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ABSTRACT
BACKGROUND: The prevalence of depression is higher in individuals with autoimmune diseases, but the mecha-
nisms underlying the observed comorbidities are unknown. Shared genetic etiology is a plausible explanation for the
overlap, and in this study we tested whether genetic variation in the major histocompatibility complex (MHC), which is
associated with risk for autoimmune diseases, is also associated with risk for depression.
METHODS: We fine-mapped the classical MHC (chr6: 29.6–33.1 Mb), imputing 216 human leukocyte antigen (HLA)
alleles and 4 complement component 4 (C4) haplotypes in studies from the Psychiatric Genomics Consortium Major
Depressive Disorder Working Group and the UK Biobank. The total sample size was 45,149 depression cases and
86,698 controls. We tested for association between depression status and imputed MHC variants, applying both a
region-wide significance threshold (3.9 3 1026) and a candidate threshold (1.6 3 1024).
RESULTS: No HLA alleles or C4 haplotypes were associated with depression at the region-wide threshold. HLA-
B*08:01 was associated with modest protection for depression at the candidate threshold for testing in HLA
genes in the meta-analysis (odds ratio = 0.98, 95% confidence interval = 0.97–0.99).
CONCLUSIONS: We found no evidence that an increased risk for depression was conferred by HLA alleles, which
play a major role in the genetic susceptibility to autoimmune diseases, or C4 haplotypes, which are strongly asso-
ciated with schizophrenia. These results suggest that any HLA or C4 variants associated with depression either are
rare or have very modest effect sizes.

Keywords: Autoimmune disorder, Complement, Genetic association, Human leukocyte antigen, Major depressive
disorder, Major histocompatibility complex
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Depression is a debilitating psychiatric disorder with an esti-
mated lifetime prevalence of 15% (1), making it the leading
cause of global disability (2). The disorder is characterized by
heterogeneous symptom profiles (3) and variable treatment
outcomes (4). Developing effective pharmaceutical treatments
relies on uncovering the etiology of a disorder (5), and psy-
chiatric genetics has made great progress toward this
ª 2019 Society of B
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objective in the past decade (6,7). Despite this progress, the
underlying biology of depression is still not fully understood.
Comorbid psychiatric and physical traits may indicate shared
biological pathways and provide a path to uncovering the
etiology of idiopathic psychiatric disorders (8). Here, we focus
on comorbid autoimmune diseases and depression, consider
the mechanisms that could drive the overlap, and test for
iological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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evidence of shared genetic influences in the major histocom-
patibility complex (MHC).

Epidemiological studies indicate that individuals with a
history of autoimmune disease are at greater risk of developing
mood disorders compared with individuals without a history of
autoimmune disease (9–12). For example, a Danish Registry
study (9) showed that the risk of developing a mood disorder
increased following onset of any autoimmune disease (incident
rate ratio = 1.45; 95% confidence interval [CI] = 1.39–1.52).

One interpretation is that the distress arising from autoim-
mune disorders is causal to the onset of a mood disorder.
However, other evidence indicates that the relationship is
bidirectional (13,14). For example, another Danish Registry
study (13) showed that individuals with depression were at
increased risk for developing any autoimmune disease (inci-
dent rate ratio = 1.25, 95% CI = 1.19–1.31) and that this in-
crease remained relatively stable across the first decade after
diagnosis of depression.

There are several plausible explanations for the observed
overlap between depression and autoimmunity. Shared envi-
ronmental influences may increase risk for both disorders—for
example, stress is a risk factor for autoimmune disease (15)—
and there is a phenotypic and genetic correlation between
anxiety and depression (16). Another view is that shared ge-
netic influences act on autoimmune disease and depression
through common immune pathways. Efforts to identify shared
genetic influences were undertaken in a recent genome-wide
association study (GWAS) of depression, using linkage
disequilibrium (LD) score regression to estimate genetic cor-
relations between depression and autoimmune diseases (17).
There was no evidence for significant cross-trait correlations;
the strongest correlation observed was between depression
and inflammatory bowel disease (rG = .07, p = .06). However,
methods to detect genome-wide pleiotropy will not detect
shared association at specific variants. Genetic variation in the
MHC, which plays a crucial role in human immunity (18),
should be thoroughly interrogated in depression.

