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We present cross sections for the formation of positronium chloride (PsCl) in its ground state from the charge exchange between
positronium (Ps) and chloride (Cl−) in the range of 10 meV - 100 eV Ps energy. We have used theoretical models based on the first
Born approximation in its three-body formulation. We simulated the collisions between Ps and Cl− using ab-initio binding energies
and positronic wave functions at both mean-field and correlated levels extrapolated to the complete basis set limit. The accuracy of
these ab-initio data was benchmarked on the PsF system with existing highly accurate results including very recent quantum Monte
Carlo results. We have investigated Ps excited states up to n = 4. The results suggest that the channel Ps(n = 2) is of particular
interest for the production of PsCl in the ground state, and shows that an accurate treatment of the electronic correlation leads to a
significant change in the global shape of the PsCl production cross section with respect to the mean-field level.

I. INTRODUCTION

Positronium Chloride (PsCl) is a compound made of mat-
ter and anti-matter (one positron), the existence of which was
first predicted in 19531. A first experimental evidence was
obtained a decade later, in 1965, through the observation of
a “shoulder” in positron annihilation lifetime spectra, inter-
preted as the production of PsCl by the capture of one positron
in a mixture of chlorine and argon gas2. The proposed mech-
anism was a charge exchange reaction between chlorine (Cl2)
molecules and positronium (Ps) atoms produced by collisions
between positrons (e+) and argon atoms. In spite of such sig-
nificant insight, no direct measurement of the binding energy
of PsCl had been reported while first computations of its en-
ergy spectrum were performed in 19923. To date, our knowl-
edge on PsCl is still extremely sparse. However, the accumu-
lation and storage of positrons in Surko-Penning-Malmberg
traps4 offer possibilities to form PsCl in, so far, unexplored
ways and within a time-window of a few nanoseconds so that
it can be synchronized with laser pulses for spectroscopy. This
perspective has been identified in recent theoretical studies in-
vestigating the formation of positron binding atoms through
laser-assisted photorecombination5, charge exchange reac-
tions between positronium atoms excited in Rydberg levels6,
neutral atoms7. The AEgIS (Antihydrogen Experiment: grav-
ity, Interferometry, Spectroscopy)8,9 project has demonstrated
pulsed production of antihydrogen via a charge exchange re-
action two years ago10.

Regarding now the simulation of positronic systems, there
are two types of experimentally relevant quantities: the ob-
servables that can be fully computed using ab initio tech-
niques, and the more complex cross sections which necessar-
ily imply further approximations. Regarding the first cate-
gory, the crucial quantities to be determined are typically the
energy binding of the positron to the electronic system, the
annihilation rate of the electron-positron yielding to the life-
time of the positron and the normalization integral describ-
ing the spatial attachment of the positron to the electronic
system. These quantities can be obtained using either many-

body perturbation theory (MBPT)11–14, or more standard wave
function based ab initio approaches such as Quantum Monte
Carlo (QMC)15–22, explicitly correlated gaussians23 and post-
Hartree-Fock (HF) calculations24,25. A commonly acknowl-
edged fact is that these quantities strongly depend on the level
of treatment of the correlation effects arising between the elec-
trons and the positron. An advantage of QMC approaches is
certainly the possibility to use very complex parametrization
for the variational wave functions thanks to the use of explicit
electron-positron correlation factors. The use of correlation
factors enables to satisfy the electron-positron cusp conditions
and more generally to describe the short-range correlation ef-
fects, to the price of stochastic optimization techniques.

On the other hand, post-HF and MBPT approaches can eas-
ily access the relevant spectroscopic quantities but require rel-
atively high angular momentum expansions and further ba-
sis set extrapolation techniques in order to mitigate the basis
set incompleteness error which mostly comes from the short-
range correlation effects. Nevertheless, it has been shown12

that all relevant quantities do not convergence at the same rate
with respect to the maximum angular momentum used in the
basis. According to the study of Ludlow et al.12, the binding
energy of the positron converges much faster than the annihi-
lation rate with respect to the maximum angular momentum
used in the basis set. The latter can be expected as the annihi-
lation rate is a direct measure of the on-top electron-positron
pair density averaged over the positronic system, while the
binding energy largely benefits from the cancellation of errors
between the description of the mixed positronic system and
the purely electronic system.

In the present manuscript, we investigate the mixed elec-
tronic/positronic structure of PsCl, followed by its formation
through a charge exchange reaction in a similar way to the
seminal GBAR (Gravitational Behaviour of Antihydrogen at
Rest)26,27 production scheme for antihydrogen. We therefore
investigate not only the binding energy of the positron but also
the cross section involved in the charge exchange.

When the computation of a cross section is required, fur-
ther approximations than the usual Born-Oppenheimer ap-
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proximations are mandatory. A commonly used strategy to
simulate the scattering process is the so-called first Born ap-
proximation (FBA)7 which in our case requires the following
ingredients: i) the positron binding energy of the positron-
ium chloride system, ii) the single-particle picture (SPP) of
the positron wave function embedded in the electronic system,
and iii) the one-electron densities of PsCl and Cl−, where the
latter is needed to determine the effective screened Coulomb
potentials involved in the continuum part of the collision pro-
cess. Therefore, the computation of cross sections does not re-
quire to evaluate the electron-positron contact density13 linked
to the annihilation rates, which very slowly converge with the
quality of the basis set in post-HF and MBPT approaches.
However, accurate values of the energy differences are re-
quired, especially between PsCl and Cl− given ii).

In order to investigate the dependency of quantities related
to the collision process with respect to the level of calcula-
tions, we use post-HF ab-initio methods from quantum chem-
istry. The use of restricted Hartree-Fock (RHF), configuration
interaction with single and double substitutions (CISD), and
linearized coupled cluster with single and double excitations28

(LCCSD) in increasingly large basis sets, together with basis
set extrapolation techniques29,30, allows us to investigate the
impact of correlation effects on the cross section of PsCl for-
mation. We first benchmark our methodology by computing
the electron binding energy of an other positronium halide,
namely PsF, and compare our results with the state-of-the-art
QMC calculations together with multi reference CI (MRCI)
and MBPT calculations in B-spline basis sets extrapolated to
the complete basis set (CBS) limit. We show that the positron
binding energy obtained by extrapolating our LCCSD results
agrees within 1 mH with both the MBPT results of Ref. 12
and with the diffusion Monte Carlo (DMC) using an antisym-
metrized geminal power (AGP) trial wave function of Ref.
22. We continue with the computation of the binding energy
of PsCl and compare with the available MRCI and MBPT
results. We then focus on the simulation of the cross sec-
tion of PsCl, and show that the correlation treatment affects
both qualitatively and quantitatively the latter by significantly
changing both its shape and magnitude. We further assess the
validity of our results through a systematic investigation of
other collision related quantities with respect to the quality of
the basis. We observe that the main dependence of the PsCl
cross section to the basis set is induced by the slow conver-
gence of the energy differences corresponding to the attach-
ment/detachment of particles (either electron or positron) in
correlated treatment.

