistep
process involving a number of different enzymes.31 While it
remains unclear whether loss of HSD17B13 retinol dehydro-
genase activity can explain the protective effect of the variant,
it is likely that enzyme activity in the reverse direction
involving retinal reduction to retinol could also be impaired
since these enzymes operate in both oxidising and reducing
directions.31 Thus, increased levels of retinal and the biologi-
cally active retinoic acid isomers could occur in those carrying
HSD17B13 variants. This effect might protect against NAFLD
development, in line with recent evidence that 13-cis and all-
trans retinoic acid are found at significantly decreased levels in
human livers with NAFLD.32 A clear trend towards a protective
effect against advanced hepatic fibrosis was observed, although
this did not reach genome-wide significance levels (p value
approx. 10−5). Given that the strength of association with NASH
was stronger (p values approx. 2 × 10−7), it may be that the
protective effect of HSD17B13 is more relevant to development
of steatohepatitis than progression of fibrosis.

The GCKR signal in both the main GWAS and advanced
fibrosis-only analysis identified rs1260326 as the most signifi-
cant SNP within this region, with T-variant carriage increasing
Journal of Hepatology 2
NAFLD risk. This common missense variant has been studied
widely both as a risk factor for T2DM and for NAFLD. An up-
stream SNP, rs780094, in strong linkage disequilibrium with
rs1260326, has also been shown to be a NAFLD risk factor in
candidate gene studies.33 The relationship between both SNPs
and susceptibility to NAFLD and T2DM is complex. Rs1260326 is
well established to have a protective effect against T2DM,
probably due to the GCKR variant showing weaker interaction
with glucokinase compared with the wild-type.34 This promotes
hepatic glucose metabolism, decreasing plasma glucose levels,
and is associated with an increased risk of NAFLD.33 The un-
derlying mechanism is unclear but rs1260326 is associated with
higher levels of circulating lactate,35 presumably due to
increased glucose metabolism via glycolysis. The inability to
replicate the GCKR association was slightly surprising but may
reflect the overall lower severity of NAFLD in the replication
cohort. There are a relatively large number of reports of a sig-
nificant increased risk for GCKR variants in NAFLD generally,
especially for paediatric cases.27,36,37

A further interesting finding relates to a signal on chromo-
some 15 (rs11858624) that was close to genome-wide signifi-
cance for steatosis and was validated in the replication study. The
gene involved is PYGO1, which encodes a transcription factor that
contributes to the Wnt signalling pathway.38 The exact impact of
PYGO1 in Wnt signalling remains unclear, though a homologue
PYGO2 appears to contribute to several physiological pathways
020 vol. 73 j 505–515 511
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including increased adiposity and impaired glucose tolerance in
mice lacking this protein.39

Signals on chromosomes 1 and 8 were detected in the case-
control analysis, however these just failed to meet genome-
wide significance and did not replicate. The chromosome 1
SNP was genome-wide significant in the NASH-only case-control
analysis and lies in the region encoding LEPROT and LEPR; both
genes share the same promoter and first 2 exons but encode
separate proteins. This association is notable given that db/db
mice, carrying a spontaneous loss of function mutation in the
OB-Rb leptin receptor, have been widely used to model NAFLD.40

There are also some previous reports from candidate gene
studies that LEPR variants are risk factors for NAFLD but the
current variant lies considerably upstream of these previously
studied variants.41,42 The signal on chromosome 8 relates to an
area between IDO2 and TC1. Of potential relevance to NAFLD,
both genes have roles in modulating inflammation with IDO2
inducible by lipopolysaccharide and contributing to immune
function43 while TC1 modulates NF-jB signalling. Further
investigation of these variants is needed. The subgroup analysis
on NASH grade showed a second novel chromosome 1 signal
separate from LEPR. The p value for NASH, though not genome-
wide significant at 7 × 10−8, was considerably lower than that
seen for this variant in the main case-control study (0.0049). The
variant is in an intergenic region but is downstream of PLA2G4A,
which shows elevated expression in adipose tissue in obesity and
may contribute to T2DM susceptibility.44