The MHC is divided into 3 functionally distinct regions: class
I and II regions contain highly polymorphic human leukocyte
antigen (HLA) genes that are strongly associated with risk for
autoimmune disease (19–21), and the class III region contains
complement component 4 (C4) genes, which are strongly
associated with risk for schizophrenia (22). Three recent
GWASs indicated that genetic variation within the MHC is
involved in risk for depression (17,23,24), with the strongest
association located in the classical or extended class I region.

Highly polymorphic loci and long-range LD in the MHC
complicate the interpretation of single nucleotide poly-
morphism (SNP) associations (17). However, imputed HLA
alleles (25) and C4 haplotypes (22) can dissect SNP signal in
the region with fine-mapping techniques. We used this
approach to test whether genetic variation associated with
autoimmune disease and schizophrenia is also associated with
depression. Common SNPs in the MHC were tested to confirm
that the pattern of association with depression was consistent
with the pattern observed in previous GWASs and to provide a
backbone of association across this region (17). We imputed
HLA variants and common C4 haplotypes and tested whether
these were associated with depression. We additionally
extracted HLA alleles that increase risk of autoimmune
420 Biological Psychiatry March 1, 2020; 87:419–430 www.sobp.org/j
diseases to test for association with depression. Finally, to
explore the relationship between the association with HLA al-
leles and C4 haplotypes, we tested for association of
depression with genetically predicted C4A brain expression
and performed conditional analysis to assess evidence for
association at HLA alleles and C4 haplotypes in strong LD.

To our knowledge, this is the first study to leverage impu-
tation to interrogate the involvement of HLA alleles and C4
haplotypes in depression. Our efforts should lead to a better
understanding of the role of these loci in depression and may
provide insights into the mechanisms driving comorbid auto-
immunity and depression.

METHODS AND MATERIALS

Participants

Participant data came from a subset of the Major Depressive
Disorder Working Group of the Psychiatric Genomics Con-
sortium (PGC-MDD) (17) and from the UK Biobank (UKB) (26)
to give a total of 131,847 individuals of European ancestry
(55% female subjects, 45,149 depression cases, and 86,698
controls). Individual-level genotype and phenotype data were
available for 26 PGC-MDD studies, totaling 39,145 individuals
(54% female subjects, 15,805 cases, and 23,340 controls).
Across the PGC-MDD studies, structured diagnostic in-
terviews were conducted to identify case subjects with a life-
time diagnosis of MDD according to the DSM-IV (27), the ICD-
9 (28), the ICD-10 (29), or the Composite International Diag-
nostic Interview Short Form (30). In most PGC-MDD studies,
bipolar disorder, nonaffective psychosis, and substance use
disorder were exclusion criteria in the cases, and controls were
screened for absence of MDD and other psychiatric disorders.
Ethical approvals were obtained by the principal investigators
of each study, with all participants giving full informed consent.

The UKB is a prospective cohort study that has collected
genotype and phenotype data for more than 500,000 in-
dividuals across the UK, between 40 and 69 years of age at
recruitment (26). A total of 157,366 UKB participants
completed an online mental health questionnaire, which as-
sesses lifetime depressive disorder (31). Using the recom-
mended mental health questionnaire scoring protocol (31), we
identified 29,344 individuals with lifetime depressive disorder
and 63,358 controls. Cases were excluded if they endorsed
diagnosis of psychosis or bipolar disorder. Controls were
excluded if they endorsed diagnosis of any psychiatric disor-
der in the mental health questionnaire, or self-reported
depression or use of antidepressant medication at baseline
and follow-up interviews, or had a mood disorder according to
hospital episode statistics, or met the criteria for a mood dis-
order according to Smith et al. (32). Further details of the PGC-
MDD and UKB samples are in Table S1 in Supplement 2.