The paper is organized as follows. Details on our theoret-
ical models are described in section II. The results are dis-
cussed in section III. We conclude and discuss some perspec-
tives of our work in section IV. Atomic units are used through-
out the paper unless specified otherwise.

II. METHODOLOGY

In this section, we first present the general approach used
to model the collision reaction of interest and compute the re-

lated cross sections. We then provide technical details on the
atomic structure computations to obtain energies, electronic
densities and single particle wavefunctions needed as input
for the cross section evaluation. This part, which consists in
adapting standard quantum chemistry approaches to account
for the presence of a positron in the electronic cloud of chem-
ical species, represent the main methodological development
of the present study.

1. First Born approximation models for the treatment of
charge exchange between Ps and Cl−

Cross sections related to the production of PsCl in the
ground state are obtained using perturbative approaches based
on the first Born approximation. We will consider the reaction

Ps(nℓ) + Cl−→ PsCl(1s+) + e−, (1)

allowing to extend an existing open-source collision code1 ini-
tially designed for the GBAR experiment to more complex
cases, which deals with the following three-body charge ex-
change processes31–33: Ps(nℓ) + p→ H(1s) + e−. In this re-
action, p stands for antiproton and (nℓ) for the quantum num-
bers characterizing the positronium state, as Ps can be pre-
pared in an excited state. The quantum treatment of such
many-body collision reactions requires to describe both the
continuum and bound parts of the collision partners in the en-
trance and exit channels. For the continuum part, one may
include Coulomb distortions - Continuum Distorted Wave Ini-
tial State (CDW) - or discard them - Coulomb Born Approxi-
mation (CBA) - in the entrance channel. These distortions oc-
cur when the electron and positron that forms the incident Ps
are in the vinicity of the antiproton target. In the exit channel,

e−
e−

e+
e+

q

Cl−

Ps
r

s s

r

q

θ

φ

kβ

kα z

charge −
charge +
Cl nucleus

Figure 1: Coordinates used for the studied charge exchange
reaction given in Eq. (1). The bound states present in the entrance
channel are circled. The blue and green straight lines correspond to
the coordinates which are used to define the effective short-range
perturbative potential in prior and post form, respectively. The
wavevectors kα and kβ are those of the incident Ps and the ejected
electron, such that the diffusion angle is defined by θ = (k̂α, k̂β).
The direction chosen for kα implies that the collision is invariant by
a rotation of angle φ around the z-axis.

1 See https://gitlab.com/k.levequesimon/thesis.

https://gitlab.com/k.levequesimon/thesis
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the propagation of the ejected electron is described by a plane
wave due to the neutral charge of the produced antihydrogen
atom.

Adapting the first reaction of GBAR to the production of
PsCl by substituting the antiproton that captures a positron
by a chlorine anion requires, first, to compute the structural
data associated with PsCl. These input data correspond to the
one-electron density of PsCl (and Cl− also if the CDW for-
malism is employed), the single-particle picture of the ground
state radial wavefunction of the positron bound to Cl−, and the
corresponding positron binding energy. The S-matrix associ-
ated with the collision is computed in the post form, which
means that the chosen effective short-range perturbative po-
tential describes the propagation of the ejected electron in the
continuum of the produced positronium chloride. In addition,
the many-body bound parts of this perturbative potential can
be described using standard quantum chemistry calculations,
adapted here for the inclusion of a positron in the electronic
structure of Cl− as detailed in subsection II 2. Using the spa-
tial coordinates depicted in Fig. 1, the latter is expressed as

Vβ(r, s) =
1

|r|
− 1

|q|
+

[ ∫
R3

dr′
ρβ(r

′)

|r − r′|
− (ZA + 1)

|r|

]
. (2)

In the above equation, ρβ(r) =
∑ZA

i=1 |ϕi(r)|2 is the elec-
tronic density of PsCl, r and s are respectively the coordi-
nates of the electron and of the positron with respect to the
chlorine nucleus with atomic number ZA = 17. The relative
coordinate q = r − s coincides with the Ps center of mass in
the entrance channel. In the framework of GBAR (Ps + p),
the square brackets term in Eq. (2) vanishes as the antiproton
charge is equal to −1 and that no electron constitutes H. As a
result, the one-electron density ρβ of the produced positronic
atom is zero. In the present framework (Ps + Cl−), the term
−ZA/|r| in square brackets describes the Coulomb attractive
interaction between the ejected electron and the nucleus. In
counterpart, the Hartree potential allows the presence of more
than three bodies in the charge exchange processes, by tak-
ing into account that the ejected electron feels, at a distance
r from the nucleus, an electronic charge density34. Details of
the cross section calculations are given in Appendix A.

2. Ab-initio treatment of a mixed positronic/electronic
system

In the framework of the Born-Oppenheimer and infinite
mass approximations, the Hamiltonian of a chemical species
with a positron embedded in its N -electron cloud is given by

H =

N∑
i=1

(
− 1

2
∆i + Vext(ri)

)
+

N∑
i=1

∑
j>i

1
|ri − rj |

− 1
2
∆p − Vext(rp)−

N∑
i=1

1
|ri − rp|

. (3)

In this expression, Vext(r) = −
∑

A ZA/|r −RA| is the ex-
ternal electrostatic potential created by the nuclei of charge

ZA located at RA. The spatial coordinates ri and rp are
those of the i-th electron and the positron, respectively. The
two first terms correspond to the purely electronic Hamilto-
nian, the next two to the Hamiltonian of the positron, and the
last one to the Coulomb (attractive) interactions between the
electrons and the positron.

With respect to the usual purely electronic Hamiltonian,
one needs to consider an additional particle of positive charge
interacting with the N electrons and the nucleus 2. Our elec-
tronic and positronic structure calculations rely on three levels
of approximations: the RHF, CISD and LCCSD approaches
and we give hereafter the main differences with respect to
their usual purely electronic versions. The SPPs used here are
either the RHF orbitals or the natural orbitals of the LCCSD
wave function projected on the CISD subspace (i.e. the RHF
determinant and the single- and double substitutions), both for
electrons and for the positron.

The RHF approach needs to be extended in two ways: i)
one needs to optimize the orbitals of the positron and ii) the or-
bitals of the electrons have to be optimized taking into account
the presence of the positron. Point i) is achieved by expand-
ing the positron’s orbitals on a basis of atomic orbitals (AOs)
set and computing the corresponding Fock matrix which ac-
counts for the purely one-body part together with the attrac-
tive Coulomb interaction with the electrons. Point ii) is dealt
with by adding the attractive Coulomb interaction with the
positron’s charge density to the usual Fock matrix. In our
framework, we use the same AOs basis set for both electrons
and positron for practical reasons. The equations related to the
Fock matrices for both electrons and the positron are given in
Ref. 35. As usual in Roothan-Hall equations, a damping of
the order of 20% is also introduced in the self-consistent pro-
cess to avoid convergence problems.

