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Abstract

This contribution introduces an open-source soft-
ware tool, called TTool-AMS, designed to streamline the
design process of cyber-physical systems. It achieves
this by enabling the direct generation of SystemC AMS
virtual prototypes from Systems Modeling Language
(SysML) models. This tool acknowledges the diversity
of Models of Computation (MoC) in the design process,
accommodating three types of SystemC AMS MoC and
their respective conversion interfaces. It aims to sim-
plify early-stage integration and enhance exploration of
the interactions between analog and digital components
in cyber-physical systems.

1. Introduction

For custom design of Analog/Mixed Signal (AMS)
systems, the splitting of functionality between analog
and digital parts, as well as the study of their interac-
tion, is of prime importance, and should therefore be
done as early as possible in the design phase, relying
on simulation or formal verification. As the Models of
Computation (MoC) of these two aspects strongly dif-
fer, they are commonly designed at different abstrac-
tion levels. Better tool integration would be achieved
by multi-level modeling and simulation of analog and
digital aspects, ranging from near-circuit precision to
more abstract analog and digital models.

In early experimentation, one wishes to determine
the best (cheapest, most energy efficient, most secure)
implementation without investing in non-reusable mate-
rial. Moreover, software is subject to frequent changes
and the designer should ideally be able to test it on a
virtual prototype.

Our primary contribution is thus to offer a SysML-
based tool featuring multi-level modeling capabilities,
and able to to generate a SystemC AMS virtual proto-
type of the analog and mixed-signal parts directly from
SysML models. The present paper focuses on collabo-

ration of different part of our tool; a larger case study,
originating from mixed-signal circuit design, is pre-
sented in [15].

By basing our tool on an existing one primarily in-
tended for generation and verification of purely digital
virtual prototypes, we benefit from its extensive verifi-
cation capabilities provided for embedded software, us-
ing the approach to formal verification of safety and se-
curity properties approach described in [23]. As such,
our tool provides robust facilities for modeling, veri-
fying, and simulating embedded software on a virtual
prototype of mixed systems. Simulation under Sys-
temC AMS and optionally of a mixed SystemC/Sys-
temC AMS virtual prototype [16] then give indications
about performance.

Section 2 discusses related work. Section 3
overviews our contributions. Section 4 introduces our
tool extension, Section 5 presents a larger case study
featuring three different MoCs. Section 6 concludes.

2. Related Work

This section converges methodologies from two
fields: SystemC-based and model-based design.

2.1. Analog/Mixed signal hardware design
based on SystemC

Many AMS modeling approaches are based on
SystemC [18], with or without alteration of SystemC’s
simulation kernel. SystemC initially targeted only dis-
crete systems. Frameworks based on SystemC include
HetSC [17], HetMoC [28] and ForSyDe [21]. Their
main disadvantage is that instantiation of elements and
synchronization control is totally left to designers.

Both SystemC-H [22] and SystemC-A [27] extend
the SystemC simulation kernel. The former allows only
one hierarchical level in models; execution is based on
a master-slave relation, while a modified discrete event
simulation kernel initializes and simulates the processes
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Figure 1: Method overview from [15]. Software design is on the left, and hardware design on the right

described by means of different MoC-specific kernels.
Synchronization mechanisms among components de-
fined with different MoC are not available. SystemC-
A’s scheduler calls the analog kernel phases (iteration
and verification) before the SystemC scheduling. The
independent analog simulation kernel is able to syn-
chronize with the DE simulation kernel.

SystemC AMS extensions [1] is a standard describ-
ing an extension of SystemC with AMS and RF fea-
tures [26], defining several Models of Computation. In
the scope of the project BeyondDreams [5], a proof-of-
concept simulator for analog-digital systems has been
developed [12], and is distributed by COSEDA.

Within the context of the H-Inception project [24],
significant advancements have enabled automatic pre-
simulation checks for causality issues [2] from SystemC
AMS models. Extending this progress, we can now
identify and address causality problems directly from
SysML models [8].

