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Abstract
Objective  To assess neurofilaments as neurodegenerative biomarkers in serum of patients with Friedreich’s ataxia.
Methods  Single molecule array measurements of neurofilament light (NfL) and heavy chain (pNfH) in 99 patients with 
genetically confirmed Friedreich’s ataxia. Correlation of NfL/pNfH serum levels with disease severity, disease duration, 
age, age at onset, and GAA repeat length.
Results  Median serum levels of NfL were 21.2 pg/ml (range 3.6–49.3) in controls and 26.1 pg/ml (0–78.1) in Friedreich’s 
ataxia (p = 0.002). pNfH levels were 23.5 pg/ml (13.3–43.3) in controls and 92 pg/ml (3.1–303) in Friedreich’s ataxia 
(p = 0.0004). NfL levels were significantly increased in younger patients (age 16–31 years, p < 0.001) and patients aged 
32–47 years (p = 0.008), but not in patients of age 48 years and older (p = 0.41). In a longitudinal assessment, there was no 
difference in NfL levels in 14 patients with repeated sampling 2 years after baseline measurement. Levels of NfL correlated 
inversely with GAA1 repeat length (r = − 0.24, p = 0.02) but not with disease severity (r = − 0.13, p = 0.22), disease duration 
(r = − 0.06, p = 0.53), or age at onset (r = 0.05, p = 0.62).
Conclusion  Serum levels of NfL and pNfH are elevated in Friedreich’s ataxia, but differences to healthy controls decrease 
with increasing age. Long-term longitudinal data are required to explore whether this reflects a selection bias from early 
death of more severely affected individuals or a slowing down of the neurodegenerative process with age. In a pilot study 
over 2 years of follow-up—a period relevant for biomarkers indicating treatment effects—we found NfL levels to be stable.
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Introduction

Friedreich’s ataxia is the most frequent type of autoso-
mal recessive ataxia in the western world with a preva-
lence of about 1:36,000 [1]. In most cases, it is caused 
by homozygous GAA repeat expansions in the first intron 
of the FXN gene that result in reduced levels of frataxin 
and in iron/sulfur clusters leading to disturbance of e. g. 
the respiratory chain [2]. The progressive nature of Frie-
dreich’s ataxia leads to continuous destruction of neurons 
with a focus on long fibre tracts in the spinal cord, caus-
ing progressive degeneration of dorsal root ganglia, pos-
terior columns, sensory nerves, and corticospinal tracts 
[3]. During this process, axonal cytoskeletal proteins are 
likely to be liberated into cerebral spinal fluid (CSF) and 
even into blood, in consequence of neuro-axonal injury. 
An integral component of the axonal cytoskeleton is neu-
rofilament light chain (NfL) and phosphorylated neurofila-
ment heavy chain (pNfH). These markers were recently 
shown to be increased in the cerebrospinal fluid of several 
progressive neurodegenerative diseases including amyo-
trophic lateral sclerosis (ALS), frontotemporal dementia 
(FTD), Creutzfeldt–Jakob disease (CJD), and adult-onset 
leukoencephalopathy with axonal spheroids (ALSP) [4–9]. 
Most lately, ultrasensitive assays allow assessments of NfL 
and pNfH also in serum [10, 11].

Biomarkers reflecting degenerative processes are impor-
tant for interventional trials that aim to slow disease progres-
sion. In Friedreich’s ataxia, frataxin protein level is used as 
a biomarker reflecting an early event in pathophysiology, as 
it was shown to be reduced in patients in consequence of the 
intronic repeat expansion leading to impaired transcription 
of the FXN gene [2]. As lack of frataxin is thought to be the 
pathomechanism driving all further steps in the pathogenesis 
of Friedreich’s ataxia, several therapeutic approaches are 
aiming to increase transcription of the FXN gene. In these 
studies, frataxin levels are monitored to document treatment 
success [12, 13]. However, serum markers reflecting the 
degenerative aspects of the disease are missing.

Here, we assessed serum levels of NfL and pNfH in 
patients with Friedreich’s ataxia and healthy controls by 
ultrasensitive single molecule array (Simoa) [14, 15] using 
a cross-sectional and a longitudinal approach.

