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ARTICLE
Genetics and Genomics

Searching for causal relationships of glioma: a phenome-wide
Mendelian randomisation study
Charlie N. Saunders 1, Alex J. Cornish1, Ben Kinnersley1, Philip J. Law1, Richard S. Houlston1 and Collaborators

BACKGROUND: The aetiology of glioma is poorly understood. Summary data from genome-wide association studies (GWAS) can
be used in a Mendelian randomisation (MR) phenome-wide association study (PheWAS) to search for glioma risk factors.
METHODS: We performed an MR-PheWAS analysing 316 phenotypes, proxied by 8387 genetic variants, and summary genetic data
from a GWAS of 12,488 glioma cases and 18,169 controls. Causal effects were estimated under a random-effects inverse-variance-
weighted (IVW-RE) model, with robust adjusted profile score (MR-RAPS), weighted median and mode-based estimates computed to
assess the robustness of findings. Odds ratios per one standard deviation increase in each phenotype were calculated for all glioma,
glioblastoma (GBM) and non-GBM tumours.
RESULTS: No significant associations (P < 1.58 × 10−4) were observed between phenotypes and glioma under the IVW-RE model.
Suggestive associations (1.58 × 10−4 < P < 0.05) were observed between leukocyte telomere length (LTL) with all glioma (ORSD=
3.91, P= 9.24 × 10−3) and GBM (ORSD= 4.86, P= 3.23 × 10−2), but the association was primarily driven by the TERT variant
rs2736100. Serum low-density lipoprotein cholesterol and plasma HbA1C showed suggestive associations with glioma (ORSD= 1.11,
P= 1.39 × 10−2 and ORSD= 1.28, P= 1.73 × 10−2, respectively), both associations being reliant on single genetic variants.
CONCLUSIONS: Our study provides further insight into the aetiological basis of glioma for which published data have been mixed.

British Journal of Cancer (2021) 124:447–454; https://doi.org/10.1038/s41416-020-01083-1

BACKGROUND
Although gliomas are not common, they account for ~80% of all
malignant primary brain tumours.1 Moreover, these tumours pose
a serious health burden because of the associated high case
fatality and morbidity, the 5-year survival for glioblastoma (GBM),
the most common histological subtype (∼45% of cases), being
only 5%.2

Differences in the incidence of glioma between countries
provide support, albeit indirectly, for lifestyle and/or environ-
mental factors as being determinants of disease risk.3,4 Knowledge
of specific aetiological risk factors for glioma has the potential to
inform prevention strategies and reduce disease burden. While
several factors have been linked to the occurrence of glioma, the
only environmental factor consistently associated with risk is
exposure to ionising radiation, which accounts for only a small
proportion of cases.4 Epidemiological studies of other potential
risk factors have been inconsistent, null or not independently
validated.5–12 These observational studies are, however, prone to
reverse causation, unmeasured confounding and recall bias, which
can preclude causal inferences.13 Additionally, the high frequency
of exposure ascertainment by proxy is another source of bias.14

Finally, the studies performed to date have had a limited scope of
enquiry either examining factors that have well-established
associations for other cancers or hypothesised risk factors based
on limited insight into glioma biology, thereby reducing the
prospects of revealing causal relationships.

Mendelian randomisation (MR) is an analytical approach that
utilises genetic variants as instrumental variables (IVs), to assess
the causal relevance of exposures in disease.15 Because these
genetic variants are randomly assigned at conception, they are
not influenced by reverse causation. In the absence of pleiotropy
(i.e., variants being associated with the disease through alternative
pathways), they can provide unconfounded estimates of disease
risk (Fig. 1).15 We have previously applied MR to evaluate potential
risk factors that have previously been examined in conventional
epidemiological studies of glioma. Initially, we explored
causal relationships with dietary factors such as vitamin D,
immune response factors and obesity-related factors.16 After
finding no strong associations, we subsequently investigated a
more comprehensive list of dietary and lifestyle factors that
commonly influence the risk of other cancers, again finding no
evidence for strong associations.17 Other researchers have used
MR to examine the relationship between glioma and other traits
with more success, purporting a strong association with leukocyte
telomere length.18,19 All of these MR analyses have, however, been
predicated on assumptions about disease aetiology. Recently, an
agnostic strategy to identify causal relationships has been
proposed to examine hitherto unconsidered traits, by integrating
the phenome-wide association study (PheWAS) and MR metho-
dology, termed MR-PheWAS.20

To advance our understanding of the aetiological basis of
glioma, we have conducted an MR-PheWAS to validate reported
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associations and search for a novel causal relationship that may
not have been captured by previous studies. Specifically, we
analysed 316 phenotypes, proxied by 8387 genetic variants, and
summary genetic data from a genome-wide association study
(GWAS) of glioma comprising 12,488 cases and 18,169 control
subjects.21

