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The computational study of energy storage and conversion processes calls for simulation techniques that
can reproduce the electronic response of metal electrodes under electric fields. Despite recent advancements
in machine-learning methods applied to electronic-structure properties, predicting the nonlocal behavior of the
charge density in electronic conductors remains a major open challenge. We combine long-range and equivariant
kernel methods to predict the Kohn-Sham electron density of metal electrodes in response to various kinds of
electric field perturbations. By taking slabs of gold as an example, we first show how the nonlocal electronic
polarization generated by the interaction with an ionic species can be accurately reproduced in electrodes
of arbitrary thickness. A finite-field extension of the method is then derived, which allows us to predict the
charge transfer and the electrostatic potential drop induced by the application of a homogeneous and constant
electric field. Finally, we demonstrate the capability of the method to reproduce the charge density response in
a gold/electrolyte capacitor under an applied voltage, predicting the system polarization with a greater accuracy
than state-of-the-art classical atomic-charge models.

DOI: 10.1103/PhysRevMaterials.7.125403

I. INTRODUCTION

The behavior of the electronic charge density in metal
surfaces plays a decisive role in the study of energy storage
and conversion processes occurring in batteries, capacitors,
and electrocatalytic frameworks [1–3]. Its accurate computer
simulation ultimately requires the adoption of first-principles
methods that are capable of predicting the nonlocal response
of an electronic conductor subject to an external perturba-
tion. Density functional theory (DFT), in particular, has been
widely applied to the description of metal interfaces in various
research areas of surface chemistry and catalysis [4–6]. De-
pending on the specific application, different methods can be
adopted to keep the metal at a constant charge [7,8] and fixed
applied potential [9–14], as well as to induce a macroscopic
polarization in the system due to the presence of an applied
field [15–17]. In spite of the success of these approaches, the
extensive use of DFT for the study of realistic metal inter-
faces is hindered by an unfavorable scaling with the system
size, effectively limiting their applicability to a few hundred
atoms [18,19].

Beyond first-principles approaches, classical molecular dy-
namics (MD) methods have also attracted major attention in
the context of enabling the simulation of metal interfaces
at the nanometric scale [20]. These methods go from the
adoption of fluctuating atomic charges [21–25] to the use
of image-charge boundary conditions [26,27]. The downside
of MD is, of course, the lack of an explicit quantum treat-
ment, which limits the description of the electrode either to
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a perfect metal approximation or to the adoption of a finite
screening length computed from semiclassical Thomas-Fermi
models [28,29]. For these reasons, reaching the level of accu-
racy of DFT in the large-scale simulation of the metal charge
density represents a goal of paramount importance [30,31].

In recent years, many efforts have been devoted to the
development of machine-learning (ML) methods dedicated to
the prediction of the electronic charge density [32–41]. The
success of these methods is mostly grounded in the interplay
between a local decomposition of the scalar field and the
adoption of local representations of the atomic structure that
are used as input vectors of the ML model. When it comes to
conducting systems, however, local ML models are expected
to show strong limitations in predicting the variations of the
charge density over large distances, especially in the pres-
ence of external fields. In fact, while some ML methods that
explicitly incorporate long-range effects have already been
developed [42–45], the study of charge transfer phenomena
in electronic conductors has, to date, been limited to simpli-
fied charge-equilibration schemes that represent the electron
density via a set of atomic charges [46–48]. Moreover, an
explicit ML treatment of the charge density in metal surfaces
under electric fields has thus far been investigated only by
virtue of suitable response functions that enter conceptual
DFT approaches [49,50].

In this article, we show how to combine long-range and
equivariant learning methods to predict the nonlocal behavior
of the charge density response in metal electrodes, sidestep-
ping the need to rely on any self-consistent optimization
procedure. After presenting the general theory (Sec. II), a
paradigmatic example is discussed in which a classical Gaus-
sian charge polarizes Au(100) slabs of increasing thickness
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(Sec. III). Then, a finite-field model suitable to treat the
application of external electric fields is derived (Sec. IV)
which can be used to accurately predict the charge transfer
along the nonconducting direction. Finally, applications of the
method are presented for the charge density response in a
gold/electrolyte capacitor under an applied potential differ-
ence, which is validated on the system polarization vector and
then used to predict the electrical double-layer contribution to
the differential capacitance of the interface (Sec. V).