Genotyping and Quality Control

Quality control (QC) of genotype data in the 26 PGC-MDD
studies was performed by the PGC Statistical Analysis Group
using the ricopili pipeline (17) with the following thresholds:
SNP missingness (before individual QC) , 0.05, individual
missingness , 0.02, SNP missingness (after individual QC) ,
0.02, deviation from heterozygosity jFhetj , 0.20, Hardy-
ournal
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Table 1. Number of Variants Imputed in $2 of the 26 PGG-
MDD Studies and the UK Biobank Sample

Gene PGC-MDD UKB

Variants in Both
PGC-MDD and

UKB

Variants in Either
PGC-MDD or

UKB

HLA-A 31 13 13 31

HLA-B 48 18 18 48

HLA-C 30 14 14 30

HLA-DPA 5 3 3 5

HLA-DPB 25 11 11 25

HLA-DQA 12 7 7 12

HLA-DQB 19 12 12 19

HLA-DRB 37 24 15 46

Total HLA Alleles 207 102 93 216

C4 Haplotypes 4 4 4 4

SNPs 49,611 47,799 40,561 56,779

C4, complement component 4; HLA, human leukocyte antigen;
PGC-MDD, Major Depressive Disorder Working Group of the
Psychiatric Genomics Consortium; SNP, single nucleotide
polymorphism; UKB, UK Biobank.
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Weinberg equilibrium p value . 10210 (cases) and p value
. 1026 (controls). After imputation with the 1000 Genomes
reference panel (17), SNPs with INFO score . 0.8 and minor
allele frequency (MAF) . 0.05 were retained for relatedness
testing and principal component analysis. One individual from
each pair with relatedness . 0.2 was removed, and only in-
dividuals of European ancestry were retained.

Using genotype data that had undergone preliminary QC by
the UKB (26), we created an inclusion list of individuals of
European ancestry using 4-means clustering on the first 2
principal components provided by the UKB. Using relatedness
kinship (KING) estimates provided by the UKB, we removed
1 individual from each pair up to 3rd-degree relationships
(KING r2 . .044) (33). In the remaining data, we applied QC
with the following thresholds: SNP missingness (before
individual QC) , 0.02, individual missingness , 0.02, SNP
missingness (after individual QC) , 0.02, MAF . 0.01, Hardy-
Weinberg equilibrium p value . 1028. The UKB (26) imputed
SNPs using the IMPUTE4 software (26) with the Haplotype
Reference Consortium reference panel (34) and the UK10K
Consortium reference panel (35) to produce dosage data in
BGEN file format (version 1.2) (36). We extracted imputed
SNPs from the classical MHC (chr6: 29,640,000–33,120,000)
and converted to PLINK 2 binary format for association ana-
lyses in PLINK 2.0 (37).
HLA Allele and C4 Haplotype Imputation

HLA alleles were imputed using genotype data from the PGC-
MDD studies using the SNP2HLA software (25) with the Type 1
Diabetes Genetics Consortium reference panel (38) to produce
dosage data in Beagle format (39). The Type 1 Diabetes Ge-
netics Consortium reference panel contains MHC haplotype
information to enable imputation of HLA alleles at 2-digit and
4-digit resolution in 8 HLA genes: HLA-A, HLA-B, and HLA-C
in the classical class I MHC and HLA-DRB1, HLA-DQA1, HLA-
DQB1, HLA-DPA1, and HLA-DPB1 in the classical class II
MHC.

HLA alleles were imputed in the UKB by the core analytical
team using the HLA*IMP:02 software (26) with multipopulation
reference panels (40). Collectively, the reference panels con-
tained MHC haplotype information to enable imputation of HLA
alleles in 11 HLA genes: HLA-A, HLA-B, and HLA-C in the
classical class I MHC and HLA-DRB5, HLA-DRB4, HLA-DRB3,
HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-
DPB1 in the classical class II MHC. Only HLA alleles at 4-digit
resolution have been made available by the UKB. HLA alleles
were encoded as biallelic in the PGC-MDD and UKB data such
that imputed dosages referred to the presence of 0, 1, or 2
copies of each HLA allele.