Regarding the CISD approach, the Slater-Condon rules are
changed by the presence of the positron and the size of the
CISD matrix to be diagonalized is larger. For CI methods
in general, any element of the Hilbert space is a Slater de-
terminant |I⟩ which is expressed as |I⟩ = |Iα⟩ ⊗ |Iβ⟩ ⊗ |ip⟩,
where |Iα/β⟩ are Slater determinants of α/β electrons, and
|ip⟩ is the orbital occupied by the positron. Regarding now
the composition of the CISD wavefunction, it contains addi-
tional terms with respect to the usual purely electronic wave-
function, which are:

• all usual single and double electronic excitations with
the positron in the lowest orbital,

• all positronic single excitations with the electrons de-
scribed by the HF Slater determinant,

• all products of single excited electronic determinants by
single excited positronic determinants.

The LCCSD equations of Bartlet28 are implemented as a
self-consistent coupled electron pair zero (CEPA0) following
the work of Alrichs36. The latter corresponds in practice in an
iterative dressing of the CISD matrix as follows:

2 Since we consider a single positron in absence of an external magnetic
field, its spin plays no role and is discarded in the present study.
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• at a given iteration n, one adds the correlation energy
E(n)

corr to all the diagonal element of the CISD matrix ex-
cept the Hartree-Fock Slater determinant,

• the dressed CISD matrix is then diagonalized to obtain
new CI coefficients and correlation energy E(n+1)

corr ,
• the iteration is stopped when the correlation energy is

converged within to 10−6 au.

Basis/System F F− PsF
RHF Ecorr(CISD) Ecorr(LCCSD) RHF Ecorr(CISD) Ecorr(LCCSD) RHF Ecorr(CISD) Ecorr(LCCSD)

AVTZ-MOD -99.40218 -0.21684 -0.22550 -99.45083 -0.27799 -0.29626 -99.63445 -0.30157 -0.33111
AVQZ-MOD -99.40925 -0.23350 -0.24286 -99.45747 -0.29666 -0.31604 -99.64140 -0.32298 -0.35584
AV5Z-MOD -99.41120 -0.23976 -0.24934 -99.45926 -0.30352 -0.32241 -99.64322 -0.33125 -0.36508
Estimated CBS -99.41120 -0.24632 -0.25613 -99.45926 -0.31071 -0.32908 -99.64322 -0.33993 -0.37479

Energy difference EA = E(F)-E(F−) PBE = E(F−)-E(FPs) BE = E(F) + E(Ps)a - E(FPs)
RHF CISD LCCSD RHF CISD LCCSD RHF CISD LCCSD

AVTZ-MOD 0.04865 0.10980 0.11941 0.18362 0.20720 0.21847 -0.01773 0.06700 0.08788
AVQZ-MOD 0.04822 0.11138 0.12140 0.18393 0.21025 0.22373 -0.01785 0.07163 0.09513
AV5Z-MOD 0.04806 0.11182 0.12113 0.18396 0.21169 0.22663 -0.01798 0.07351 0.09776
Estimated CBS 0.04806 0.11245 0.12101 0.18396 0.21318 0.22967 -0.01798 0.07563 0.10068
Other works
Estimated Exactb 0.12490
VMC/DMCc 0.12526(35)/0.12659(56) 0.20752(25)/0.22874(66) 0.08278(35)/0.10533(66)
MBPTd 0.22778 0.09988
MRCIe 0.12473 0.22840 0.10312

Table 1: Calculations for the F, F− and PsF systems in the aug-cc-pVXZ-mod (AVXZ-MOD) basis sets with X = T,Q, 5. For each basis set
and system, we report the RHF total energies together with the correlation energies Ecorr both at the CISD and LCCSD levels. Estimated CBS
are also reported for correlation energies as extrapolations using Eq.(7) with X = 5 , and we use the RHF values in the AV5Z-MOD basis sets
for CBS mean-field energies. Electron affinities (EA), positron binding energy (PBE) and binding energy (BE) are also reported.
a: a value of −0.25 au is taken as the internal energy of Ps.
b: near exact values obtained from Ref. 37.
c: results coming from the AGP-EPO trial wave functions of Ref. 22.
d: MBPT results extrapolated at the CBS limit using the

∑(2+Γ+3) approximations for the self-energy of Ref. 12.
e: Multi-reference CI calculations extrapolated to the CBS limit of Ref. 25.

The advantage of LCCSD over CISD is that it is free from
size extensivity error, i.e. it does not introduce an increas-
ing error when increasing the number of correlated particles.
Within our implementation, it consists in a series of CISD-
like diagonalization, and the process is typically converged
within five or six iterations. The choice of LCCSD is also mo-
tivated by the observation38 that the LCCSD results, while ne-
glecting exclusion of Pauli violation diagrams, are very com-
petitive with their exact level of treatment, namely the cou-
pled cluster with single and double substitution (CCSD). The
LCCSD is therefore known to perform accurately on molec-
ular systems near ther equilibrium geometries, but disconti-
nuities arise when bonds are stretched. Nevertheless, as the
present calculations are performed atoms and their positron-
ized versions, we do not expect to face such problems.

In order to estimate and mitigate the incomplete basis set
error, we employ the two-point CBS extrapolation as usually
done in quantum chemistry29,39, which allows us to obtain
reliable estimation of the correlation energy for each system
near the CBS limit. The CISD correlation energy for a given

basis set characterized by the cardinal number X is defined as

Ecorr(X) = ECISD(X)− ERHF(X) < 0, (4)

and similarly for the LCCSD correlation energy, where one
just replace ECISD(X) by ELCCSD(X).

The CBS extrapolation method consists in assuming a
power law for the correlation energy with respect to X

Ecorr(X) = E∞
corr + aX−b, (5)

where E∞
corr is the unknown CBS limit of the correlation en-

ergy. By differentiating this equation at X and X− 1, one can
eliminate the linear free parameter a in Eq. (5) leading to

E∞
corr =

Ecorr(X)Xb − Ecorr(X−1)(X−1)b

Xb − (X−1)b
, (6)

which depends only on the non-linear free parameter b, which
has been set to 3 based on benchmarks numerical tests29,39.
One should notice that E∞

corr depends on the maximal cardinal
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number used for the extrapolation. We then estimate the CISD
energy near the CBS limit using the following equation

E∞
CISD ≃ ERHF(X=5) + E∞

corr, (7)

and similarly for the LCCSD energy.

Basis/System F F− PsF
AVTZ -99.40208 -99.45081 -99.60883
AVQZ -99.40921 -99.45746 -99.62122
AV5Z -99.41120 -99.45926 -99.62768

Table 2: RHF calculations for the F, F− and PsF systems in the
usual augmented Dunning aug-cc-pVXZ (AVXZ) basis sets with
X = T,Q, 5.

In the following, we consider Eq. (7) using the LCCSD
correlation energy as the theoretical best estimate (TBE) when
E∞

corr is evaluated from Eq. (6) at X = 5.