2.2. Model-based design for AMS systems

Embedded systems can be designed using different
Models of Computation, and with different notions of
concurrency and time [19].

A well-known tool for designing analog/mixed sig-
nal systems is Ptolemy II [20], based upon a dataflow
model. Heterogeneous systems are addressed by defin-
ing several sub domains, instantiating elements control-
ling the time synchronization between domains. Yet,
time synchronization is left to designer.

Metro II [9] uses Adaptors for data synchronization

between components belonging to different MoCs, but
again designers are responsible for time synchroniza-
tion. A common simulation kernel handles all process
execution, in which the MoCs are not well separated.

Modelica [14] is an object-oriented modeling lan-
guage for component-oriented systems containing, e.g.,
mechanical, electrical, electronic and hydraulic com-
ponents. Time synchronization is not predefined, the
simulation engine must thus manipulate objects in a
symbolic way in order to determine an execution order.
Linking simulation with different MoCs can be done by
using the Functional Mockup Interface [6].

The Discrete Event System Specification
(DEVS [7]) is a flexible, hierarchical framework
capable of handling both discrete events and contin-
uous systems, including those defined by differential
equations. Despite its broad implementation across var-
ious platforms, from Petri Net-based to Python-based,
DEVS operates on a globally uniform timeline.

Into-CPS [13] leverages model-based formal meth-
ods to combine discrete-event controller models with
their continuous-time environmental counterparts. It
begins with a discrete-event model, which is pro-
gressively enhanced by substituting approximated
continuous-time behaviors with connections to actual
continuous-time models.

Finally, UML/SysML based modeling techniques
like MARTE [11] have been used in AMS modeling.
However, these techniques usually lack the capabil-
ity to refine to lower abstraction levels, with a no-
table exception being TTool [4, 3], a free and open-
source modeling framework, which allows for a degree



Figure 2: Deployment diagram with analog module

of analog/mixed signal modeling and virtual prototyp-
ing [16], including SystemC-based virtual prototyping,
while also enabling formal verification.

3. Contribution

Our tool equally accommodates three of the four
SystemC AMS MoC: DE, TDF, and ELN. We’ll first
outline our methodology, then briefly review these rec-
ognized MoCs, and finally focus on their representation.

3.1. Overview of our SysML-based method

The top of Figure 1 outlines the hardware/soft-
ware partitioning step that follows functional modeling.
This process splits functions into software tasks and
hardware components. The former are depicted using
SysML blocks and state machine diagrams (as shown
in the left part of the figure), while the latter are repre-
sented by UML deployment diagrams and SysML in-
ternal block diagrams (featured in the right part of the
figure). A virtual prototype is subsequently generated
from both digital and analog models. SystemC forms
the basis for describing discrete hardware components,
utilizing SoCLib [25], while analog components are ar-
ticulated in SystemC AMS with some details provided
in Electrical Linear Network (ELN) the most low-level
MoC which relies on equations to capture the behavior
of electrical circuits in a simplified way.

The interest in integrating ELN components is
more thoroughly discussed in [15]. Specifically, there
are instances where standard components fall short due
to unique demands, whether they pertain to power con-
sumption, compactness, specific applications, budget
constraints, and the like. In such cases, custom designs
or modified existing solutions become imperative.

Supporting ELN representation involves three chal-
lenges:

1. Representing ELN with SysML elements

2. Revisiting scheduling and causality validation [8]

3. Extending the code generation Algorithm given
in [15]

Let us now focus on the right part of Figure 1. At
the top right, a Deployment Diagram features the ana-
log cluster as a grey box. Digital hardware executing
software is represented in blue.

The middle right picture is a zoom into the analog
cluster (a double click in the tool) represented with a
SysML internal block diagram. The white block on the
left communicates with the outer (digital) world.

The lowest right part of the Figure features the
SysML representation of electrical circuits. Our model-
ing framework can represent resistors, current and volt-
age sources and sinks, as well as means to connect them
to the more abstract TDF and DE components.

