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Abstract

Graph state verification protocols allow multiple parties to share a graph state while checking
that the state is honestly prepared, even in the presence of malicious parties. Since graph states
are the starting point of numerous quantum protocols, it is crucial to ensure that graph state
verification protocols can safely be composed with other protocols, this property being known as
composable security. Previous works [YDK21] conjectured that such a property could not be proven
within the abstract cryptography framework: we disprove this conjecture by showing that all graph
state verification protocols can be turned into a composably secure protocol with respect to the
natural functionality for graph state preparation. Moreover, we show that any unchanged graph
state verification protocols can also be considered as composably secure for a slightly different, yet
useful, functionality. Finally, we show that these two results are optimal, in the sense that any such
generic result, considering arbitrary black-box protocols, must either modify the protocol or consider
a different functionality.

Along the way, we show a protocol to generalize entanglement swapping to arbitrary graph states
that might be of independent interest.
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1 Introduction

Quantum networks enhance today’s networks capabilities by providing a higher level of security, based on
the inviolable laws of physics, but also by enabling the emergence of new protocols impossible to obtain
classically. The spectrum of quantum protocols is wide, starting from quantum teleportation [BBC+93]
to delegated computation [BFK09], verifiable computation [FK17, MF18, GKK19], multi-party com-
putation [DNS12, KP17, DGJ+20, GLS+21, CMS23], quantum money [Wie83, BOT+18], anonymous
transmission [CW05, UMY+18], copy-protection [Aar09], leader elections and coin flipping [Gan09,
BCK+20], e-voting [HZB+06, CDK22], and more.

A large fraction of these protocols, like anonymous transmission protocols [CW05, UMY+18], expect
parties to share before the beginning of the protocol a number of fundamental quantum states like Bell
pairs, GHZ states, or, more generally, arbitrary graph states. This task is typically achieved using a graph
state verification protocol, whose role is to securely distribute a graph state among all parties.

These graph state verification protocols should typically be resilient to deviations from possibly
malicious parties, whether they are controlling the source or not. Such security properties are usually
proven in a weak, so called game-based model. In this model, we can only prove guarantees on the final
quantum state, but we cannot really obtain any guarantee on the behavior of the protocol when it is
composed into other protocols (which is the whole point of graph state verification protocols!), or when
the adversary is allowed to run attacks in parallel.

As a consequence, it is often unclear if the security of the original protocol is preserved when the graph
state is obtained via a graph state verification protocol instead of being honestly generated by a trusted
third party, leading to the natural question:

Is it safe to compose any arbitrary protocol with any arbitrary graph state verification protocol?
Is it still secure if the adversary can run multiple attacks in parallel?

The study of the composition of protocols is typically done in a security framework where the notion
of functionality or resource is introduced in order to abstract the properties of a given protocol [Can01,
Unr10, MR11a, Mau12]. A functionality can be seen as a trusted party: this way a protocol is said
to realize a given functionality if it is impossible to say if we are running the actual protocol or the
functionality. With this concept in mind, creating new protocols from sub-protocols is a breeze: we just
need to prove that the protocol is secure when the sub-protocol is implemented by a functionality, and we
are automatically guaranteed that the protocol will still be secure if the functionality is replaced with
any sub-protocol realizing this functionality, even if the adversary is allowed to run attacks in parallel.
Composing functionalities is therefore fundamental when designing protocols, since many more advanced
protocols are often obtained by composing simpler sub-protocols. This allows to build on previous works
and to use functionalities as black-boxes with definite input and outputs.

When using the terminology of these frameworks, the above questions can be reformulated as follows:

Do composable graph state verification protocols exist?

Our results. In this work we answer positively to this interrogation, proving that any secure graph
state verification protocol is composable. This answers an open question raised in [YDK21] that was
suggesting that there might not even exist a single composable state verification protocol.
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More specifically:

• We present a method to turn any arbitrary graph state verification protocol, secure in the game-based
model, into a composably secure protocol realizing the natural functionality V|G⟩ for graph state
verification. This “compilation” only adds one round of classical communication at the end of the
protocol, and mostly preserves the guarantee of the original protocol. More precisely, if the final
state obtained in the real protocol is supposed to be ε-close to the target graph state for some
notion of closeness, then the protocol ε-realizes V|G⟩. Our results are expressed in the abstract
cryptography framework [MR11b].