C4 haplotypes were imputed using genotype data in the
PGC-MDD and UKB using the SNP2HLA software (25) with
the C4 reference panel developed by the McCarroll Lab (38)
(http://mccarrolllab.com/wp-content/uploads/2014/12/MHC_
haplotypes_CEU_HapMap3_ref_panel.bgl) to produce
dosage data in Beagle format (39). The reference panel
consists of SNP and C4 haplotypes within the extended MHC
(25–34 Mb on chromosome 6) for 110 individuals from the
HapMap CEU population. The reference panel contains 17
C4 haplotypes, defined by copy number variation of C4A and
Biological P
C4B genes in short and long form. Four C4 haplotypes with
frequency .0.01 were retained: AL-AL, AL-BL, AL-BS, and
BS (where A and B correspond to 2 isotypes of the C4 gene
and L and S correspond to the long and short forms). Of the
common C4 haplotypes, 3 (AL-AL, AL-BL, and AL-BS)
segregate on 2, 3, and 5 different SNP haplotypes, respec-
tively. Association results for these C4 haplotypes were
calculated by meta-analyzing across SNP haplotypes corre-
sponding to each C4 structure.
Statistical Analyses

In the PGC-MDD group, we tested each HLA allele and C4
haplotype for association with MDD case-control status using
an additive logistic regression model applied to dosage data.
We included 6 principal components to control for population
structure. We extracted association results for SNPs in the
classical MHC from PGC-MDD analyses in each study,
applying further QC such that only variants with a MAF .0.01
and an INFO score $0.6 were retained. Post-QC variants were
meta-analyzed across the 26 PGC-MDD studies using an
inverse-variance weighted approach.

In the UKB sample, we tested each HLA allele, C4 haplotype,
and imputed SNP for association with depression case-control
status using an additive linear regression model applied to
dosage data. We regressed 6 principal components (calculated
by the UKB), batch, and center on the depression phenotype
using logistic regression in R 3.4.1 (41), and used the residuals as
the outcome variable in subsequent linear regression. We filtered
for variants with a MAF .0.01 and an INFO score $0.6 before
meta-analyzing across the PGC-MDDandUKB results. Analyses
were performed using PLINK (version 1.9 and version 2.0) (37).
Further details of QC, imputation, and analysis are given in the
Supplement.

To calculate the MHC region-wide significance threshold,
we used the Genetic Type I error calculator (GEC) (42), an
online resource that calculates the number of effective tests by
sychiatry March 1, 2020; 87:419–430 www.sobp.org/journal 421
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estimating LD between variants and applying a Bonferroni
correction. We calculated a conservative region-wide signifi-
cance threshold (3.9 3 1026), controlling for all imputed SNPs
in the classical MHC, and a candidate significance threshold
(1.6 3 1024), controlling only for HLA intragenic SNPs in the
classical MHC. A summary of all analyses performed is given in
Table S2 in Supplement 2.

We used the Genetic Power Calculator (43) to estimate power
at the minimum and maximum INFO score thresholds. At an
INFO score of 1.0, the effective sample size was 45,149 cases
and 86,698 controls. For an HLA allele of frequency 0.05 (the
median in our study), we had 80% power to detect an odds ratio
(OR).1.09, at a region-wide significance level of a = 3.93 1026.
At an INFO score of 0.6, the effective sample size was 27,089
cases and 52,018 controls. For an HLA allele of frequency 0.05,
we had 80% power to detect an OR .1.12, at a region-wide
significance level of a = 3.9 3 1026.

We compared the imputation accuracy and frequency
of HLA alleles and C4 haplotypes in the PGC-MDD and UKB
samples for variants present in both samples. The average
imputation INFO score and frequency were calculated by
weighting variant INFO scores and frequencies by the effec-
tive sample size in each PGC-MDD study.

The genetic correlation between the PGC-MDD and UKB
samples was calculated using the LD Score software (version
1.0.0) (44) using GWAS summary statistics for these data sets
that had been previously calculated (17,45). The local herita-
bility of depression in the MHC was calculated using the HESS
software (46), which partitions heritability into LD blocks across
the genome. Using summary statistics from the PGC-MDD
GWAS of depression (17) (excluding 23andMe data), we
calculated the genome-wide heritability of depression and
extracted the heritability estimates for the 5 LD partitions that
constitute the extended MHC.