The most significant associations in this study were obtained
for NAFLD in the binary case-control design. The quantitative
trait analyses has shown a clear association for PNPLA3 rs738409
with steatosis, NAS score and fibrosis, which is generally in line
with previous reports in NAFLD and alcohol-related liver dis-
ease.45 However, there were no significant associations of any
genotype with disease activity when considered separately from
steatosis. The failure to see more specific associations for TM6SF2
and HSD17B13 with other histological traits similar to those re-
ported previously in candidate gene studies may reflect the
complex nature of the histological disease phenotype8,11 and also
limited statistical power. In contrast to quantification of HTGC by
imaging techniques, which provides a highly reproducible
quantitative measure of a single biochemical entity, the histo-
logical scoring systems used to evaluate steatohepatitis and
fibrosis provide only non-linear, semi-quantitative or categorical
assessments of disease and are subject to intra- and inter-
observer variation. Indeed, clear diagnostic consensus
regarding the presence or absence of steatohepatitis among pa-
thologists is not always feasible.19,20,46 Thus, the conduct of a
histology-based GWAS, whilst addressing the most clinically
relevant phenotypic characteristics, is technically more chal-
lenging. We have addressed this challenge by using expert liver
pathologists to provide histological diagnosis and scoring. The
reduced statistical power due to the limited number of cases in
particular histological categories, may limit the number of vari-
ants that attain the genome-wide significance threshold to only
the most strongly associated, such as the PNPLA3 variant. Despite
these limitations, disease severity was correlated with genetic
risk score based on the most significant case-control GWAS sig-
nals, statistically significant relationships for association of the
risk score with increasing degree of steatosis, grade of steato-
hepatitis and fibrosis stage were found, which suggests that a
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risk score approach may be of value prognostically although
further studies on this are needed.

Despite a fairly extensive supporting literature, we and
others47 have not found MBOAT7 to be a risk factor for NAFLD.
Notably, no NAFLD focussed GWAS to date has reported a sig-
nificant association with MBOAT7. Other signals for NAFLD re-
ported by others previously including in PPP1R3B,5 AAT48 and
interferon lambda 449 also failed to show genome-wide signifi-
cance in the case-control analysis. This is not surprising in the
case of AAT as patients known to have this condition were spe-
cifically excluded from the cohort, limiting the minor allele fre-
quency substantially. However, the gene MARC1, where a non-
synonymous variant has been reported to protect against both
“all cause” cirrhosis and fatty liver disease,26 showed a similar
protective effect against NAFLD with a low p value, though this
did not attain genome-wide significance. This gene encodes the
mitochondrial amidoxime-reducing component enzyme which
can reduce trimethylamine N-oxide (TMAO) generated by
oxidation of trimethylamine. Elevated plasma TMAO has been
suggested to be a risk factor for cardiovascular disease and T2DM
so could also be relevant to NAFLD.50

There are several limitations to our study. NAFLD is a
common phenotype in the general population, affecting up to
25% of individuals in Europe.51 Our population controls cannot
therefore be considered to be entirely free of NAFLD and there
is no way of investigating this further. Our use of large
numbers of controls with genetic matching helps mitigate the
risk that this will lead to an underestimate of genuine genetic
risk factors but does not eliminate it entirely. We undertook
some “case only” studies, which included a small group of
patients with biochemical evidence of NAFLD but liver bi-
opsies showing steatosis below the normal disease definition,
to further mitigate this. It is generally accepted that histo-
logical interpretation of liver biopsies is subject to some inter-
observer variation, even amongst experienced hepatopathol-
ogists.19,52 This is therefore inherent to a histopathological
phenotype. However, all data used in the analysis were
generated by highly experienced liver pathologists based in
tertiary centres and, to further mitigate against this issue, the
majority of liver biopsies were scored by a member of the
project's central pathology team. Finally, our replication
cohort was not perfectly matched with our discovery cohort in
terms of disease severity and factors such as sex, T2DM and
BMI. This is due, at least in part, to this being from a single
centre from Southern Europe where NAFLD risk factors such as
diet may be different to those further north in the continent,
resulting in lower obesity rates within the NAFLD popula-
tion.53 We were unfortunately not able to identify another
suitable European replication cohort involving patients who
had undergone liver biopsy following referral to a hepatology
clinic.

In conclusion, this relatively large GWAS of histologically
characterised NAFLD cases has confirmed previously reported
associations and provided evidence for 4 novel signals. Much
larger meta analyses may be helpful in investigating the rele-
vance of these novel signals.
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