• We also show that any unchanged graph state verification protocols can also be considered as
composably secure for a slightly different, yet useful, functionality.

• We show that it is impossible to prove that any arbitrary unchanged protocols realizes V|G⟩ having
only black-box access to the protocol, without either changing the protocol, or the functionality,
showing that the above results are optimal. Note that our impossibility result assumes that the
simulators has a certain natural structure, which seems hard to avoid when we consider the protocols
as black-boxes.

• Along the way, we show a protocol to generalize entanglement swapping to arbitrary graph states,
which might be of independent interest. Since graph-state manipulation can be challenging using
the usual density matrix formalism, we use scalable ZX-calculus [CK17, CHP19] to prove our result,
asserting the relevance of this language for complex graph state operations.

This paper is organized as follows: in Section 2 we start by defining formally graph states verification
protocols as well as introducing scalable ZX-calculus and composable security in the Abstract cryptography
framework. In Section 3, we then define our ideal functionality outputting graph states and we show
the equivalence between generic graph state verification protocols and this ideal functionality. Our ideal
functionality applies corrections on the outputted graph state, which might seem unreasonable in a
concrete implementation. Hence, in Section 4, we show how to modify graph state verification protocols
to realize the ideal functionality without these corrections. Finally, in Section 5, we show how our result
applies to two existing graph-state verification protocols.

2 Preliminaries

2.1 Notations

We assume basic familiarity with quantum computing [NC10]. For any subset of index M ⊆ [n], and
matrix G ∈ Zn×m2 (resp. x ∈ Zn2 ), we denote xM as the vector obtained from x after removing lines not in
M . For any quantum gate X, XxM will denote the application of X on all qubits i ∈M such that xi = 1.
The fidelity F (ρ, σ) of two quantum states ρ and σ expressed in term of density matrices is defined as

F (ρ, σ) := Tr
√
ρ1/2σρ1/2.

2.2 Graph states

A quantum state |G⟩ is called a graph state if it can be represented by a graph G = (V,E) where the

vertices V are |+⟩ states and the edges E = {(vi, vj)}|E|i=1 correspond to controlled Z gates (∧Z) between
the vertices vi and vj . Thus a graph state can be expressed as

|G⟩ =
∏

(vi,vj)∈E
∧Z{vi,vj} |+⟩⊗V (1)
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As a consequence to this construction, graph states can also be uniquely defined through a set of
so-called stabilizers. They are operators who leave the graph state unchanged, or in other words, a
graph state is the eigenstate of eigenvalue 1 of its stabilizers. For a given graph state |G⟩ with vertices

V = {vi}|V |i=1, the stabilizers are

Svi = σviX
∏

vj∈N(vi)

σ
vj
Z (2)

where σX and σZ are the Pauli matrices and N(vi) is the neighborhood of vi. For each vertex vi,
we have that Svi |G⟩ = |G⟩. The set {Svi}vi∈V characterizes the graph state |G⟩ and is an equivalent
definition to the one of Eq. (1).

Graph states are multipartite entangled states. This means that measuring one of the qubit of a
graph state will have an effect on the adjacent qubits of the state. This property is used for example in
measurement-based quantum computing [BBD+09] where a computation is done by sequentially measuring
the qubits of a universal graph state (e.g. the brickwork state) which propagates through the state. In a
communication network setting where a n qubit graph state is shared among n parties, it can be used
to create a shared list of correlated bits by asking each party to measure their qubit. This list can then
be used in many contexts, for example to create a common secret key among the parties in so-called
conference key agreement protocols, the multipartite counterpart of quantum key distribution.

2.3 Scalable ZX-calculus

The ZX calculus [CD08] is a language allowing us to prove equality between quantum operations dia-
grammatically, using a simple set of rewriting rules between graphs. We present in Appendix A the
basic properties of the ZX calculus, as well as one extension called scalable ZX [CHP19], that we use in
our proofs. Note however that all equations proven in this article can be checked manually without ZX
calculus, and that readers not interested in checking the proof should be able to read this article without
any ZX knowledge. We refer the interested reader to [van20] and [CK17] for more details.

2.4 Composable security and Abstract Cryptography

As mentioned in the introduction, graph state verification protocols are usually used as sub-protocols in
more complex protocols. They are meant to be reused many times, in a setting where a graph state is
shared between n parties and some of the parties and/or the source may be dishonest. Hence, they do not
only need to be secure for one run, but the security should also hold for an arbitrary number of repetition
of the protocol. This level of security is called composable security, as opposed to game-based security
where we study specific attack models against a protocol.