Drawing on evidence from epidemiological studies (9,13), we
identified autoimmune diseases with evidence for a bidirectional
relationship with depression. We identified individuals affected
by these autoimmune diseases in the UKB using hospital
episode statistics and self-reported conditions. HLA risk alleles
for these autoimmune diseases were identified by conducting a
PubMed search using the terms “HLA” and relevant disease
name. HLA alleles with evidence for independent association (p
, 3.9 3 1026) in European populations were retained. We
evaluated evidence for involvement of these HLA alleles in
depression, selecting those with MAF .0.05 in our study. We
used the GEC (42) to determine the effective number of tests
across 14 HLA alleles, and we obtained the p value threshold of
.05/11.75 = .004.

To dissect the combined contribution of HLA alleles and C4
haplotypes to risk of depression, we performed conditional
analysis of HLA alleles associated with depression and C4
haplotypes in strong LD with these variants. The LD (r2)
=

Figure 1. Region-wide Manhattan plots for single nucleotide polymorphisms (S
C [red] and HLA-DPA, HLA-DPB, HLA-DQA, HLA-DQB, and HLA-DRB [green]), an
and C4-AL-BL [blue], where A and B represent the isotype of the C4 gene, L indi
Disorder Working Group of the Psychiatric Genomics Consortium (PGC-MDD) st
and UK Biobank sample. chr, chromosome; Indels, insertions and deletions; MH

Biological P
between each common C4 haplotype (AL-AL, AL-BL, AL-BS,
and BS) and all imputed HLA alleles in the UKB data set was
calculated using PLINK (37).

Genetically predicted C4A brain expression was calculated
for each individual. We leveraged work from Sekar et al. (22),
who estimated the contribution of each C4 structure to C4A
brain expression in postmortem brain tissue. From this model,
we estimated C4A brain expression corresponding to each C4
haplotype (Table S3 in Supplement 2) and calculated
individual-level C4A brain expression by multiplying the
dosage for each C4 haplotype by the corresponding value for
C4A brain expression. We then tested genetically predicted
C4A brain expression for association with depression in the
PGC-MDD and UKB samples.
RESULTS

In total, 207 HLA alleles were imputed in at least 2 PGC-MDD
studies, and 102 HLA alleles were imputed in the UKB sample,
of which 93 were shared across data sets (Table 1). Variants
imputed in either data set were included in the final meta-
analysis (minimum effective sample size was 669 for HLA-B-
3906 in the PGC-MDD). Four C4 haplotypes (AL-AL, AL-BL,
AL-BS, BS) were imputed in all data sets.

There was strong consistency between the frequency and
INFO scores of HLA alleles and C4 haplotypes imputed in both
thePGC-MDDandUKB samples (correlation r = .99 for frequency
and r = .86 for INFO score) (Figures S2 and S3 in Supplement 1).
The INFO score for imputed alleles was higher in the UKB than in
the PGC-MDD studies (UKB mean = 0.98, PGC-MDD mean =
0.96), possibly because of the larger HLA reference panel or
greater efficiency of the imputation algorithm used.

The genetic correlation between the PGC-MDD and the
UKB samples was 0.79 (SE = 0.088). The genome-wide heri-
tability estimate of MDD on the liability scale was 0.09 (SE =
0.01). The estimate of local heritability of MDD across the 5 LD
partitions within the MHC was not significant (Figure S4 in
Supplement 1, Table S4 in Supplement 1).