II. GENERAL THEORY

Let us start by considering the linear expansion of the
electron density on an atom-centered basis χnλμ given by the
product of radial Gaussian-type functions Rλ

n and spherical
harmonics Yλμ:

ne(r) ≈
∑
inλμ

cnλμ
i

∑
ix,iy

χnλμ(r − ri − uix,iy), (1)

where ri are the atomic positions in the unit cell and uix,iy

are the cell translation vectors used to account for the two-
dimensional periodicity of the metallic surface. We assume
that the coefficients cnλμ

i come from a density-fitting proce-
dure of a reference Kohn-Sham density.

The decomposition of Eq. (1) can be used within equiv-
ariant ML models to predict ne in a highly transferable
(atom-centered) fashion [35,41]. In this work, we rely on a re-
cently optimized kernel-based method introduced in Ref. [40]
known as symmetry-adapted learning of three-dimensional
electron densities (SALTED). Within SALTED, a linear ap-
proximation of the density expansion coefficients is provided
which satisfies the rotational symmetry of spherical har-
monics, i.e., cnλ

i = ∑
M kλ

iM bnλ
M . Here, bnλ

M are vector-valued
regression weights of dimension (2λ + 1), and kλ

iM is a
symmetry-adapted kernel matrix of dimension (2λ + 1)⊗2

which encodes the similarity between the local structural fea-
tures of atom i and those of a sparse selection of atoms {M}
belonging to the training set [51]. The complexity of the learn-
ing problem then comes down to the adoption of physically
inspired structural representations of the atomic environment
Pλ

i [52], which define the kernel matrix as an inner product
over a suitable feature space [53], i.e., kλ

iM = Pλ
i Pλ†

M .
A typical choice for Pλ

i consists of an equivariant gener-
alization of the popular smooth overlap of atomic positions
(SOAP) method [51,54]. This approach ultimately derives
from the definition of a smooth Gaussian density distribu-
tion describing the local environment of atom i, i.e., ρi(r) =
fcut(r)

∑
j e−α|r−ri j |2 , with j running over the atomic neighbors

and fcut(r) being a spherical cutoff function of radius rcut. By
construction, the model thus neglects any long-range effect
that occurs beyond rcut in exchange for a high level of trans-
ferability. While this is generally not a problem [39,55], we
aim to demonstrate that endowing the structural features with
a long-range character is essential when dealing with metal
surfaces. For this reason, we rely on a definition of Pλ

i based
on long-distance equivariant (LODE) representations [42]. In
particular, we adopt an implementation of LODE that com-
bines information about the local atomic density ρi(r) and a
Hartree-like potential originated by the Gaussian density of

the atoms of the entire system [56,57]:

Vi(r) = fcut(r)
∫

dr′
∑

j e−α|r′−ri j |2

|r′ − r| . (2)

Note that the cutoff function is here applied after the Coulomb
operator, thus guaranteeing the inclusion of long-range infor-
mation within the local environment of i. The descriptor of
order λ is finally obtained from a symmetry-adapted tensor
product of ρi and Vi expanded on a set of orthogonal radial
and angular functions [56,58]:

Pλμ
i (nn′ll ′) =

∑
mm′

ρnlm
i V n′l ′m′

i 〈lm, l ′m′|λμ〉, (3)

where n and lm are the radial and angular indexes, respec-
tively, and 〈lm, l ′m′|λμ〉 are the Clebsch-Gordan coefficients
used for the composition of angular momenta.