METHODS
Genetic instruments for phenotypes
Two-sample MR was conducted using the TwoSampleMR
R package.22 Genetic instruments for the traits investigated were
single-nucleotide polymorphisms (SNPs) identified from recent
meta-analyses, the largest studies published to date or those
curated by MR-Base (Supplementary Table A-C1). For each SNP,
the chromosome position, the effect estimate expressed in
standard deviations (SD) of the trait per allele and the
corresponding standard error (SE) were recovered. SNPs were
only considered as potential instruments if they were associated
with each trait at P < 5 × 10−8 in a GWAS of European populations,
and had a minor allele frequency >0.01. To avoid co-linearity
between SNPs for each trait, correlated SNPs within each trait
were excluded (linkage disequilibrium threshold, r2 ≥ 0.01). Only
SNPs with the strongest effect on the trait were considered for the
final analysis (Supplementary Table A-C2). The percentage of
variance explained (PVE) by the associated SNPs was computed
from the association statistics, and traits were only considered if
the PVE was >0.1% and the F statistic >10 (Supplementary
Table A-C1).23,24 We only considered continuous traits, as analysis
of binary traits (such as disease status) with binary outcomes in
two-sample MR frameworks is prone to inaccurate causal
estimates, with bias of Wald odds ratios (ORs) of up to 76% being
reported.16,25,26

Glioma data
Gliomas are heterogeneous and different tumour subtypes,
defined in part by malignancy grade (e.g., pilocytic astrocytoma
—World Health Organization (WHO) grade I, diffuse ‘low-grade’
glioma—WHO grade II, anaplastic glioma—WHO grade III and
glioblastoma (GBM)—WHO grade IV), which can be distinguished.
For the sake of brevity, we considered gliomas as being either
GBM or non-GBM. The association of each genetic instrument with
glioma risk was examined using a summary of glioma effect
estimates and the corresponding SEs from a recent meta-analysis
of eight GWAS.21 This GWAS comprised 12,488 cases (6183 with
GBM and 5820 with non-GBM pathology) and 18,169 controls of
European descent (Supplementary Table A-C3).

Mendelian randomisation analysis
The MR methodology is based on the assumption that genetic
variants, used as instruments for a risk factor, are associated with
the risk factor and not with confounders or alternative causal
pathways (Fig. 1).15 Additionally, to accurately estimate the size of
the causal effect, the associations must be linear and unaffected
by interactions.27 For each SNP, causal effect estimates were
generated for glioma, GBM and non-GBM tumours as ORs per one
SD unit increase in the putative risk factor (ORSD), with 95%
confidence intervals (CIs), using the Wald ratio. For traits with
multiple SNPs as IVs, causal effects were estimated using a
random-effects inverse-weighted variance (IVW-RE) model, which
assumes that each SNP identifies a different causal effect. These
causal effects are averaged to elucidate the true causal effect, due
to balanced pleiotropy.28 To assess the robustness of our findings,
we compared the causal estimates and associated P values using
robust adjusted profile score (MR-RAPS), weighted median (WME)
and weighted mode-based (WMBE) methods. For exposures with
fewer than ten SNPs, the fixed-effects IVW (IVW-FE) method was
utilised (Supplementary Table A-C4).15,29,30 We examined the
potential impact of outlying and pleiotropic SNPs on causal
estimates using a leave-one-out strategy, using either an IVW-RE
or IVW-FE model for exposures with greater than or less than 10
SNPs, respectively (Supplementary Table A-C5). Finally, directional
pleiotropy was assessed using MR-Egger regression (Supplemen-
tary Table A-C6).31 Heterogeneity within each trait (I2) was
calculated from Cochran’s Q value.32,33 Rucker’s Q value was
calculated using RadialMR (Supplementary Table A-C7).34

To account for multiple testing, we considered a Bonferroni-
corrected P value of 1.58 × 10−4 (i.e., 0.05/316 putative risk factors)
as being statistically significant. A P > 1.58 × 10−4 but <0.05 was
considered to be suggestive evidence of a causal association.
Statistical analyses were performed using R version 3.4.0 and MR-
Base.22,35 Figures were generated using Inkscape version 0.92.36

SNPa

SNPb

SNPc

Assumption 1

Assumption 2

Assumption 3

Confounders

Modifiable
risk factor (X)

Glioma (Y)