To prove composable security, one have to use a so called simulation-based framework where the
security proofs are composable. In this paper, we will use the Abstract (or Constructive) Cryptography
(AC) model, a top-down approach developed by U. Maurer and R. Renner [MR11b, MR16, Mau11].
This framework uses the concept of abstract systems to express cryptography as a resource theory. A
cryptography protocol is viewed as the construction of some ideal resource S out of other real resources R.
Resources are box-like abstract systems with interfaces that are accessed by the parties. They represent
any non-local operation such as communication channels, but also more involved functionalities to model
for instance a coin tossing protocol. They can be composed in sequence or in parallel to create bigger
resources.

Local operations—like the protocol run by a given party—are called converters. They are plugged
into a single interface of a resource, changing the interaction of the resource with the outside world. A
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converter π attached to a resource R creates a new resource that we write πR. We usually call the
converters π acting in the real world protocols, as they represent the local operations done by honest
parties. In the ideal world, the honest use of an ideal resource is done through converters called filters,
typically denoted ⊥, that send the input expected from honest parties to the resource.

Finally, the distance between two resources is formalised through the notion of a distinguisher. It
is an object that access all the interfaces of two given resources, such as πR and ⊥S , and tries to
distinguish them by sending inputs and comparing the outputs. When considering statistical security, the
distinguisher can be given unlimited computing power. On the other hand, computational security only
allows distinguishers to have limited computing power. When any distinguisher accessing the interfaces
of both resources cannot decide which of the two system is the ideal or the real one, we say that the
resources are equivalent and write πR ≈ ⊥S .

Resources, converters and distinguishers are the building blocks of the AC theory. We refer the reader
to [MR11b] for more details about the mathematical construction of the framework.

The secure construction of an ideal resource, that represents the ideal functionality that we want to
achieve, from a concrete resource, that represents the actual realization of the protocol, is proven by
showing a series of equivalences. In AC, a dishonest behaviour from a party is represented by unplugging
the associated converter on the concrete resource, which means that this party is not following the protocol.
This leaves some new interfaces accessible for a distinguisher on the concrete resource. To prove that the
security of the protocol still holds, one has to find a converter called a simulator to plug into the ideal
resource to make it indistinguishable from the dishonest concrete resource. The full security proofs thus
consist in finding simulators for each possible subset of dishonest party. We give the security definition in
AC below in Definition 2.1.

Definition 2.1 (Security in AC). let Π = {πi}ni=1 be a protocol run by n parties using the concrete
resource R and let S be an ideal resource with all the desired properties expected from the protocol. R and
S have interfaces I. We say that Π securely realizes S out of R within ε or that Π ε-realizes S
and write R (Π,ε)−−−→ S if there exist simulators σ = {σi} such that1:

∀H ⊆ I, πHR ≈ε σI\HS⊥H , (3)

with ∀H ⊆ I, πH = {πi}i∈H and ⊥H = {⊥i}i∈H .

Remark 2.2. Note that in this paper, we will equip the ideal resources with a communication channel that
can forward any—possibly quantum—message between any party. This is only needed to allow simulators
to perform non-local operations, and is filtered for honest parties. For a given subset of honest parties H,
we will thus have to find only one global simulator σI\H such that the above equivalence relation holds.

Since the AC framework is composable, any security proof proven within the framework is composable.
This means all R,S and T resources and π, ν converters (protocols) such that R π−→ S and S ν−→ T we
have that

R π−→ S ∧ S ν−→ T =⇒ R ν◦π−−→ T . (4)

1Technically speaking [MR11a, Thm. 2], we should also define filters for R possibly restricting the access to R for honest
participants. For simplicity, and without loss of generality, we will often assume that the filters for R are trivially forwarding
their inputs, and we integrate the original filters in the parties. This way, proving the correctness of a protocol using R can
be simplified as πHR ≈ ⊥HSσM instead of πH⊥RHR ≈ ⊥HSσM .
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3 Composable security of graph state verification

3.1 Definition of the ideal verification resources

In this section, we present the ideal functionalities that we will use to prove the security of generic graph
state verification protocols.