III. PREDICTION OF NONLOCAL
POLARIZATION EFFECTS

We start by considering slabs of gold aligned perpendicular
to the z axis which interact with a sodium cation Na+ placed
4 Å from the upper metal surface. In particular, we consider
symmetric Au(100) slabs made of two unit cell repetitions
along the xy plane and spanning from 3 to 15 gold layers
along z. A total of 240 training configurations are then gen-
erated by taking uniform random displacements of the atomic
positions up to 2.5% of the lattice constant along the three
Cartesian directions. The electrode polarization is simulated
at the quantum mechanics/molecular mechanics (QM/MM)
level of theory by representing the ion as a classical Gaus-
sian charge [59]. Reference density coefficients cnλμ

i for the
gold electrodes are obtained by performing calculations of
ne at the DFT/Perdew-Burke-Ernzerhof level [60], in com-
bination with a density-fitting approach based on an overlap
metric [61–63]. The learning target is finally defined as the
difference between the perturbed electron densities and the
electron densities of the corresponding isolated electrodes,
i.e., �ne = ne − n0

e .
From a ML point of view, the ion-induced polarization of

the metal electrode is expected to be naturally captured by a
multispecies treatment of Eq. (3). This accounts for comput-
ing as many ρi and Vi as the number of chemical species a
in the system [56,64], while letting i run exclusively on the
gold atoms. With this procedure, we train SALTED/LODE
models using a local cutoff of rcut = 8 Å, where the atom
density and potential fields are defined from Gaussian widths
of σ = 0.5 Å and σ = 4.0 Å, respectively. For comparison,
SALTED/SOAP models are similarly trained by substituting
Vi with ρi in Eq. (3). Further details about the reference
calculations and machine-learning parameters are reported in
the Supplemental Material (SM) [65] (see also Refs. [66–73]
therein).

We put the method to the test on rigid gold electrodes that
include from nL = 19 to nL = 27 atomic layers. In so doing,
we extrapolate the charge density response over a range of
distances between the two metal surfaces that extends well
beyond that spanned by the training set. As an accuracy mea-
sure of the ion-induced charge transfer, we compute the metal
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FIG. 1. Extrapolated electronic polarization pz of Au(100) elec-
trodes of increasing thickness nL, induced by a Na+ cation placed at
4 Å distance from the upper metal surface. Predictions are obtained
for SALTED/SOAP (blue line) and SALTED/LODE (red line) mod-
els trained on the electron density response of electrodes that include
up to nL = 15 atomic layers. Black line: reference DFT polarization.
Inset: volume slice of the predicted charge density response for an
nL = 21 gold electrode; the color code from blue to red corresponds
to a linear scale from −0.001 to +0.001 a.u., respectively.

electronic polarization along z, which can be readily com-
puted from the (0,0) and (1,0) spherical harmonics compo-
nents of �ne:

pz = −
∫

�

dr z �ne(r)

= −
∑

in

cn00
i zi

√
4π

∫ ∞

0
dr r2R0

n(r)

−
∑

in

cn10
i

√
4π

3

∫ ∞

0
dr r3R1

n(r), (4)

where the radial integrals are analytical when the basis func-
tions are chosen to be Gaussian-type orbitals.

Figure 1 reports the prediction results as a function of the
number of atomic layers nL. As expected, we find that a local
SOAP-based model is unable to reproduce the long-range
character of the charge density response, resulting in predicted
polarization values that are off by ∼36% of the standard
deviation of pz in the test set. Conversely, SALTED/LODE
predictions are found to accurately extrapolate the electronic
polarization at increasing electrode thicknesses, thus captur-
ing the expected linear decrease of pz with respect to nL. This
is confirmed by the density-derived calculation of the Hartree
potential drop through the metallic slab, which is found to
be in very good agreement with that of DFT for all the test
electrodes considered [65]. We note that performing these
predictions took ∼1 s per structure on a single node with 24
CPUs, resulting in a speedup of the order of 3 × 103 with
respect to DFT [65].

A. Charge conservation

A crucial aspect of the method for the calculation of the
derived electrostatic properties consists of guaranteeing that

the predicted electron density response �ne integrates to zero.
In this work, this condition is enforced exactly by a posteri-
ori subtraction of the excess electronic charge �qe from the
isotropic (0,0) density coefficients associated with the most
diffuse radial functions R0

nmax
:

c̃nmax00
i = cnmax00

i − 1

Nat

�qe√
4π

∫ ∞
0 dr r2 R0

nmax
(r)

, (5)

with the excess electronic charge given by

�qe =
∫

�

dr �nML
e (r) =

√
4π

∑
in

cn00
i

∫ ∞

0
dr r2 R0

n(r). (6)

For SALTED/LODE models, we observe small abso-
lute charge conservation errors |�qe| < 0.01e. Conversely,
SALTED/SOAP predictions are associated with large errors
|�qe| > 0.1e, highlighting the inadequacy of a local model to
extrapolate the long-range response of the system; we refer to
the SM [65] for further details.