Methods

Subjects

A total of 99 patients (median age 38 years, range 16–68) 
with genetically confirmed Friedreich’s ataxia were 

recruited through the European Friedreich’s Ataxia Con-
sortium for Translational Studies (EFACTS). All patients 
carried GAA repeat expansions on both alleles. Repeat 
lengths of the shorter allele varied between 67 and 1167 
GAA repeats and on the longer allele between 200 and 
1500 repeats. We assessed clinical disease severity 
with the Scale for the Assessment and Rating of Ataxia 
(SARA), a validated score that allows to quantify an indi-
viduals’ degree of ataxia and ranges from 0 (no ataxia) 
to 40 points (most severe ataxia) [16]. Age at onset was 
defined by first reported symptoms, and disease duration 
as the period between onset and time of sampling. In addi-
tion, 30 individuals (median age 48 years, range 18–68) 
were enrolled at the Department of Neurodegenerative 
Disorders, Hertie Institute for Clinical Brain Research, 
University Hospital Tübingen, as healthy controls. All 
controls were assessed by neurologists with special exper-
tise in neurodegenerative diseases, ascertaining that none 
of them had a history or clinical signs of neurodegenera-
tive disease or of any other major neurological disorder. 
The study has been approved by the institutional review 
board, and all subjects gave written informed consent prior 
to participation.

Biomaterial

The biomaterial from Friedreich’s ataxia patients used in 
this study was provided by the centralized biomaterial bank 
of the medical faculty of the RWTH Aachen University 
(RWTH cBMB) and used in accordance with the biomate-
rial bank’s regulations and vote 206/09 of the ethics commit-
tee of the medical faculty of the RWTH Aachen University. 
Serum samples from healthy controls were provided by the 
biobank of the Hertie Institute for Clinical Brain Research 
(HIH), University of Tübingen, and used in accordance with 
the biomaterial bank’s regulations and vote 199/2011BO1 
of the ethics committee of the medical faculty of the Uni-
versity of Tübingen. Samples were frozen at − 80 °C within 
90 min after collection, and analysed without any previous 
thaw–freeze cycle.

Measurements

NfL concentrations were analysed by single molecule array 
(Simoa) assay as previously described [11]. Inter-assay coef-
ficients of variation (CV) for three native serum samples 
were 14.6%, 7.5%, and 2.1% for control samples with mean 
concentrations of 7.7 pg/ml, 22.6 pg/ml, and 77.4 pg/ml, 
respectively. The mean intra-assay CV of duplicate deter-
minations for concentration was 3.7%. pNfH was quantified 
by a commercially available Kit (Quanterix) on the Simoa 
platform on a single run. The mean intra-assay CV of dupli-
cate determinations for concentration was 9.5%.
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Statistical analysis

Statistics were performed using nonparametric tests in 
bivariate analysis. Multiple regression models were used 
to assess dependency of NfL on age. Data in the results 
section report median and range, data in graphs represent 
median and 95% confidence interval (CI). Demographic 
data were compared using two-tailed Mann–Whitney test. 
For pNfH, the Mann–Whitney U test was used to com-
pare values between patients and controls. A two-tailed 
Wilcoxon test was applied to compare paired data from 
longitudinal measurements in identical subjects. Correla-
tion was assessed by computing Spearman r. One outlier 
was removed in the pNfH control group (pNfH = 346.1 pg/
ml), by the robust regression and outlier removal (ROUT) 
method (Q = 0.1%) in GraphPad Prism 7. To assess a pos-
sible use of NfL measurements for diagnosis, an age-cor-
rected ROC curve was constructed. This was done by first 
calculating a quadratic regression model for NfL depend-
ent on age in the control group only. Second, the equation 
of this model was used to calculate predicted values of 
NfL for both, the control and the patient group. Third, the 
differences between observed and predicted values of NfL 
were calculated and used as continuous classificator in a 
ROC analysis. This led to the “age-corrected ROC curve”. 
Regression and ROC analyses were performed using SPSS 
25 for Windows. All other analyses were performed with 
GraphPad Prism 7 for Mac.

Data availability

Anonymized data will be shared on request of qualified 
investigators.

Results

NfL and pNfH mark neuronal damage in Friedreich’s 
ataxia

To investigate whether serum NfL and pNfH might serve 
as biomarkers in Friedreich’s ataxia, we compared NfL 
serum levels between 30 healthy controls and 99 patients 
with Friedreich’s ataxia as well as pNfH serum levels 
in a subgroup of 9 controls and 20 patients. The median 
NfL concentration in controls was 21.15 pg/ml (range 
3.6–49.3), while the concentration in Friedreich’s ataxia 
was significantly higher with 26.1 pg/ml (range 0–78.1; 

p = 0.002) (Fig. 1a). Similarly, pNfH levels were signifi-
cantly elevated in patients compared to controls (controls 
23.5 pg/ml, range 13.3–43.2; Friedreich’s ataxia 92 pg/ml, 
range 3.1–303; p = 0.0004) (Fig. 1b).