Testing for association with depression in the PGC-MDD
sample, no HLA allele, C4 haplotype, or SNP surpassed
region-wide significance (Figure 1A). In the UKB, no HLA allele
or C4 haplotype surpassed region-wide significance
(Figure 1B). The allele with strongest evidence for association
was HLA-B*08:01 (p = 4 3 1024, OR = 0.98, 95% CI =
0.97–0.99). Among SNPs, 70 met region-wide significance
(Table S5 in Supplement 2). The variant with the lowest p value
was a SNP in the classical class I region: rs1264373 (p =
3.21 3 1027, OR = 0.97, 95% CI = 0.96–0.98). All variants
surpassing region-wide significance were in LD with
rs1264373 (0.66 , r 2 , 1.00), and rs1264373 was also in LD
with the most significant MHC SNP in the PGC-MDD GWAS
(17) (rs115507122, r2 = .63).
NPs) (gray), human leukocyte antigen (HLA) alleles (HLA-A, HLA-B, and HLA-
d complement component 4 (C4) haplotypes (C4-AL-AL, C4-AL-BS, C4-BS,
cates the long form, and S indicates the short form) in (A) Major Depressive
udies, (B) UK Biobank sample, and (C) meta-analysis of PGC-MDD studies
C, major histocompatibility complex.
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In the meta-analysis, no HLA allele or C4 haplotype met
region-wide significance; HLA-B*0801 met the candidate
threshold (p = 1.26 3 1024, OR = 0.98, 95% CI = 0.97–0.99)
(Figure 1C). A total of 143 SNPs reached region-wide signifi-
cance (Table S6 in Supplement 2). The variant with the lowest
p value was a SNP in the classical class I region: rs9262120
(p = 8.74 3 1028, OR = 1.03, 95% CI = 1.02–1.05). This SNP
was in LD with the other 142 significant variants (0.44 , r2 ,

1.00), and with the most significant SNP within the MHC in the
PGC-MDD GWAS (17) (r2 = 0.66). Low heterogeneity was
observed between most variants in the UKB and PGC-MDD
meta-analysis; 72% of variants had an I2 value below 0.25
(Figures S5 and S6 in Supplement 1).

We identified 6 autoimmune diseases with evidence for a
bidirectional relationship with depression: Crohn’s disease,
multiple sclerosis, primary adrenocortical insufficiency, psori-
asis vulgaris, systemic lupus erythematosus (SLE), and type 1
diabetes mellitus (9,13). We identified 14 HLA alleles associ-
ated with risk for these autoimmune diseases (p , 3.9 3 1026)
in European populations (47–58), with MAF .0.05 in our study.
Three HLA alleles had evidence for association with depres-
sion after correcting for multiple testing (p , .004): HLA-
B*08:01 and HLA-DQB1*02:01 (SLE) and HLA-DRB1*03:01
(multiple sclerosis, primary adrenocortical insufficiency, SLE)
(Table 2). These alleles were in strong LD with the C4-BS
haplotype in the UKB sample; the r2 values with HLA-
B*08:01, HLA-DRB1*03:01, and HLA-DQB1*02:01 were 0.73,
Table 2. HLA Alleles Associated With Risk for 6 Autoimmune D

Trait (References) [Prevalence in the UKB
Sample in Depression Cases, Controls] HLA Allele

Effect
Autoimm

Diseas

OR 95

Crohn’s Disease (47,48) [0.46%, 0.39%] HLA-A*03:01 1.10 1.07

HLA-C*06:02 1.17 1.13

HLA-DRB1*07:01 1.14 1.10

HLA-DRB1*13:02 1.20 1.13

Multiple Sclerosis (49,50) [0.48%, 0.27%] HLA-DQB1*03:02 1.30 1.23

HLA-DRB1*03:01 1.16 1.10

HLA-DRB1*15:01 3.92 3.74

Primary Adrenocortical Insufficiency
(Addison’s Disease) (51,52)

HLA-DRB1*03:01 2.93 2.12

Psoriasis Vulgaris (53,54) [1.56%, 1.21%] HLA-A*02:01 1.20 1.08

HLA-C*06:02 3.57 3.12

HLA-DQA1*02:01 1.99 1.74

Systemic Lupus Erythematosus (55,56)
[0.21%, 0.11%]

HLA-B*08:01 1.84 1.70

HLA-DQA1*01:02 1.31 1.22

HLA-DQB1*02:01 1.84 1.71

HLA-DRB1*03:01 1.87 1.73

Type 1 Diabetes Mellitus (57,58)
[0.48%, 0.35%]

HLA-A*24:02 1.32

HLA-DPB1*01:01 1.27

The prevalence of each autoimmune disease, with the exception of prim
cases and controls in the UK Biobank (UKB) sample is shown in the first
association with each autoimmune disease as estimated in the primary st
depression in the Major Depressive Disorder Working Group of the Psychia

CI, confidence interval; Frq, allele frequency; NA, not available in primar
ap values met correction for multiple testing.
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0.70, and 0.68, respectively (Figure S7 in Supplement 1 and
Tables S7 and S8 in Supplement 1). Evidence for association
with the HLA alleles attenuated after conditioning on C4-BS
(p = .008, p = .2, and p = .3, respectively), but the HLA allele
showed stronger association than the C4-BS haplotype did
(Tables S9–11 in Supplement 1).