IV. FINITE-FIELD RESPONSE

Having shown the importance of long-range structural
information in describing the response properties of metal
electrodes, we now proceed with investigating the charge
transfer effect induced by an applied electric field. From here
on, we will refer to only SALTED/LODE models. The ac-
cumulation or depletion of electronic charge at the two metal
surfaces is simulated by performing calculations under a con-
stant and uniform electric field along z. The field intensity
is chosen to be Ez = −1.0 V/Å, which, for a perfect metal,
corresponds to an induced surface charge of σ = ±5.53 ×
10−3 e/Å2. DFT densities are generated from the same gold
configurations and using the same level of theory already
adopted in the previous example.

A. Derivation of finite-field representations

In order to reproduce the polarization of the electrode in-
duced by an applied electric field Ez, the axial symmetry of the
system around z must be explicitly incorporated into the ML
model. To tackle this problem, we start by defining a potential-
like descriptor that mimics the physical external perturbation
in the local environment of the atoms. In particular, we con-
sider the external potential −Ezz centered at the position of a
given atom i to enforce translational invariance, which is then
cut off to limit the amount of information retained:

V E
i (r) = −Ez (z − zi ) fcut(r). (7)

An equivariant descriptor Pλ,E
i that automatically satisfies the

symmetry of the applied field can then be directly obtained
by substituting Vi with V E

i in Eq. (3). Given that the external
potential has the same symmetry of (1,0) spherical harmonics,
we obtain

Pλμ,E
i =

∑
mm′

ρnlm
i V n′l ′m′,E

i 〈lm, l ′m′|λμ〉

=
√

4π

3
Ez

(∫ ∞

0
dr r3Rn′ (r)

)∑
m

ρanlm
i 〈lm; 10|λμ〉.

(8)
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Note that from the rules of angular momentum composition
we have μ = m + 0 and |l − 1| � λ � (l + 1) in the previ-
ous equation. Thus, the possible values for l are restricted
to (λ + 1, λ, |λ − 1|), while m = μ. Moreover, enforcing the
covariance under inversion operations implies l + 1 + λ must
be even, so that only the values for which l = |λ ± 1| survive.
Interestingly, this result has a striking resemblance to the
selection rules that are typically found in light-driven quantum
transitions.

From Eq. (8), a ML representation of ne able to reproduce
the finite-field response, while not disregarding the nonlocal
nature of the charge transfer, can finally be constructed as
follows:

P̃
λ,E
i ≡ (

Pλ
i ⊕ Pλ,E

i

) ⊗ P0
i , (9)

with Pλ
i being the equivariant LODE representation of Eq. (3).

Note that to preserve the desired symmetry properties, the
tensor product with the field-independent LODE descriptor P0

i
is used to make the model nonlinear. Crucially, this operation
allows us to introduce an effective coupling between the long-
range structural features and the external field information.
In practice, it is convenient to recast the algebraic operations
reported in Eq. (9) in simple sums and products of the individ-
ual kernels, thus keeping the dimensionality of the learning
problem unchanged with respect to the no-field case (kernel
trick [74]):

k̃
λ,E
i j = (

kλ
i j + kλ,E

i j

) × k0
i j . (10)

B. Finite-field predictions

To test the capability of the previously discussed model to
predict the electronic charge transfer induced by the applied
electric field, we now repeat the size extrapolation exercise al-
ready carried out in the previous example, so the same training
and test gold structures are used. Figure 2 reports the predicted
charge density response for the largest test electrode consid-
ered, compared with the corresponding DFT profile. In spite
of the highly extrapolative regime, our finite-field extension
of LODE allows us to accurately reproduce the accumulation
or depletion of opposite electronic charges on the two sides of
the metal electrode, predicting a charge transfer of 0.2e that
is in perfect agreement with that of DFT. To corroborate these
results, we report in Fig. 2 the variation of the Hartree poten-
tial �φH, which can be directly computed from the predicted
�ne [65]. We find that the expected potential drop of ∼2
a.u. between the two metal surfaces is accurately predicted,
reproducing the linear decrease of �φH in the metallic bulk in
order to perfectly screen the opposite increase of the external
potential φext = −Ezz.