Controls (45.27 ± 14.11 years) were older than patients 
with Friedreich’s ataxia (38.37 ± 13.05 years; p = 0.02), 
but covered a comparable age range (controls 18–68 years, 
patients 16–68 years). Thus, age dependency of NfL was 
assessed in detail for both groups. In healthy individuals, 
there was a clear quadratic dependency of NfL on age 
(Fig. 2a, dashed line and Supplementary Figure S1a): in 
controls aged < 30 years, there was no increase of NfL 
with age. Between 30 and 50 years of age, there was a 
moderate increase and in the age range of 50–65, there was 
a steep increase (r-square linear model = 0.55, quadratic 
model 0.64, both p < 0.00001). In diseased subjects, no 
significant age dependency of NfL levels could be detected 
with a non-significant trend to a quadratic model (r-square 
linear model = 0.00, p = 0.90, quadratic model 0.05, 
p = 0.095). The area under the age-corrected ROC curve 
(cf. “Methods” section) was 0.78 (95% CI 0.69–0.86). 
Separate analysis within three equally sized strata of age 
(16–31 years, 32–47 years, 48–68 years) revealed areas 
under the ROC curve of 0.99 (CI 0.95–1.00, p < 0.001), 
0.81 (0.70–0.92, p = 0.002) and 0.49 (0.28–0.70, p = 0.94). 
Thus, based on NfL measurements, there was an excellent 
classification in healthy or affected for younger individu-
als, a moderately good classification for middle aged indi-
viduals and no classification better than chance for older 
individuals.
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Fig. 1   NfL and pNfH are increased in Friedreich’s ataxia. a Serum 
NfL of 30 healthy controls and 99 genetically confirmed Friedreich’s 
ataxia patients. b Serum pNfH in 9 healthy controls and 20 patients 
with Friedreich’s ataxia. **p = 0.0019, ***p = 0.0004. Data represent 
median and 95% confidence interval. NfL neurofilament light chain, 
pNfH phosphorylated neurofilament heavy chain



1423Journal of Neurology (2020) 267:1420–1430	

1 3

Serum NfL is increased independently of disease 
severity, age at onset, and disease duration 
in Friedreich’s ataxia

We assessed serum NfL levels in correlation with disease 
severity as defined by the Scale for the Assessment and 
Rating of Ataxia (SARA) score. We found that serum NfL 
did not correlate with the SARA score (r = − 0.13, 95% CI 
− 0.32 to 0.08, n = 99; p = 0.22) (Fig. 3a). Similarly, there 
was no correlation between NfL concentration and age at 
onset (r = 0.05, 95% CI − 0.15 to 0.25, n = 99; p = 0.62) 
(Fig. 3b) or disease duration (r = − 0.06, 95% CI − 0.26 
to 0.14, n = 99; p = 0.53) (Fig. 3c). In patients, there was 
a small, but significant inverse correlation between levels 
of NfL and the length of the smaller GAA repeat (allele 
1) (r = − 0.24; 95% CI − 0.42 to − 0.03; n = 99, p = 0.02) 
(Fig. 3d), but not with the GAA repeat length in the larger 
allele (allele 2) (r = − 0.01; 95% CI − 0.21 to 0.20, n = 99; 
p = 0.95) (Fig. 3e).

Serum pNfH levels were measured in a subgroup of 20 
patients that were selected a priori to represent moderately 
(SARA score 10–20) or severely affected (SARA score 
30–40) individuals, to increase the visibility of potential dif-
ferences from disease severity despite the small group size. 
Analogous to NfL, there was no correlation between pNfH 
level and SARA score (r = − 0.20, 95% CI − 0.60 to 0.28; 
n = 20, p = 0.41) (Supplementary Figure S2). Interestingly, 
there was even a tendency towards lower pNfH levels in more 
severely affected patients, albeit this tendency did not reach 
significance (SARA 10–20: 139.5 pg/ml, range 3.1–303, 
n = 10; SARA 30–40: 87.75  pg/ml, range 23.1–258.6, 