Fig. 1 Principles of Mendelian randomisation (MR) and the
assumptions required to obtain an unbiased causal effect
estimate. The three assumptions are (1) genetic variants used as
instrumental variables are only associated with the modifiable risk
factor (X), (2) genetic variants are not associated with any measured
or unmeasured confounders and (3) genetic variants only influence
the risk of developing glioma (Y) through the modifiable risk factor
(X). SNP single-nucleotide polymorphism.
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Fig. 2 Frequency histogram of percentage of variance explained
(PVE). This plot shows the PVE of single-nucleotide polymorphisms
(SNP) used as instrumental variables for the 316 phenotypes.
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Estimation of study power
The power of MR to demonstrate a causal effect depends on the
percentage of risk factor variance explained by the genetic
variants used as instruments. We estimated the study power,
stipulating an α value of 0.05 and 1.58 × 10−4, for each risk factor a
priori across a range of effect sizes as per Brion et al.
(Supplementary Table A-C1).37

RESULTS
Figure 2 shows the frequency distribution plot of the PVEs across
all 316 phenotypes studied. The median PVE by SNPs used as IVs
for each of the 316 phenotypes evaluated as risk factors for glioma
was 2.2% (0.1–45.8%). The power of our MR study to identify

causal relationships between each of the genetically defined
phenotypes and glioma is detailed in Supplementary Table A1.
Overall, our study had at least 80% power to detect a 1.5-fold
difference in risk for 79% (251/316) of traits for all glioma.
Inevitably, our power to demonstrate causal relationships for
glioma subtypes was more limited. For GBM and non-GBM, we
had at least 80% power to detect a 1.5-fold difference in risk for
72% (226/316) and 71% (223/316) of traits, respectively (Supple-
mentary Table B1 and C1). The power of our study to demonstrate
a causal association for glioma, GBM and non-GBM over a range of
PVEs is shown in Supplementary Fig. 1.37

The strength of the association between each of the 316
phenotypes studied and risk of all glioma, GBM and non-GBM
tumours under IVW-RE models is shown in Figs. 3, 4 and 5,
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respectively, with the corresponding tabulated data in Supple-
mentary Table A-C4. None of the traits showed a statistically
significant association with risk of all glioma, GBM or non-GBM
under an IVW-RE model. Thirteen traits showed suggestive evidence
of association (P < 0.05) with risk of all glioma, but only leukocyte
telomere length (LTL), serum low-density lipoprotein (LDL) choles-
terol and plasma HbA1C levels showed consistent evidence of an
association under the WME, WMBE and MR-RAP models (Supple-
mentary Table A4).
Genetically increased LTL was associated with glioma risk; ORs

under IVW-RE and IVE-FE models’ respective ORs per SD were 3.91
(95% CI: 1.40–10.93, P= 9.24 × 10–3) and 3.91 (95% CI: 3.10–4.94,
P= 1.29 × 10−30). The profound difference in strength of the

relationship reflected the marked heterogeneity between the
seven SNPs used as IVs (Phet= 6.49 × 10−23, I2= 95%). The
association was primarily driven by the TERT SNP (rs2736100),
but also to a lesser extent of TERC (rs10936599) and OBFC1
(rs9420907) SNPs (Fig. 6 and Supplementary Fig. 2). Excluding
rs2736100 reduced heterogeneity (Phet= 5.61 × 10−4, I2= 77%),
but reduced the overall strength of the association (IVW-FE
ORSD= 2.01, 95% CI: 1.54–2.63, P= 3.29 × 10−7) (Supplementary
Table A5).
Genetically predicted higher levels of LDL cholesterol were

associated with an increased risk of glioma (IVW-RE: ORSD= 1.11,
95% CI: 1.02–1.20, P= 1.39 × 10−2), but the association was largely
reliant on rs7254892, with exclusion of rs7254892 association, under
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an IVW-RE model, reduced to ORSD= 1.09 (95% CI: 1.00–1.18,
P= 5.64 × 10−2). The association between genetically predicted
higher HbA1C levels and glioma risk (IVW-RE: ORSD= 1.28, 95% CI:
1.04–1.56, P= 1.73 × 10−2) was also largely dependent on a single
SNP. The exclusion of rs16926246 reduced the association, under an
IVW-RE model, to ORSD 1.16 (95% CI: 0.93–1.46, P= 1.91 × 10−1).
Seven traits showed evidence of suggestive association (P <

0.05) with GBM risk under IVW-RE models (Supplementary
Table B4). However, only the association between genetically
determined increased LTL and GBM risk (IVW-RE: ORSD= 4.86 (95%
CI: 1.14–20.63, P= 3.23 × 10−2) and IVW-FE: ORSD= 4.86 (95% CI:
3.65–6.46, P= 1.80 × 10−27)) was consistent under WME, WMBE
and MR-RAP models (Supplementary Table B4). As with all glioma,

there was marked heterogeneity between SNP associations
(Phet= 9.19 × 10−31, I2= 96%) with the association being driven
by the TERT (rs2736100) SNP (Supplementary Table B5, Supple-
mentary Figs. 3 and 5).
Nine traits showed evidence of a suggestive association (P <