V. ELECTRODE POLARIZATION
IN A GOLD/ELECTROLYTE IONIC CAPACITOR

We continue by showcasing an example in which a rigid
Au(100) electrode made of four unit cell repetitions along
the xy plane and seven metal layers is put in contact with
a concentrated water/NaCl solution under a uniform electric
field Ez [see Fig. 4(a) below]. Following Ref. [75], a similar
setup can be used with three-dimensional periodic boundary
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SALTED/LODE+EDFT
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FIG. 2. Extrapolated density and potential response averaged
over the xy plane of a Au(100) electrode with 27 metal layers
under an applied electric field Ez = −1 V/Å. Blue line: electron
density response. Red line: Hartree potential response. Black dashed
line: reference DFT response. Predictions are obtained from a field-
dependent SALTED/LODE+E model trained on a dataset which
includes electrodes with nmax

L = 15. Inset: representation of the pre-
dicted φE

H − φ0
H through the metal electrode; the color code from

blue to red corresponds to a linear scale from −1.0 to +1.0 a.u.,
respectively.

conditions to simulate an ionic capacitor under an applied
voltage �V = −EzLz, with Lz being the length of the simu-
lation box. In this example, an electric field Ez = 0.016 V/Å
is applied to represent an ionic capacitor subject to a po-
tential difference of �V = −1.0 V. To generate electrolyte
configurations that are representative of the given ensemble at
T = 298 K, we run finite-E classical molecular dynamics [76]

102 103

Number of training configurations

3

4

%
 R

M
SE

 (
p z

)

M= 200
M= 400
M= 800

FIG. 3. Percent root-mean-square error (RMSE) of the electrode
polarization pz as predicted from SALTED/LODE models of the
charge density response over a test set of 400 electrolyte configura-
tions, reported as a function of the number of training configurations.
Learning curves of different colors refer to different numbers of
sparse atomic environments M used to reduce the dimensionality of
the SALTED problem.
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FIG. 4. (a) Representation of the physical system under study:
a gold electrode is put in contact with a water/NaCl solution un-
der an applied electric field Ez = 0.016 V/Å, corresponding to a
potential drop of −1.0 V through the simulation cell [75]. (b) Elec-
trode polarization pz as predicted from the electron density response
induced by 400 electrolyte configurations. Predictions are reported
against the reference QM/MM values. Black dashed line: DFT. Blue
dots: classical METALWALLS result [77]. Red dots: SALTED/LODE
results. Inset: predicted electron density response averaged over the
xy plane for a representative electrode/electrolyte configuration (red
line), compared with the reference DFT profile.

over 10 ns, using the METALWALLS simulation program [77].
From the trajectory so generated, QM/MM calculations of the
electrode charge density under the applied electric field Ez are
then performed for 2000 uncorrelated configurations. In par-
ticular, we treat the gold slab at the same DFT level of theory
already adopted in the previous examples, while representing
the aqueous electrolyte via classical Gaussian charges [59].
Note that because of the classical nature of the electrolyte,
setting the electrode in the middle of the simulation box is
enough to avoid problems related to the discontinuous jump
of the external potential at z = Lz. The difference between the
QM/MM density and the density of the isolated electrode un-
der Ez is finally considered as a learning target of the SALTED
problem.

A. Validation of the SALTED/LODE model

We select 1600 random configurations for training and
retain the remaining 400 for testing. SALTED/LODE mod-
els are constructed from atom density and potential fields
defined from Gaussian widths of σ = 0.5 Å and σ = 1.0 Å,
respectively, which are both cut off at rcut = 10 Å. In Fig. 3,
we report learning curves associated with the density-derived
prediction of the electronic polarization pz of the Au(100)
electrode for the 400 randomly selected validation struc-

tures by comparing them with results obtained with different
numbers of sparse atomic environments M. Root-mean-square
errors are measured as a fraction of the standard deviation
of pz in the test set. We observe that while the accuracy of
the model increases with the number of training structures,
increasing the value of M is determinant for lowering the
errors of SALTED/LODE predictions below 3%.