n = 10; p = 0.17) (Fig. 3f). pNfH also did not correlate with 
age, neither in controls nor in Friedreich’s ataxia patients 
(controls r = 0.10, p = 0.80, n = 9; patients r = − 0.11, 95% CI 
− 0.54 to 0.36, n = 20; p = 0.64) (Supplementary Figure S1c, 
d) or age at onset (r = 0.18, 95% CI − 0.30 to 0.59, n = 20; 
p = 0.44) (Fig. 3g). There were small, but non-significant cor-
relations between pNfH concentration and disease duration 
(r = − 0.39, 95% CI − 0.72 to 0.08, n = 20; p = 0.09) (Fig. 3h) 
and also with GAA repeat length of allele 1 (r = − 0.32, 95% 
CI − 0.68 to 0.16, n = 20; p = 0.17), but not with repeat length 
of allele 2 (r = 0.06, 95% CI − 0.41 to 0.50, n = 20; p = 0.81) 
(Supplementary Figure S3).

Serum NfL remains stable over 2 years in Friedreich’s 
ataxia

To assess progression dynamics of NfL in Friedreich’s ataxia, 
we used a longitudinal approach in a group of 14 patients by 
measuring serum NfL at baseline (BL) and 2 years later (2FU). 
On individual level, we observed an increase of serum NfL in 
9 of 14 patients (64.3%) while concentrations decreased in 4 
patients (28.6%) and stayed the same in one patient (Fig. 4a). 
Overall, there was no significant change during the 2-year 
period (BL 27.5 pg/ml, range 5.3–53.1; 2FU 34.1 pg/ml, range 
11–80.8; n = 14, p = 0.06) (Fig. 4a). While there was a significant 
increase in the SARA score over time (BL 21.7 points, range 
6–32.5; 2FU 23.5 points, range 13.5–32.5, n = 14; p = 0.007) 
(Supplementary Figure S4), the individual dynamics of NfL 
(increase/decrease) did not match the dynamics of the SARA 
score (Fig. 4b), congruent to the lack of correlation between NfL 
levels and disease severity measured by SARA (see Fig. 3c).
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Fig. 2   NfL levels in healthy controls (white dots) and Friedreich’s 
ataxia (black dots) relative to age. Serum NfL allows an excellent 
classification in healthy or affected for younger individuals (16–
31 years), a moderately good classification for middle aged individu-

als (32–47  years), and no classification better than chance for older 
individuals (48–68 years). a Observed NfL values with LOWESS fit 
(dashed line for controls and continuous line for patients). b Calcu-
lated NfL values with quadratic fit. NfL neurofilament light chain
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Fig. 3   NfL and pNfH do not 
correlate with disease sever-
ity, age at onset or disease 
duration in Friedreich’s ataxia. 
a Serum NfL levels versus 
disease severity in Friedreich’s 
ataxia, quantified by SARA. 
b Correlation of serum NfL 
levels with age at symptom 
onset. c Serum NfL versus 
disease duration, defined by the 
interval between first reported 
symptoms and blood sampling. 
d Correlation of serum NfL 
levels with the repeat length of 
the shorter allele and e with the 
longer allele. f Quantification 
of serum pNfH levels versus 
disease severity in patients with 
Friedreich’s ataxia that were a 
priori categorized as moderately 
(SARA 10–20) or severely 
(SARA 30–40) affected. g 
Correlation of pNfH with age at 
onset, and h with disease dura-
tion. Data in f represent median 
and 95% confidence interval. 
A linear regression line is only 
depicted in graphs present-
ing a statistically significant 
correlation. NfL neurofilament 
light chain, pNfH phosphoryl-
ated neurofilament heavy chain, 
SARA​ scale for the assessment 
and rating of ataxia, ns not 
significant
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Discussion

This systematic analysis of neurofilament levels in Friedre-
ich’s ataxia demonstrates that NfL and pNfH are signifi-
cantly elevated in patients with Friedreich’s ataxia. Moreo-
ver, we explored possible age effects and could show that 
NfL levels are an excellent classifier for younger, but not 
for older patients. The difference we found in the amount 
of detected NfL between Friedreichs’s ataxia patients and 
controls compares well with other slowly progressing neuro-
degenerative diseases such as hereditary spastic paraplegia, 
Alzheimer’s disease, and spinocerebellar ataxia [17–19]. 
Levels are lower than in rapidly progressing neurodegen-
erative diseases such as ALS, FTD, CJD or ALSP [4–7, 9], 
most likely reflecting the slower decay of axons, with less 
neurofilament liberated into CSF and peripheral blood per 
unit of time.