3.2. SysML representation of the three MoC

As said above, the main diagram in TTool describ-
ing the hardware from which the virtual prototype is the
deployment diagram. In Figure 2, an analog cluster is
represented as a grey box. Software allocated to proces-
sors/microcontrollers is presented in a block diagram
and state machines (for the behavior). Their safety is
verified with TTool’s internal model checker and their
security with ProVerif directly from TTool [10].

Figure 3 shows a so-called SystemC AMS panel,
featuring the three kinds of modules (DE, TDF, ELN),
the TDF and DE ports by which they are connected.



Figure 3: The AMS Panel

Figure 4: Configuration of the converter port

3.2.1. Discrete Event. In Discrete-Event (DE) model-
ing, a system is seen as a sequence of discrete events,
with each event indicating a state change. This contrasts
with continuous simulation where state changes occur
continuously over time. DE modules embed SystemC
code and are simulated via discrete event simulation.
The SystemC AMS panel in Figure 3, on the right side,
illustrates that we depict them as white SysML blocks,
using white squares for their ports. This visual repre-
sentation aligns with that used in the SystemC AMS
User’s Guide [1].

3.2.2. Timed Data Flow. A Timed Data Flow (TDF)
module samples continuous functions at discrete inter-
vals. Such a module is described with an attribute rep-
resenting the time step, and with a processing func-
tion. This mathematical function logically depends on
the module inputs and/or internal states. At each time
step, the module first reads a fixed number of samples
from its input ports, then executes its processing func-
tion, and finally writes a fixed number of samples to its
output ports. TDF modules are grouped into clusters.
To ensure consistency between modules, time step and
rate are calculated and propagated. Finally, these mod-
ules are simulated by the dataflow solver.

On its left side, Figure 3 displays a TDF block with

a converter port. The interface for entering the port’s
parameters is shown in Figure 4. Similar windows are
used to parameterize the different modules and ports,
including the definition of the processing function of
TDF modules.

3.2.3. Electrical Linear Networks. Electrical Linear
Networks are an abstraction of electrical circuits since
non-linear behaviors are not represented. As a conse-
quence, nonlinear elements such as diodes and tran-
sistors must be approximated with linear components.
An equation system has to be solved in order to ob-
tain tension and current at so-called terminals. Prim-
itive modules are connected by they terminals via so-
called nodes, but they can also be connected to TDF
or DE modules via converter modules featuring TDF or
DE ports, respectively.

3.3. Simulation

Converter ports are required to connect DE to TDF.
Converter modules connect TLM to TDF and DE mod-
ules, respectively. Timing and causality issues between
the different MoC, in particular between TDF and DE,
are delicate to handle (see [8, 2]). In short, the DE sim-
ulation controls the TDF simulation, which in turn con-
trols the ELN simulation by imposing the time step. To
avoid temporal causality problems, an algorithm given
in [8] shows how to propagate the time step to the ELN
converter modules, before code can be generated from
the SysML models. By inserting adequate delays before
code generation, we avoid most of the causality errors
raised by the SystemC AMS simulator.

4. Using the Tool

The SystemC AMS panel also contains a tool bar to
select blocks, ports and connectors, an to generate code
(rightmost button in the toolbar).

ELN circuits are represented using distinct views,
each catering to a specific subset of modules. Table 1
enumerates the usual graphical operators employed for
capturing ELN circuits. Out of the 29 elements defined
in the SystemC AMS standard, we have implemented
20, exclusive of ports, connectors, and terminals.