Genetically predicted C4A brain expression was not signif-
icantly associated with depression status in the PGC-MDD
sample (p = .066, OR = 1.06, 95% CI = 1.00–1.13), the UKB
sample (p = .333, OR = 1.01, 95% CI = 0.99–1.03), or the meta-
analysis (p = .150, OR = 1.01, 95% CI = 0.99–1.03) (Figure 2
and Table S12 in Supplement 2).
DISCUSSION

To further understand the mechanisms driving comorbid auto-
immunity and depression, we investigated evidence for shared
genetic influences in the MHC, a region harboring genetic risk
for autoimmune diseases and psychiatric disorders. Our primary
aim was to test HLA alleles and C4 haplotypes for association
with depression. Under a conservative region-wide significance
threshold testing for all variants in the MHC, we found no evi-
dence that HLA alleles, which play a major role in susceptibility
to autoimmune diseases, or C4 haplotypes, which are strongly
associated with risk for schizophrenia, also confer risk for
depression. However, under a candidate threshold, correcting
for SNPs within HLA genes, HLA-B*0801 had significant
iseases

in
une
e PGC-MDD UKB Meta-analysis

% CI Frq OR Frq OR OR 95% CI p Value

–1.15 0.15 0.96 0.14 0.99 0.99 0.98–1.00 .176

–1.23 0.09 1.00 0.09 1.02 1.02 1.00–1.04 .043

–1.18 0.13 1.01 0.14 1.01 1.01 1.00–1.02 .179

–1.28 0.05 0.97 0.04 0.99 0.99 0.97–1.01 .431

–1.37 0.11 1.00 0.10 1.00 1.00 0.99–1.01 .537

–1.22 0.13 0.95 0.15 0.98 0.98 0.97–0.99 .003a

–4.12 0.14 0.98 0.14 1.00 0.99 0.98–1.00 .355

–4.04 0.13 0.95 0.15 0.98 0.98 0.97–0.99 .003a

–1.33 0.28 1.01 0.27 1.01 1.01 1.00–1.02 .005

–4.08 0.09 1.00 0.09 1.02 1.02 1.00–1.04 .043

–2.27 0.13 1.01 0.14 1.01 1.01 1.00–1.02 .212

–1.99 0.12 0.96 0.14 0.98 0.98 0.97–0.99 1.26 3 1024a

–1.40 0.20 0.97 0.19 0.99 0.99 0.98–1.00 .163

–1.99 0.13 0.95 0.15 0.98 0.98 0.97–0.99 .002a

–2.02 0.13 0.95 0.15 0.98 0.98 0.97–0.99 .003a

NA 0.08 0.97 0.07 1.01 1.00 0.98–1.02 .578

NA 0.05 0.92 0.06 0.99 0.98 0.96–1.00 .067

ary adrenocortical insufficiency, which is very rare, within depression
column. Columns 2–4 show the human leukocyte antigen (HLA) allele
udies cited. Remaining columns show the HLA allele association with
tric Genomics Consortium (PGC-MDD), UKB, and meta-analysis.
y study; OR, odds ratio.
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Figure 2. Association of genetically predicted complement component
4A (C4A) brain expression and four C4 haplotypes (C4-BS, C4-AL-BS, C4-
AL-BL, and C4AL-AL, where A and B represent the isotype of the C4 gene, L
indicates the long form, and S indicates the short form) in the meta-analysis
of Major Depressive Disorder Working Group of the Psychiatric Genomics
Consortium (PGC-MDD) studies and UK Biobank sample. Error bars show
95% confidence intervals. OR, odds ratio.
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evidence for association with depression status. Conditioning
on the C4-BS haplotype resulted in moderate attenuation of
signal from HLA-B*0801, indicating independence from C4
haplotypes.