III. RESULTS

1. Computational details

We applied the frozen-core approximations in all CISD and
LCCSD calculations, which corresponds to a [He] and [Ne]
core in the fluorine and chlorine based calculations, respec-
tively. Regarding the AO basis sets considered here, we use
modified versions of the standard aug-cc-pVXZ Dunning’s
family of basis sets with X = T,Q, 5, labelled here as “aug-
cc-pVXZ-mod” (AVX-MOD), with extra diffuse functions.
The latter are constructed from the usual aug-cc-pVXZ basis
sets by the following procedure: for each angular momentum
in the AO basis, one adds three AO functions whose Gaussian
exponents follow a geometric progression with one-half com-
mon ratio by taking, as reference, the smallest Gaussian expo-
nent of the angular momentum considered. We implemented
the extensions to positronic matter of the RHF, CISD and
LCCSD approaches as a pluggin of the open-source, Quan-
tum Package (QP) programming environment40. The cross
sections were calculated by interfacing the collision code with
the QP software. Regarding now the energy differences in-
volving the energy of the Ps atom, as the localised Gaussian
basis functions used in this present work are inappropriate for
this system, we simply consider the exact Ps binding energy of
−0.25 au obtained by solving the hydrogenoid problem with
a reduced mass µ = 1/2.

2. Benchmarking the Ab-initio approach on PsF

Before studying the attachment of a positron to a chlorine
anion, we begin our study by investigating the performance
of our approaches on a smaller positronic halide, namely PsF,
with other state-of-the-art methods to compute positronic sys-
tems. In the case of the PsF atom, our reference values are

the diffusion Monte Carlo (DMC) results of Ref. 22 ob-
tained with refined correlation factors multiplied by an anti
symmetrized geminal power together with electron-positron
orbitals (AGP-EPO) trial wave functions fully optimized in
Variational Monte Carlo (VMC). We also report the basis-set
extrapolated MBPT12 and multi-reference CI25 (MRCI) cal-
culations for comparison with purely orbital-based ab initio
methods (i.e. without any correlation factors). For a given
chemical species A, we focus in the present work on the fol-
lowing energy differences: the electron affinity (EA) defined
as EA=E(A) - E(A−), the positron binding energy (PBE) de-
fined as PBE=E(PsA) - E(A−) and the binding energy (BE)
defined as E(A) + E(Ps) - E(PsA). We report in Tab. 1 the
calculations of RHF total energies, CISD and LCCSD corre-
lation energies together with the corresponding EA, PBE and
BE in increasingly large AVXZ-MOD basis sets up to CBS
extrapolation. We also compare with the MBT12 and MRCI25

results together with the references QMC values22 for these
systems, which are also reported in Tab. 1. For comparison,
we also performed RHF calculations in the standard aug-cc-
pVXZ augmented Dunning basis sets (AVXZ) for these three
species and present the values in Tab. 2.

Comparing first the RHF energy in the AVXZ and AVXZ-
MOD basis sets, it clearly appears that the addition of extra
diffuse functions in the latter basis sets allows for a smoother
convergence of the total energy for all systems, including the
positronic system. From the quantitative point of view, while
the difference in total energies between the AVQZ-MOD and
AV5Z-MOD basis sets is of about 0.002 au for all species, it
is considerably larger when using the standard Dunning basis
sets only for the PsF system. The latter illustrates the need
of additional diffuse functions to describe the density of the
positron attached to the F− anion, which strongly suggests
the use of the AVXZ-MOD basis sets instead of the standard
augmented Dunning basis sets.

Regarding now the behaviour of the correlation energy with
the basis set, from Tab. 1 it appears that it converges at a
slower rate for the PsF system than for F and F−. From a
quantitative point of view, the difference in correlation en-
ergy between the AVQZ-MOD and AV5Z-MOD basis set is
of about 0.006 au for F and F− while it is of about 0.009 au
for PsF. The latter highlights the slower convergence of the
electron-positron correlation effects with respect to the usual
electron-electron correlation counterpart.

Focussing now on the energy differences, from Tab. 1 two
global observations can be made: i) the correlation contribu-
tion to the EA, PBE and BE is remarkably large compared to
the RHF contribution to these energy differences, ii) there is
a significant difference between the CISD and LCCSD val-
ues. Comparing the EA at CISD and LCCSD levels with the
near exact non relativistic values of Ref. 37, the error with the
CBS extrapolated LCCSD values is less than 0.004 au while
the error is multiplied by 3 with the CBS extrapolated CISD
results.

Focussing now on the PBE, we can notice that the CBS ex-
trapolated CISD results have an error of about 0.016 au with
respect to the DMC results, while CBS extrpolated LCCSD
results agree with the DMC with less than 0.001 au, and simi-
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larly for the MBPT and MRCI results. Eventually one can no-
tice that both LCCSD and MBPT slightly underestimates the
BE of about 0.004 au with respect to DMC, while the under-
estimation is of about 0.002 au using the extrapolated MRCI.
Overall, this study on the PsF system shows that the post-
HF methods, such as our LCCSD approach and the MRCI
of Sato25, together with the MBPT methods, once extrapo-
lated near the CBS limit, manage to accurately describe the
electron-positron correlation effects playing a differential role
in the BE and PBE even if they do not use any correlation
factor.

3. Ab-initio study of the stability of PsCl

We continue our study by investigating the energy differ-
ences associated with the species involved in the various dis-
sociation channels of PsCl, in a similar way that what was

done in subsection III 2 for PsF. We report in Fig. 2 and Tab.
3 the results obtained with our ab initio approaches, together
with the existing MRCI25 and MBPT12. In Fig. 2, the EA,
PBE and BE energy differences are depicted in unit of elec-
tronvolt. In Tab. 3 the results draw similar conclusions than
on the study of PsF: there is a slower convergence of the cor-
relation energy with respect to the basis set for the positronic
system, and there is a significant difference between the CISD
and LCCSD results. Comparing now with the preexisting val-
ues in the literature for the energy differences, we notice that
our CBS extrapolated LCCSD results are in reasonable agree-
ment with the MRCI results (within 0.002 au for the EA, 0.001
au for the PBE, and 0.0035 au for the BE) and the MBPT
results (within 0.0065 au for the PBE and within 0.005 au
for the BE). We can then conclude that our CBS extrapolated
LCCSD results are reliable for the various energy differences
computed on the PsCl system.

Basis/System Cl Cl− PsCl
RHF Ecorr(CISD) Ecorr(LCCSD) RHF Ecorr(CISD) Ecorr(LCCSD) RHF Ecorr(CISD) Ecorr(LCCSD)

AVTZ-MOD -459.48027 -0.18289 -0.19712 -459.57349 -0.21153 -0.23092 -459.71650 -0.23923 -0.27317
AVQZ-MOD -459.48331 -0.19617 -0.21180 -459.57635 -0.22802 -0.24948 -459.71944 -0.25916 -0.29910
AV5Z-MOD -459.48380 -0.20086 -0.21699 -459.57679 -0.23356 -0.25558 -459.71988 -0.26660 -0.30956
Estimated CBS -459.48380 -0.20578 -0.22243 -459.57679 -0.23937 -0.26198 -459.71988 -0.27441 -0.32053
Energy difference EA = E(Cl)-E(Cl−) PBE = E(Cl−)-E(ClPs) BE = E(Cl) + E(Ps)a - E(ClPs)