Ideal resource. Note than in this article we will consider two functionalities:

• Vf|G⟩ (Resource 3.1) is the functionality that we consider in this section: on the one side, we can

show that any secure graph state verification algorithm realizes this functionality, without any
modification to the protocol. However, this functionality is less natural than what one would expect,
as it also allows malicious adversaries to apply some malicious corrections to the graph state given
to honest adversaries. The function f acts as a safeguard to only allow some corrections to be
performed by the adversary. More precisely, f must be a function taking as input a subset of
corrupted party M and (x, z), a list of X and Z corrections to apply on the qubits sent to honest
parties, and must output either ⊤ if this correction is allowed or ⊥ otherwise. We discuss later in
Remark 3.4 the motivations behind this verification.

• V|G⟩ (Resource 4.1), on the other hand, is much simpler and closer to what one would expect as it
simply sends |G⟩ to all parties (unless the malicious parties abort), but we cannot directly show
that all protocols realize this functionality: we need to apply an additional step where all parties
apply a random stabilizer on their part of the state.

Since both resources have pro and cons, we study them separately in the following two sections, starting
from Vf|G⟩. V

f
|G⟩, that we describe formally in Resource 3.1 and informally in Fig. 1, is an abstract system

outputting all qubits of a given graph state |G⟩ or an abort signal, with interfaces allowing to model

possible dishonest behaviors from the parties and the source. Note that Vf|G⟩ is not a functionality allowing

to create any graph state, but for any graph state |G⟩, we can construct an ideal resource Vf|G⟩ outputting
|G⟩.

The Vf|G⟩ resource has n+1 interfaces, one for each party and one for the source. For each party i, the

value ci ∈ {0, 1,⊥} indicates whether the party is honest or dishonest. To an honest party (ci = 0), it will
output either an Abort signal or a qubit from the graph state |G⟩. To a dishonest party (ci = 1 or ⊥), it
will output the corresponding qubits of |G⟩ and then wait for corrections (ai, bi). For readability, in Fig. 1,
we show on the left the input and output corresponding to honest uses of the resource from the parties,
while the bottom input and output correspond to dishonest behavior. It should however be kept in mind
that only one input/output interface is accessible to each party. The resource Vf|G⟩ is equipped with a

function f that outputs a Boolean stating whether the corrections proposed by the dishonest parties have
the correct form. The details of how the resource works is given below in Protocol 1, and the details of f
will be explicit in the security proof.

In Abstract Cryptography, we typically model the honest use of an ideal resource by adding special
converters called filters that send the input expected from honest parties to the resource. In our case,
an honest use of the Vf|G⟩ resource corresponds to the source sending cS = ⊤ and each party i sending

ci = 0 to the resource. We thus define the following: the filter ⊥S that corresponds to an honest source
sending cS = ⊤ and, for i ∈ [n], the filter ⊥i that corresponds to an honest party sending ci = 0 to Vf|G⟩.
For the sake of simplicity, we will write ⊥[n] the filter corresponding to the parallel composition of ⊥i for
all i ∈ [n]. An honest use of the ideal resource is thus represented by the so-called filtered resource, that
we show in Fig. 2.
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Resource 3.1 Ideal resource Vf|G⟩

1. Receive from the source’s interface cS ∈ {⊤,⊥}

2. If cS = ⊥, abort and send ⊥ to all parties. Otherwise it continues.

3. Create |G⟩.

4. Receive {ci} ∈ {0, 1,⊥}n from each party. If any ci = ⊥ send ⊥ to all parties and abort. Otherwise,
let M = {ci | ci = 1} be the set of malicious parties, H = [n] \M the honest parties, m = |M | the
number of malicious parties and h = |H| the number of honest parties.

5. For each i ∈M , send the i-th qubit of |G⟩ to interface i.

6. Receive from each malicious party i ∈M corrections (ai, bi) ∈ ({0, 1}h)2, and define x = ⊕i∈Mai =
{xi}i∈H and z = ⊕i∈Mai = {zi}i∈H .

7. If there is a least one malicious party, check if fG(M,x, z) = ⊤ (to check that corrections are well
formed), if not sent ⊥ to all parties and abort.

8. If ok, Apply Zz1 ⊗ ...⊗ Zzh and Xx1 ⊗ ...⊗Xxh to the remaining qubits of |G⟩.

9. Send these qubit to the parties.

Additionally, we include in Vf|G⟩ an additional communication channel C that can forward any—possibly

quantum—message between any party (see Remark 2.2). We also define naturally the filter ⊥S as the
converter that sends ⊤, and for any i ∈ [n], we define ⊥i as the converter that sends ci = 0 and forwards
any message sent or received by the ideal function functionality (excluding messages sent on C that are
just blocked).