The local heritability estimate of depression in the MHC
region was not significant, which is unsurprising given the
narrow region considered and the modest SNP heritability for
depression across the genome (h2 = 0.09).

We further explored common HLA alleles associated with
autoimmune diseases that have evidence of a bidirectional
relationship with depression. The allele with strongest evi-
dence for association with depression was HLA-B*08:01, fol-
lowed by HLA-DQB1*02:01 and HLA-DRB1*03:01. Previous
studies have shown that all 3 HLA alleles increase risk for SLE
(55,56) and that HLA-DRB1*03:01 also increases risk for mul-
tiple sclerosis (49,50) and primary adrenocortical insufficiency
(51,52). In contrast, our findings indicate that HLA-B*08:01,
HLA-DQB1*02:01, and HLA-DRB1*03:01 have modest pro-
tective effects in depression, indicating that these alleles do
not harbor shared risk for autoimmune disease and
depression.

Imputation of C4 haplotypes identified 4 common haplo-
types, none of which was associated with risk for depression in
the PGC-MDD studies, UKB sample, or meta-analysis. These
results are in stark contrast to those for schizophrenia, where
association with C4 haplotypes accounts for most of the
observed SNP association in the HLA region. Our results
suggest that C4 does not contribute to the common genetic
susceptibility between depression and schizophrenia (genetic
correlation rG = .34).

At the level of region-wide significance, we detected 70
SNPs associated with depression in the UKB sample and 143
in the meta-analysis. In each case, the top SNP was in mod-
erate to strong LD with other significant variants, indicating a
single peak of independent association. We found consistency
in SNP signal between our study and the PGC-MDD GWAS of
depression (17), with the top SNPs in each study showing
Biological P
moderate to strong LD. This was not unexpected given that our
study is a subset of the studies included in the PGC-MDD
meta-analysis (17).

The true identity of causal variants within the MHC remains
unresolved, and fine-mapping within the MHC is challenging
because of the high density of genetic variation and strong LD.
Our results strongly suggest that the association signal
observed in the MHC in depression (17,23) does not arise from
HLA alleles or C4 haplotypes. These results suggest that any
associated variants either are rare or have very modest effect
sizes. We note that Howard et al. (23) increased power by
leveraging a broader phenotyping approach. It is interesting to
speculate that the broader depression phenotype captures
individuals distressed by physical disease. This interpretation
would go some way to explaining signal in the MHC, for which
there is evidence for association with more diseases than any
other region of the genome (18). However, a more parsimo-
nious explanation could be that MHC signal in depression
maps to SNPs or to other genetic loci not imputed in this
study. This possibility is highly plausible in light of the fact that
the MHC contains more genes than any other region in the
human genome (18). Under this scenario, large sample sizes
and sequencing may be required to dissect SNP signal within
the MHC.

Our findings do not support a role for HLA alleles within the
MHC in risk for depression, and cross-trait correlations per-
formed by the PGC-MDD (17) do not support the theory that
shared genetic risk for depression and autoimmune diseases
is situated outside the MHC. In other efforts to detect
genome-wide pleiotropy, Euesden et al. (14) found no evi-
dence that polygenic risk scores for rheumatoid arthritis
predicted depression status in an independent sample, nor
did polygenic risk scores for depression predict autoimmune
disease status.

One possibility is that there is a subgroup of individuals
enriched for depression and autoimmune risk alleles. Under
this scenario, there may be insufficient power to detect the
relationship. Identifying, for example, a subgroup of individuals
with depression, who are also enriched for autoimmune risk
alleles, would go some way to explaining the observed co-
morbidity between these traits. Furthermore, identifying a
subtype of depression, e.g., an “immune-related” depression
group, would help to dissect heterogeneity in the depression
phenotype.

In summary, this study is the first to interrogate the
involvement of HLA alleles and C4 haplotypes in depression
risk, and we find no evidence that either type of genetic variant
plays a major role in susceptibility for depression. In contrast,
the 3 HLA alleles that showed nominal significance in our study
conferred modest protective effects for depression. Further-
more, the strong association with C4 alleles that is seen in
cases of schizophrenia is absent in cases of depression. Large
sample sizes and regional sequence data may be required to
dissect SNP signal within the MHC.
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