RHF CISD LCCSD RHF CISD LCCSD RHF CISD LCCSD
AVTZ-MOD 0.09322 0.12186 0.12702 0.14301 0.17071 0.18526 -0.01377 0.04257 0.06228
AVQZ-MOD 0.09304 0.12489 0.13072 0.14309 0.17423 0.19271 -0.01387 0.04912 0.07343
AV5Z-MOD 0.09299 0.12569 0.13158 0.14309 0.17613 0.19707 -0.01392 0.05182 0.07865
Estimated CBS 0.09299 0.12658 0.13254 0.14309 0.17813 0.20164 -0.01392 0.05471 0.08418
Other works
Estimated Exactb 0.133
MBPTc 0.20718 0.08956
MRCId 0.13381 0.20256 0.08636

Table 3: Calculations for the Cl, Cl− and PsCl systems in the aug-cc-pVXZ-mod (AVXZ-MOD) basis sets with X = T,Q, 5. For each basis
set and system, we report the RHF total energies together with the correlation energies Ecorr both at the CISD and LCCSD levels. Estimated
CBS are also reported for correlation energies as extrapolations using Eq.(7) with X = 5 and X = Q, and we use the RHF values in the
AV5Z-MOD basis sets for CBS mean-field energies. ² Electron affinities (EA), positron binding energy (PBE) and binding energy (BE) are
also reported.
a: a value of -0.25 au is taken as the internal energy of Ps.
b: near exact values obtained from Ref. 37.
c: MBPT results extrapolated at the CBS limit using the

∑(2+Γ+3) approximations for the self-energy of Ref. 12.
d: Multi-reference CI calculations extrapolated to the CBS limit of Ref. 25.

4. PsCl production cross sections

The computation of the PsCl production cross section relies
on the ab-initio results obtained above with the many-body
electron-positron wavefunctions. The two frames of Fig. 3
depict quantities derived from the PsCl wavefunction involved
in the cross section calculations. These data were generated

using the AV5Z-MOD basis set in both RHF and LCCSD ap-
proximations. The SPPs of the radial wavefunctions of the
frozen/active electrons and of the positron bound in PsCl are
shown in Fig. 3(a). At the level of RHF approximation, we
find that these SPPs of the radial wavefunctions are in good
agreement with those obtained by Cade et al.42. The slight
difference between the SPP of the LCCSD radial wavefunc-
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Cl− + e+

[Ps]exact + Cl

PsCl

Cl + e+ + e−

3.607 eV

2.291 eV
5.487 eV
5.512 eV
5.638 eV

LCCSD
MRCI
MBPT
Exp.

Energy differences (eV)

3.641 eV

2.350 eV

2.0± 0.5 eV

2.437 eV

[Ps]exact + ClFigure 2: Energy level diagrams of PsCl computed with: (green)
our TBE estimates of the LCCSD; (violet) the MRCI reference
values of Saito et al.25; (blue) the MPBT values of Gribakin et al.12;
(brown) experimental value of the Ps binding energy (BE) in PsCl41.
For the dissociative states, only the thresholds (zero relative kinetic
energy) are shown.

tion of the positron bound to Cl− and the one obtained in the
RHF approximation reflects a weakly correlated system. For
core electrons, the SPPs of the radial wavefunctions of elec-
trons bound in PsCl are identical in both approximations, as
expected in the frozen core approximation. The perturbative
potential for the charge exchange transfer in PsCl production
is reported in Fig. 3(b), and we verify numerically that the
potential i) is asymptotically null and ii) tends faster towards
zero than the Coulomb interaction which takes place between
an antiproton and an electron in the case of GBAR.

The partial cross sections for Ps states for n ≤ 4 are dis-
played in Figs. 4(a)-(b) for CBA and CDW models. These
cross sections are given in units of πa20 = 0.88×10−16 cm2

as a function of the Ps impact energy. For both models con-
sidered here, we observe that cross sections decrease as a
function of Ps impact energy. This illustrates the fact that the
capture probability of the positron by the negatively charged
target decreases as the Ps impact energy increases. In ad-
dition, both models predict that the cross sections decrease
when considering final excited states of Ps. Except for the
Ps(n = 1) channel where the reaction threshold lies at 2.88
eV (RHF) and 1.44 eV (LCCSD), respectively, we emphasize
that all channels are open at low Ps impact energies. In this
energy range, the behaviour of CBA cross sections is differ-
ent from those of CDW cross sections. Indeed, the inclusion
of Coulomb distortions in the entrance channel leads to a col-
lapse of the cross sections at low Ps impact energy (Fig. 4(b)).

By analogy with GBAR, we thereafter turn our attention to
the CBA cross sections, as the comparison between experi-
mental data44 and previous results obtained by Comini et al.45

in the case of ground state positronium suggest that CBA is
more reliable than CDW.

Within the 3−10 eV impact energy range, the CBA results
(Fig. 4(a)) show that the consideration of a chloride anion
target leads to larger cross sections than an antiproton target

(GBAR) when the positronium is in its ground state (n = 1).
Since the incident velocity of the Ps distribution expected in
future experiments will be of the order of 105 m.s−1 (see Ref.
6), which corresponds to kinetic energies below 100 meV, the
incoming channel Ps(n = 2) which dominates at low Ps im-
pact energy is of particular interest. This shows first that laser
excitation of Ps is experimentally required to achieve the pro-
duction of PsCl, as the Ps(n = 1) channel is closed in this low
energy range. In second instance, we specify that due to the
experimental constraints the 2s metastable state of Ps is often
favoured over the 2p state. This is because the 2s state of Ps,
which can be produced by driving the 13s−33p and 33p−23s
transitions46, has a long annihilation lifetime. In the configu-
ration ortho (o-Ps), the latter is in fact eight times larger than
those of the ground state47 (8×142 ns).

In terms of numerical convergence, mismatches are ob-
served between the cross sections involving the RHF and
LCCSD data associated with PsCl. These discrepancies il-
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Figure 3: Structure of PsCl at the AV5Z-MOD level of description.
(a) Evolution of the SPPs of the radial wavefunctions
Pnℓ(r) = rRnℓ(r) of the electrons (for the 1s−3p orbitals) and of
the positron (for the lowest energy orbital) bound in PsCl as
functions of the distance r from nucleus. The following approaches
are employed: (continuous line) RHF; (dashed line) LCCSD.
(Circle) SPPs of the HF radial wavefunctions of the electrons and of
the positron bound in PsCl extracted from Ref. 42. (b) Evolution of
the absolute value of the square brackets term in Eq. (2) as a
function of the distance from the nucleus.
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Figure 4: Evolution of the partial cross sections associated with
the main channels (n ⩽ 4) of reaction (1), summed over ℓ as
functions of the Ps impact energy using the AV5Z-MOD basis set.
In the formulation: (a) CBA; (b) CDW. The data associated with
PsCl involving these two basis sets are generated in the following
approximations: (continuous line) RHF; (circle) LCCSD.
Hydrogen-like radial wavefunctions for Ps and 26 partial waves to
ensure the convergence of the transition amplitude are considered.
In the framework of GBAR experiment: (dashed line) H(1s)
production cross sections from the Ps(1s) + p charge exchange
transfer in CBA/CDW formulation; (plus) Unitarized Born
Approximation (UBA)43 cross sections for the same reaction.