On first glance, it may be surprising that neurofilament 
levels did not correlate with disease severity, age at onset or 
disease duration in Friedreich’s ataxia. However, the lack of 
correlation with disease duration is likely to reflect a rather 
linear and not exponential course of (axonal) degeneration 
in Friedreich’s ataxia.

Interestingly, NfL levels in Friedreich’s ataxia lack an age 
effect as it is observed in healthy controls (Supplementary 
Figures S1a, b) and well known from the literature [20]. This 
may indicate that axonal degeneration does not increase with 

age in Friedreich’s ataxia, but takes place already earlier in 
life and runs with a continuous rate. The lack of age depend-
ence of NfL levels in Friedreich’s ataxia may even reflect a 
decrease of the disease specific neurodegeneration with age 
if the normal age-dependent increase of NfL is taken into 
account. Alternatively, it reflects a selection bias from mor-
tality that prevented patients with more aggressive courses 
of Friedreich’s ataxia to reach older age. In respect to thera-
peutic interventions, it therefore needs to be discussed if NfL 
is able to indicate the degenerative process of Friedreich’s 
ataxia in elder patients. Data from a more rapid neurode-
generative disorder, ALS, indicated that NfL levels decrease 
in later stages, probably because the majority of axons has 
been lost earlier [20].

A longitudinal assessment of NfL levels in Friedreich’s 
ataxia is still missing. Our study provides 2-year follow-up 
data in a small subsample, but did not show a significant 
change over a timespan that is relevant for interventional 
trials. In accordance, we found NfL levels to be similar in all 
disease stages concerning disease severity as well as disease 
duration.

We found an inverse correlation of NfL levels with GAA 
repeat length in the smaller allele indicating lower levels of 
NfL in patients with longer repeat expansions. This finding 
is difficult to interpret as larger repeat expansions go along 
with earlier onset in Friedreichs’ ataxia [21] and are sup-
posed to lead to a more severe course of the disease that is 
expected to result—if anything—in higher levels of NfL. 
Since we did not find a correlation of NfL with age of onset 
or disease severity, we suggest to regard the correlation of 
GAA repeat length of allele 1 and NfL with caution and 
await its reproduction in an independent cohort.

pNfH is an integral part especially of large, myelinated 
axons, which are severely affected in Friedreich’s ataxia 
[22]. To determine whether pNfH is advantageous over NfL, 
we performed additional pNfH measurements. Indeed, the 
elevation of pNfH in Friedreich’s ataxia was even more pro-
nounced than the elevation of NfL, and showed only mini-
mal overlap with the control group in our pilot study.

As NfH becomes phosphorylated post-translationally 
while being transported from the neuronal cell soma in 
the axon, the higher level of pNfH compared to NfL may 
reflect an imbalance between regenerative and degenerative 
processes in the nervous system and the effort to maintain 
axonal integrity [23–25].

Larger cohorts should be investigated in the future includ-
ing longitudinal assessments of pNfH serum levels to con-
firm the more prominent elevation of pNfH and evaluate its 
potential as disease monitoring marker in Friedreich’s ataxia.

One limitation of this study is the limited number of con-
trols and the age difference between patients and the con-
trol group. As NfL is well established to increase with age 
[26] (Figure S1a), age differences are likely to lead to an 
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underestimate of group differences in our study. However, 
similar data have been obtained from a recent pilot study 
with a small group of patients and age-matched controls 
[27]. As our study was limited to patients older than 16 years 
of age, it will be of interest to investigate a younger group 
of patients with longer repeats and shorter disease duration.

In conclusion, we propose NfL and pNfH as new bio-
markers that reflect the neurodegenerative process in long 
fibre tracts in Friedreich’s ataxia. Long-term longitudinal 
data are required to explore whether the approximation of 
NfL levels between the Friedreich group and healthy con-
trols with increasing age reflects a selection bias from early 
death of more severely affected patients or a slowing down 
of the neurodegenerative process in Friedreich’s ataxia over 
the course of disease. Our study proposes neurofilaments as 
potential biomarkers for the assessment of neurodegenera-
tion in interventional trials that aim to slow down disease 
activity in Friedreich’s ataxia.
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