We significantly extend the generation approach
of [15] by introducing ELN blocks featuring DE as well
as TDF ports, while the previous contribution was lim-
ited to the encapsulation of ELN in TDF blocks, thus
allowing only the use of TDF ports only. Consequently,
the algorithm given in [15] was modified to consider our
new ELN modules. Actually, this leads to a simplified
code generation process (Figure 5). In comparison to a



element symbol

cluster and module terminal

TDF cluster and module port

DE cluster and module port

resistor

capacitor

inductor

voltage controlled voltage source

voltage controlled current source

ideal transformer

transmission line

independent voltage source

independent current source

voltage source driven by TDF input signal

voltage converted to TDF output signal

current source driven by TDF input signal

current source converted to a TDF output signal

switch driven by TDF input signal

switch driven by DE input //signal

voltage source driven by DE input signal

voltage converted to DE output signal //

current source driven by DE input signal

current source converted to DE output signal

reference node (ground)

Table 1: ELN modules currently available

first code generation algorithm presented in [15], we de-
rive a more straightforward and more general algorithm
(see Figure 1).

On the operational side, too, the process has also
been simplified.

1. Select one of the TDF clusters and open its panel.

2. Activate the "Validation" button. This propagates
time steps within the TDF cluster as well as assures
respect of causality between TDF and DE models.

3. Activate the "Code generation" button. This gener-
ates SystemC AMS code for all TDF clusters, DE
and ELN modules. It also generates the top cell.

5. Case Study: POTS

We modeled the Plain Old Telephone System
(POTS) taken from [1]. This small to mid-size example
exhibits all the features we wish to show: TDF modules

Figure 5: Validation and Code Generation

(caller and subscriber, a DE module (the phone device)
as well as four ELN modules regrouping various ELN
primitive elements. It features TDF and DE ports (note
that hook is not a converter port but can be connected di-
rectly to the ELN module). The heart of the system con-
sists in four circuits modeled in ELN with our tool, in-
tegrated into an environment built upon three TDF and
one DE module.

Figure 6 shows an overview of the overall SysML
based design created with our tool. It really looks like
a SystemC AMS representation, therefore offering a
smooth transition for designers used to SystemC AMS.
The two modules on the left represent the phone device,
the central module represents the phone circuit, and the
two modules on the right capture the subscriber line.

Figure 7 displays the design of the ELN part, made
of the four circuits. Again, a particular care was taken
such that it resembles to the graphical SystemC AMS
representations found in [1], while offering the capabil-
ity of model-driven toolkits in terms of verification and
code generation.

A larger case study, showing the high-level de-
sign of an AMS prototype of an analog-digital con-
verter, is explained in [15]. Our tool helped colleagues
from the analog design group—from whom the from-
scratch analog design originated—, to make their de-
sign parametrizable for high-level exploration.

6. Conclusion and Future Work

We have introduced a tool that seamlessly in-
tegrates SystemC AMS-based designs of analog and
mixed-signal systems within a complementary SysML
high-level modeling environment. This facilitates the
creation of platforms that harmoniously integrate three
SystemC AMS Models of Computation (MoCs) within
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Figure 6: SystemC AMS diagram of POTS circuit and TDF Modules

Listing 1 Code generation and scheduling algorithm
(simplified wrt. [15])

1: procedure GENERATECODE ▷ T time step, B
block, C cluster, M module

2: for each TDF cluster CTDF do
3: generate cluster code
4: for all TDF blocks BTDF in CTDF do
5: CALCULATESCHEDULE (CTDF)
6: if BTDFTDF block then
7: generate TDF block code
8: for all MELN ∈ CELN do
9: calculate TCELN

10: CALCULATESCHEDULE (CTDF)
11: if CTDF schedulable then
12: generate ELN code
13: end if
14: end for
15: end if
16: end for
17: end for
18: end procedure

a single topcell. A standout functionality of our tool is
its capability to validate both schedulability and causal-
ity before generating SystemC AMS code.

In this paper, we have focused on the hardware de-
sign aspect, leaving the aforementioned software poten-
tial untouched. Case studies with a larger proportion of
software are planned for future work. The strength of
the underlying tool [3] lies in the verification of soft-
ware running on embedded hardware.

We also plan to extend the tool to generate Sys-
temC AMS Linear Signal Flow, thus enlarging the class
of applications that can be treated. A remaining chal-
lenge lies in formally proving the consistency between
TDF and ELN MoCs in converter modules. Currently,
we rely on the SystemC AMS simulator for this pur-
pose.
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