lustrate the importance of correlation in the structure and re-
activity of the positronium chloride system. For instance, the
CBA partial cross section for Ps(n = 3) computed from the
RHF data is equal to 26.04 πa20 (resp. 1.75×10−3 πa20) for an
impact energy of 1 eV (resp. 50 eV), while when LCCSD data
are used we obtain 13.33 πa20 (resp. 0.78×10−3 πa20), respec-
tively. The differences between RHF and LCCSD values for
the CBA cross sections can be attributed to the change in i)
the positron binding energy or ii) the shape of the SPP of the
radial wavefunction of the positron bound to Cl−. In order to
understand which effect is dominant, we recalculated the CBA
cross sections by combining on the one hand the RHF bind-
ing energy and the SPP of the LCCSD radial wavefunction of
the bound positron, and on another hand the LCCSD binding
energy and the SPP of the RHF radial wavefunction. This ap-
proach is justified when considering the AV5Z-MOD basis set
which induces a negligible error on the effective short-range

perturbative potential (see Fig. 3(b)). The results are shown in
App. B(a) for Ps(n = 2). It establishes that the cross sections
discrepancies arise from the difference on positron binding en-
ergies between RHF and LCCSD for Ps impact energies below
10 eV, and from the difference on the SPPs of radial wavefunc-
tions of the positron for a higher impact energies. This is due
to the fact that at low impact energies, the Ps kinetic energy
v2 involved in the energy conservation law

k2β

2
= v2 + ϵn − ϵ1s+, (8)

takes values on the same order of magnitude than the positron
binding energy ϵ1s+, as reported in Tab. 3, noting that below
10 eV, v2 < 0.37 au. It results that for a given Ps binding en-
ergy ϵn = −1/(4n2), the ejected electron energy is strongly
modified by a small variation of the positron binding energy.
However, this is no longer true at larger impact energies, for
which the changes on the SPP of the positron radial wave-
function, negligible at low Ps impact energies, contribute to
the differences of the cross sections.

Without the inclusion of Coulomb distortions (Fig. 4(a)),
we also note that a minimum appears in each partial cross sec-
tion for Ps impact energy in the range of 25−42 eV, depending
on the internal state of Ps. Since for a given Ps binding energy
and basis set the RHF and LCCSD approximations lead to a
shift of the order of 5 eV of these minima, we conclude that
the latter are not driven by the energy conservation law, but
come from the discrepancies on the SPP of the positron ra-
dial wavefunction. Moreover, the absence of minimum in the
GBAR cross section computed for Ps(1s) suggests a Cooper
minimum-like behaviour48 of the CBA partial cross sections,
resulting from the electronic structure of the Cl− target con-
sidered here.

In Figs. 6(a)-(d) we represent the convergence of the CBA
partial cross sections as a function of the AVXZ-MOD basis
sets. According to the arguments mentioned above, these re-
sults show a faster convergence of the cross sections computed
with the RHF data than those computed with the LCCSD data.
Indeed, if we consider as a reference in Tab. 3 the positron
binding energies obtained with the AV5Z-MOD basis set, we
find that the one obtained with the TZ basis set accounts for
99.94% of the RHF value, against only 94.01% of the LCCSD
value. In order to obtain an estimate of the cross sections that
can be provided beyond the LCCSD approximation, we finally
substituted in the most accurate available data associated with
PsCl (i.e. the modified basis set of cardinal number X = 5)
the positron binding energy obtained near the CBS limit. This
corresponds to the dashed lines shown in Figs. 6. As this TBE
value of the positron binding energy of 5.487 eV is compara-
ble to the one obtained by Saito et al.24 (5.512 eV), and that
the discrepancies in the cross sections respectively computed
with the AV5Z-MOD and TBE positron binding energies re-
main small, we can deduce that the correlation effects in PsCl
are accurately taken into account for the cross section calcu-
lations.
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IV. CONCLUSIONS AND PERSPECTIVES

In the present work, we performed a theoretical study on
the possibility to produce positronium chloride in its ground
state from charge exchange between Ps and Cl−. For this
purpose, perturbative approaches based on the FBA in its
three-body formulation have been employed, using an effec-
tive short-range perturbative potential that allows dealing with
the electronic structure of the chlorine anion target. The chem-
ical structure of PsCl was modelled using ab-initio methods
at both RHF and LCCSD levels of approximations, adapted
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Figure 6: Evolution of the CBA partial cross sections as a function
of Ps impact energy for: (a) n = 1; (b) n = 2; (c) n = 3; (d)
n = 4. The data associated with PsCl are computed with the
AVXZ-MOD basis sets for X = T,Q, 5 in the following
approximations: (continuous lines) RHF; (circle) LCCSD; (dashed
line) TBE cross sections involving LCCSD approximation and the
most accurate positron binding energy obtained near the CBS limit
(i.e. −0.20164 au). For readability purpose, we used different
incident Ps energy scales in the 0.01−10 eV (left frames) and in the
10−100 eV (right frames) ranges.

here to account for the presence of a positron in the elec-
tronic cloud. We benchmarked the accuracy of the present
approaches on a smaller positronic halide, namely PsF, by
comparing with state-of-the-art QMC calculations, together
with MRCI and MBPT. We found that, once extrapolated to
the CBS limit, our LCCSD energy differences on PsF agree
with the QMC references within a few 0.001 au. Regarding
the PsCl system, the LCCSD energy differences extrapolated
near the CBS limit are comparable to those of other methods
such as MBPT and MRCI. In addition, our approach allowed
for a systematic study of the effect of electronic correlation on
the partial cross sections. The latter have been generated with
a collision code relying on ab-initio positronic wavefunctions,
electronic densities and energy differences as input. The re-
sults have shown that cross sections are significantly affected
by the electronic correlation in PsCl.

As a perspective concerning the structure calculations on
PsCl, the annihilation rate could be evaluated by first bench-
marking the electron-positron contact density on positronic
systems already studied, using the extrapolation technique
proposed by Ludlow et al. This will allow to compare the ac-
curacy of the lifetimes derived from our approach with those
of QMC methods including a correlation factor in the wave-
function. Regarding now the collisional aspect, it would be
interesting to deal with the projectile-target interaction at the
second order of the Born series49. Indeed, a more accurate
estimation of cross sections, especially at low Ps impact ener-
gies, will be obtained. At a later stage, charge exchanges be-
tween Ps and molecules such as Cl2 can also be investigated.
This can be achieved numerically as the QP software allows
to deal with molecules, in constrast to the use of the B-spline
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basis functions, and that the orientation of the molecules can
be taken into account in the effective short-range perturbative
potential50. Experimentally, this direction would make it pos-
sible to determine which of the Cl− or Cl2 targets is optimal
for the production of positronium chloride.
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A. Rotondi, H. Sandaker, R. Santoro, G. Testera, I. Tietje, V. Toso, T. Wolz,
P. Yzombard, C. Zimmer, and N. Zurlo, “Pulsed production of antihydro-
gen,” Commun Phys 4, 1–11 (2021).