Figure 4(b) reports the ML predictions of pz against the
reference DFT values for the most accurate regression task
performed with M = 800 and N = 1600. In so doing, we
also compare results obtained from the classical METALWALLS

simulation. We observe that METALWALLS yields a systematic
overestimation of the electrode polarization, which accounts
for an average deviation of 〈�pz〉 = 1.2 a.u. with respect to
DFT. Conversely, our SALTED/LODE model is able to accu-
rately reproduce the charge density response induced by the
field of the various electrolyte configurations. This is in line
with the excellent agreement between the DFT and predicted
response averaged over the xy plane �n̄(z) as reported in
the inset of Fig. 4(b) for a representative test configuration.
Performing similar predictions took, on average, ∼5 s per
structure on 128 CPUs versus ∼5 min for DFT. A substantial
speedup of the ML performance will be achieved in the future
by relying on a particle mesh Ewald implementation of the
LODE potential [78].

B. Calculation of the differential capacitance

We conclude by providing an estimate of the electrical
double-layer (EDL) contribution to the differential capaci-
tance of the system, defined from the electrolyte-induced
fluctuations of the integrated charge ±Q accumulated at the
two metal surfaces [25]:

CEDL
diff = β 〈(Q − 〈Q〉)2〉. (11)

Computing Q from the charge density response implies taking
either the right or left integral �ne from the middle of the
slab to the classical electrolyte region. This can be computed
analytically from the isotropic (0,0) density coefficients of the
atoms that belong to one of the two sides of the metallic slab.
For instance, upon setting the central metal layer at z = 0, we
can write

Qright = −
∫

z>0
dr�ne(r)

= −
√

4π
∑

i∈z>0

∑
n

cn00
i

∫ ∞

0
dr r2 R0

n(r). (12)

Upon predicting Q for 5500 uncorrelated frames of a MET-
ALWALLS trajectory of 30 ns, we obtain CEDL

diff = 8.9 µF/cm2.
This value is sensibly smaller than what can be obtained
from the classical METALWALLS simulation, i.e., CEDL

diff =
10.5 µF/cm2, which is found to give larger fluctuations of the
electrode surface charge with respect to the corresponding ML
predictions [65]. By and large, these results highlight the im-
portance of going beyond a classical picture when describing
nonlocal polarization effects in finite conducting materials.

125403-5



GRISAFI, BUSSY, SALANNE, AND VUILLEUMIER PHYSICAL REVIEW MATERIALS 7, 125403 (2023)

VI. CONCLUSIONS

The presented study shows how the interplay of equivari-
ant, long-range and finite-field learning models can be used
to accurately predict the electronic response of metal elec-
trodes under electric fields of different natures. The ready
access to the charge density response can provide a rigor-
ous pathway to accurately compute the polarization energy
of generic electrochemical interfaces, while accurately incor-
porating the permanent electrostatics via local ML models
of the electron density [39]. Crucially, the nonlocal nature
of the LODE atomistic representation allows us to directly
learn and predict the self-consistent charge density response,
thus bypassing the need to incorporate self-consistency at
the machine-learning level. In fact, this aspect positions our
method as an attractive alternative to charge-equilibration
models [47,48] by also enabling access to the quantum-level
details of the electronic distribution beyond isotropic atomic
charges. In perspective, an application of major impact will
consist of driving the long-range dynamics of the system at
the ML/MM level of theory [30], thanks to the calculation of
the electric field associated with the predicted charge density
distribution. Finally, we foresee applications of the method
to determine the capability of the metal surface to undergo
electron-transfer processes [79], as well to predict optical

response functions [80] that can serve as a spectroscopic char-
acterization of the interface [81].

An open-source implementation of SALTED which in-
cludes the extension to finite electric fields is available from
GitHub [82]. Training data and configurations, as well as
inputs for performing the reference CP2K calculations, are free
to download from Zenodo [83]. A modified version of the
CP2K program able to print out reference density coefficients
needed for training the ML model is also available from
GitHub [84]. The METALWALLS simulation program used to
generate the classical finite-field trajectories is available from
GitLab [85].
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