0.05) with non-GBM risk under IVW-RE models; however, only
genetically predicted serum LDL cholesterol and total choles-
terol (TC) levels showed consistent evidence under WME, WMBE
and MR-RAP models (Supplementary Table C4). Increased LDL
cholesterol (IVW-RE: ORSD= 1.15, 95% CI: 1.04–1.27, P= 7.94 ×
10−3) and TC (IVW-RE: ORSD= 1.15 (95% CI: 1.04–1.28, P= 9.33 ×
10−3)) remained suggestively associated with increased non-
GBM risk after leave-one-out analysis (Supplementary Table C5).
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DISCUSSION
Despite its comparative rarity, glioma is one of the cancers of
unmet need, given the significant morbidity and mortality
associated with its diagnosis. Despite much research over the
past three decades, we still know very little about the aetiological
basis of glioma, which is a barrier to developing strategies to
reduce disease burden. This contrasts markedly to the success of
cohort and case–control studies of the common cancers, such as
breast, lung and colorectal, which have identified major determi-
nants of risk.38,39 Aside from the incidence of glioma limiting the
power of any cohort study to demonstrate a causal association,
case–control studies of glioma are more apt to suffer from bias
than studies of other tumour types.14 It is entirely plausible that
because of such biases, previous observational epidemiological
studies have reported mixed results for the possible relationship
between glioma and fat, cholesterol,6 BMI, physical activity,7,40,41

blood pressure8 and diabetes.42

MR can circumvent many limitations of a conventional
observational study, and the methodology is therefore increas-
ingly being used to examine the impact of interventions on
disease risk. The value of MR has been greatly enhanced by the
wealth of GWAS data now available on multiple traits, which
provide SNPs that can be used as IVs. These data have allowed us
to test the relationship between multiple traits and glioma risk in a
hypothesis-free manner by performing a MR-PheWAS.
Genetically determined blood LTL has previously been

associated with GBM risk, based on a 5% subset of the GWAS
data we analysed.19 The association is principally driven by the
TERT, TERC and OBFC1 SNPs, whereas the RTEL1, NAF1, ACYP2
and ZNF208 SNPs show only limited support for an association
(Supplementary Table A-C2, Supplementary Figs. 2–4). Since
whole- blood TL is not strongly correlated with brain TL
(pairwise correlation: 0.10–0.22), discordancy in IV SNPs could
reflect tissue specificity.43 Our MR-PheWAS did not provide
robust evidence for associations between glioma and any of the
316 phenotypes examined, which comprised traits relating to
human behaviour, cognitive performance, physical body varia-
tions, metabolic factors and the immune system. We did
however find support for raised LDL cholesterol, TC and HbA1C
being associated with risk, relationships not observed in

previous MR analyses of glioma.16,18 Our current analysis has,
however, been able to leverage a greater number of SNPs as IVs,
thereby increasing study power and enabling us to demonstrate
the effects of smaller magnitudes that may have been missed by
earlier work.
The strength of our MR study is the exploitation of large GWAS

datasets to examine the relationship between multiple pheno-
types and risk of glioma. Our analysis does, however, have
limitations. Firstly, we were limited to studying phenotypes
with genetic instruments available. Secondly, correcting for
multiple testing inevitably means the potential for false negatives
is not unsubstantial. Thirdly, even though we only considered
traits for which the genetic instruments employed explained at
least 0.1% of phenotypic variance, for a large number of traits, we
still had limited power to demonstrate causal associations of a
small effect.
While MR-PheWAS offers the ability to simultaneously

evaluate a wide range of potential risk factors and avoid many
of the biases and limitations of conventional epidemiological
studies, it incurs the burden of multiple testing impacting on
study power. Ongoing GWAS of glioma and subsequent meta-
analyses are likely to greatly empower future MR-PheWAS.
Furthermore, these large datasets offer the opportunity to pursue
MR-PheWAS using ‘adaptive design' methodologies, which are
increasingly used in clinical trials. A subset of outcome GWAS data
would be analysed in stage 1, and only those exposures with a P
value <0.05 would be evaluated using the remaining dataset,
thereby potentially reducing the burden of dealing with multiple
testing.44,45

In conclusion, our study provides further insight into the
landscape of glioma aetiology and sheds light on factors for which
the evidence from conventional epidemiological studies has been
mixed. Specifically, we provide evidence against any of the 316
traits being major risk factors for the development of glioma,
helping to deprioritise these factors in future studies. The advent
of larger GWAS datasets of exposures and glioma offers the
prospect of using MR-based strategies to search for possible
causal associations with smaller effect sizes, potentially elucidating
stronger associations with risk factors that currently only show a
suggestive level of association.
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