11G. F. Gribakin and J. Ludlow, “Many-body theory of positron-atom inter-
actions,” Phys Rev A 70, 032720 (2004).

12J. A. Ludlow and G. F. Gribakin, “Many-body theory calcu-
lations of positron binding to negative ions,” arXiv (2010),
10.48550/arXiv.1002.3125, 1002.3125.

13J. Hofierka, B. Cunningham, C. M. Rawlins, C. H. Patterson, and D. G.
Green, “Many-body theory of positron binding to polyatomic molecules,”
Nature 606, 688–693 (2022).

14C. M. Rawlins, J. Hofierka, B. Cunningham, C. H. Patterson, and D. G.
Green, “Many-Body Theory Calculations of Positron Scattering and Anni-
hilation in H2, N2, and CH4,” Phys Rev Lett 130, 263001 (2023).

15D. M. Schrader, T. Yoshida, and K. Iguchi, “Binding energy of positronium
chloride: A quantum Monte Carlo calculation,” Phys Rev Lett 68, 3281–
3283 (1992).

16D. Bressanini, M. Mella, and G. Morosi, “Positronium chemistry by quan-
tum Monte Carlo. I. Positronium-first row atom complexes,” J Chem Phys
108, 4756–4760 (1998).

17N. Jiang and D. M. Schrader, “Diffusion quantum Monte Carlo calculation
of the binding energy and annihilation rate of positronium hydride, PsH,” J
Chem Phys 109, 9430–9433 (1998).

18M. Mella, G. Morosi, and D. Bressanini, “Positron and positronium chem-
istry by quantum Monte Carlo. IV. Can this method accurately compute
observables beyond energy?” J Chem Phys 111, 108–114 (1999).
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Appendix A: Computation of PsCl production cross
sections in CDW-IS approximation

In this part, details of analytical cross sections calculations
using CDW-IS (Initial State) approximation are presented.
These developments are mostly taken from the calculations of

the Refs. 7 and 32, where the coordinates used for the reaction
are those of Fig. 1.

The post form of the S-matrix elements, which corresponds
to the central quantity related to the transition amplitude, are
expressed as51

Sβα = −i
∫
R
dt ⟨Φβ(t)|Vβ |Φα(t)⟩ , (A1)

where |Φα(t)⟩ and |Φβ(t)⟩ are the asymptotic states associ-
ated to the entrance and exit channel, respectively. In Eq.
(A1), the expression of the effective short-range perturba-
tive potential Vβ modelling the projectile-target interaction is
given by the Eq. (2).

On the one hand, the wavefunction corresponding to the
entrance channel is defined by

Φα(r, s, t) = e−iϵnt− v2tF (+)

k−
(r)F (+)

k+
(s)ψnℓm(q), (A2)

where ϵn and v2 are respectively the binding and kinetic en-
ergies of the incident Ps. The wavefunctions of the electron
bound in Ps atom, prepared in a quantum state (nℓm), is
defined by ψnℓm(q) = Rnℓ(q)Yℓm(q̂). The Coulomb wave-
functions F (+)

k−
(r) and F (+)

k+
(r) of Eq. (A2) describe the prop-

agation of the incoming electron and positron in the contin-
uum of the target.

i) In the case of GBAR (antiproton target), their complete
expressions are analytical and given by

F (+)

k−
(r) = e−α−π/2Γ(1 + iα−)

× 1F1(−iα−; 1; i(k−r − k− ·r))eik− ·r, (A3)

F (+)

k+
(s) = e−α+

π/2Γ(1 + iα+)

× 1F1(−iα+; 1; i(k+s− k+ ·s))eik+ ·s, (A4)

where k∓ ≃ 1/2kα. In the above equations, the incident Ps
wavevector is defined by kα = 2vẑ. The Sommerfeld param-
eters α∓ = ∓ZT /v associated to Eqs. (A3) and (A4) are de-
fined as a function of a net charge of the antiproton target
ZT = −1. It should be noted that if no distortions are in-
cluded in the entrance channel (α∓ = 0), the Coulomb Born
approximation (CBA) is obtained from the present CDW-IS
approximation.

ii) In the present case (chlorine anion target), the so-
called shooting method52 is employed to numerically deter-
mine the Coulomb wavefunctions of Eq. (A2). The first
step of this method consists in the resolution of the radial
Schrödinger equations describing a negative(positive) charged
particle moving in the effective potential induced by Cl−.
For this purpose, the fourth-order Runge-Kutta integration
scheme is employed. In the framework of the local-density
approximation34, the radial Schrödinger equations needed to
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be solved are expressed as[
d2

dr2
+ 2

(
Ekin − V

(ℓ)
eff (r)

)]
Pk∓,ℓ(r) = 0, (A5)

V
(ℓ)

eff (r) =
ℓ(ℓ+ 1)

2r2
+ V (r), (A6)

V (r) = ±
[ ∫

R3

dr′
ρα(r

′)

|r − r′|
− ZA

|r|

]
+ VXC[ρα(r)], (A7)

VXC[ρα(r)] = −
(
3
π
ρα(r)

)1/3

− 0.0333 ln

[
1 + 11.4

(
4π
3
ρα(r)

)1/3
]
, (A8)

where in Eq. (A5) Pk∓,ℓ(r)/r are the radial parts of the
Coulomb wavefunctions of degree ℓ, and Ekin = k2∓/2 is the
kinetic energy of the electron(positron). In Eq. (A7), both
signs occur according to the negative(positive) charge of the
incoming electron(positron). The exchange-correlation (XC)
potential (Eq. (A8)), which is directly parametrized from the
one-electron density ρα of the chlorine anion53, is expressed
as the sum of two terms: i) the first one is exactly derivable by
a variational approach from the Hartree-Fock exchange en-
ergy and ii) the second one corresponding to the correlation
potential is not driven by the HF formalism. In a second step,
the Strömgren method54,55 is employed to normalize the ra-
dial parts of the Coulomb wavefunctions. As these normal-
izations are made on the energy scale, the solutions obtained
from the integration scheme are multiplied by

√
π(2Ekin)

−1/4,
in order to remain consistent with the normalization adopted
in the collision code through the COULFG56 subroutine. To
illustrate the present shooting method on the PsCl production
cross sections, the deviations of the CDW cross sections ob-
tained in subsection III 4 from those involving the potentials
used in GBAR (V (r) ≃ ∓ZT /|r| for r → ∞) are shown in
Appendix B(b) for the ground state of Ps.

On the other hand, the wavefunction corresponding to the
exit channel is defined by

−iϵ1s+t− i/2k2β t+ ikβ ·rψ1s+(s),Φβ(r, s, t) = e (A9)

where kβ is the wavevector of the ejected electron. The
single-particle picture of the ground state wavefunction of the
positron bound in PsCl and the associated binding energy are
respectively defined by ψ1s+(s) = R1s+(s)Y10(ŝ) and ϵ1s+.
According to the neutral charge of the produced PsCl (who
takes on the role of H in GBAR), the propagation of the
ejected electron is described by a plane wave.

Using Eq. (A2) and Eq. (A9) allows to recast the S-matrix
elements (A1) in the form

Sβα = −2iπδ
(
1/2k2β ++ϵ1s+− v2− ϵn

)
Tβα, (A10)

Tβα =

∫
R6
drdse−ikβ ·rψ∗

1s+(s)Vβ(r, s)

×F (+)
k−

(r)F (+)
k+

(s)ψnℓm(r − s), (A11)

where Tβα is the transition amplitude. The energy law con-
servation of the collision process is ensured by the δ-function
appearing in the Eq. (A10). The latter comes from the inte-
gration over time in the S-matrix elements. At first order of
the Born series, the differential cross section for a given mag-
netic quantum numbers of the Ps atom can be derived from
the Fermi’s golden rule7

dσnℓm = 2π

j
|Tβα|2δ

(
1/2k2β + ϵ1s+− v2− ϵn

)
dρβ . (A12)

In this equation, j = 1/2kα is the flux density of incident Ps
and dρβ = (2π)−3dkβ is the density of final states. Using the
spherical coordinates (kβ , θ, φ) for the representation of the
kβ vector in phase space, one has

dkβ = kβd(k
2
β/2)dk̂β , (A13)

with the solid angle dk̂β = sin θdθdφ. Finally, the total cross
section is obtained by averaging over the magnetic quantum
numbers of Ps and by performing the integration over dkβ in
Eq. (A12). This leads to

σnℓ =
kβ

kα
(2π2ℓ̂)−1

ℓ∑
m=−ℓ

|Tβα|2, (A14)

where the notation ℓ̂ ≡ 2ℓ+ 1 is employed. It is worth men-
tioning that since both Ps and PsCl atoms are composed of
a single positron, there is no need to include spin degree of
freedom in Eq. (A14). Furthermore, the following multipole
expansion

F (+)

k−
(r) = 4π

∑
ℓimi

iℓieiδℓi
[
Pk−,ℓi(r)

r

]
× Y ∗

ℓimi
(k̂−)Yℓimi

(r̂), (A15)

of the Coulomb wavefunction for the electron is employed
to numerically compute the transition amplitude. In Eq.
(A15), the overall phase shift including Coulombic and non-
Coulombic effects is defined by δℓi . The phase components
resulting form the non-Coulombic effects are determined us-
ing the Wronskian method (see eg Ref. 55). Similarly, the
multipole expansion of the Coulomb wavefunction for the
positron is obtained by solving Eq. (A5) with the minus sign
in front of the bracket term of Eq. (A7), and by substituting
in Eq. (A15) the set of variables (k−, ℓi,mi, r) by the set of
variables (k+, ℓ′i,m

′
i, s).

As the integration variables (r, s) appearing in Tβα are
those of the laboratory frame, a separation of variables into
the wavefunctions ψnℓm(r − s) must be performed. For the
angular part, we use the following multipole expansion57

Yℓm(q̂) =

[
(−)m

q

]ℓ ∑
λµ

(−)λ
√
ℓ̂!ℓ̂4π

[
λ̂!
(
ℓ̂− λ

)
!
]−1/2

rℓ−λ

× sλ
(
ℓ− λ λ ℓ

m− µ µ −m

)
Yℓ−λm−µ(r̂)Yλµ(ŝ), (A16)
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where 0 ⩽ λ ⩽ ℓ and |µ| ⩽ λ. Concerning the radial part, the
projection of the scalar product into the complete basis set of
Legendre polynomial is used, leading to

Vβ(r, s)q
−lRnℓ(q) = 4π

∑
ℓdmd

Jnℓ;ℓd(r, s)

× Y ∗
ℓdmd

(r̂)Yℓdmd
(ŝ), (A17)

Jnℓ;ℓd(r, s) = 1/2

1∫
−1

dξVβ(r, s)q
−ℓRnℓ(q)Pℓd(ξ). (A18)

In Eq. (A18), the Legendre polynomials of degree ℓd are de-
fined by Pℓd and the modulus of the q-vector is defined by

q =
√
(r2 + s2 − 2rsξ). In addition, the q−ℓ factor appear-

ing in the integral comes from the Eq. (A16). It should be
noted that the above relations are derived from each other by
using the addition theorem and the completeness relation for
spherical harmonics. With the help of Eqs. (A15), (A16) and
(A18), Eq. (A11) can be recast in the from

Tβα = (4π)
3/2(−)ℓ(ℓ̂!ℓ̂)

1/2
∑

ℓf ℓdℓiℓ′i

iℓi+ℓ′i−ℓf ei(δℓi + δℓ′i)

×
l∑

λ=0

Aℓm;λℓdℓiℓ′iℓf
Rnℓ;λℓdℓiℓ′iℓf

, (A19)

where the expression of the angular/radial coefficients in eq.
(A19) are given by

Aℓm;λℓdℓiℓ′iℓf
=

(−)λℓ̂d ℓ̂i ℓ̂
′
i ℓ̂

1/2
f(

(2λ)!(2(ℓ− λ))!
)1/2 ∑

χ

χ̂

(
ℓf ℓ− λ χ

0 0 0

)(
ℓi ℓd χ

0 0 0

)(
ℓ′i ℓd λ

0 0 0

)

×
λ∑

µ=−λ

(
ℓ− λ λ ℓ

m− µ µ −m

)(
ℓf ℓ− λ χ

−m m− µ µ

)(
ℓi ℓd χ

0 µ −µ

)(
ℓ′i ℓd λ

0 −µ µ

)
, (A20)

Rnℓ;λℓdℓiℓ′iℓf
=

∫
R2

+

drdsrℓ−λ+1sλ+1Pk−ℓi(r)jℓf (kβr)Jnℓ;ℓd(r, s)Pk+ℓ′i
(s)R1s+(s). (A21)

For our simulations, the integrals (A21) were computed using the method of Gauss-Laguerre quadrature, with a number of nodes
equal to 96. To ensure the convergence of the transition amplitude, the upper limits of the partial waves ℓi, ℓ′i and ℓf are set to
26, and the other upper limits are set by the selection rules derived from the Wigner coefficients.

Appendix B: Additional figures
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Figure B: (a) Evolution of the Ps(n = 2) CBA partial cross sections as a function of the Ps impact energy. The AV5Z-MOD basis set is used
to generate data associated with PsCl for: (dashed line) a combination of the SPP of the RHF radial wavefunction of the positron bound to
Cl− with the LCCSD positron binding energy; (dashed-dotted line) a combination of the SPP of the LCCSD radial wavefunction of the
positron bound to Cl− with the RHF positron binding energy. (b) Evolution of the Ps(n = 1) CDW partial cross sections as a function of the
Ps impact energy using the AV5Z-MOD basis set to generate data associated with PsCl. The asymptotic forms of the potentials V (r) given
by the Eq. (A7) is considered (GBAR) in both approximations: (dashed line) RHF; (dashed-dotted line) LCCSD.

The two figures presented above complete the discussion provided in the manuscript, in subsection III 4 and Appendix A
respectively.
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