8



Figure 1: Informal presentation of the ideal resource Vf|G⟩ for verified graph state sharing.

Figure 2: Ideal filtered resource. The filter ⊥S corresponds to an honest source inputting cS = ⊤ and, for
i ∈ [n] the filter ⊥i corresponds to an honest party sending ci = 0 to Vf|G⟩

3.2 Definition of the concrete verification protocols

Generally, protocols to verify the preparation of graph states consist of the following steps: first, quantum
states are shared between n parties, one qubit of each state per party, then, they test a random selection
among these states and if the checks are positive, they keep the others for later use. The tests usually
consist in local operations and measurements, classical communication and multiparty computation that
outputs a bit indicating if the state is far away the desired state reduced to the honest parties, for a
certain distance (usually the trace distance). By randomising which states they test and which one they
use, the parties prevent a malicious source from sending the desired states. Verification protocols can
also be done sequentially, by asking the source to send quantum states one after the other and randomly
choosing the ones that they test and the ones that they use.

Verification protocols provide a bound on the probability that, given the protocol has not aborted
after a certain number of tests, the final reduced state that is used for computation or communication by
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the honest parties is close to the desired graph state reduced to the honest parties. This bound depends
on the number of parties, the number of tests, the number of dishonest parties and the maximum distance
that is accepted with the desired graph state.

Definition of graph state verification protocols. The literature uses different (but mostly equivalent)
security definitions when considering graph state verification protocols. Note that the security of these
protocols is never expressed in the composable AC framework. The main contribution of this article
is actually to prove that any protocol fulfilling the security definition of Definition 3.1 below is also
composably secure.

Definition 3.1 (Graph state verification protocol). Let Π = {πi}i∈[n]∪{πS} be a protocol between n parties
and a source, interacting through a resource R in charge of modeling, for instance, the communication
channels between all parties. We will say that Π is a ε-graph state verification protocol if the following
properties are respected:

• Correctness: if all parties are honest, they output a state negligibly close (in trace distance) to |G⟩,
i.e. π[n]RπS outputs ρ such that TD(ρ, |G⟩) ≥ 1− negl(λ).

• Security: for any set of honest parties H ⊆ [n] ∪ {S}, the honest parties output their state at the
same time2, each party outputting either a special symbol |⊥⟩ if they aborted, or a quantum state
otherwise3. Moreover, when considering any adversary4 A corrupting parties in [n] \H, there exists
p ∈ [0, 1] such that:

F (ρ, σ) ≥ 1− ε(λ) (5)

where F is the fidelity (we use the definition of [NC10], sometimes called the square root fidelity),
ρ := E

[
Tr[n]\H ρi

∣∣ ρi ← πHRA
]
is the averaged state obtained by the honest parties at the end of

the protocol, where we average over all randomness involved in A and in the whole protocol5 and
σ := pTr[n]\H(|G ⟩⟨ G|) + (1− p) |⊥|H| ⟩⟨ ⊥|H|| denotes the mixture where all honest parties either
abort at the same time with probability 1− p or output a qubit that is part of |G⟩.

Concrete resource In this work, we model all graph state verification protocols in the same way: we
abstract all the resources required to perform these protocols into one resource R and the local operations
done by each parties into converters {πi}ni=1. For instance, R can contain the quantum channel from the
source to each party, some authenticated classical channels used to communicate between the parties, a
coin flipping resource or a multiparty computation resource that may involve shared randomness resources
etc. The converters {πi}ni=1, that we will write π[n], correspond to the protocol followed by the honest
parties and often consist in applying some quantum operations on their qubit, measuring them and using
the output in the multiparty computation that tests the state. Finally the source’s protocol πS generally
consists either in sending a certain number of copies of a desired state or in sending them one by one. We
illustrate in Fig. 3 the concrete resource π[n]RπS corresponding to an honest run of the protocol, which
simply outputs a state that is close to a fixed graph state |G⟩.

2This can for instance be done using a broadcast channel, which is anyway implicitly needed in most existing works.
3Note that this implies that the Hilbert space is spanned by {|0⟩ , |1⟩ , |⊥⟩}, where |⊥⟩ is orthogonal to the other two

states. This is quite practical as this way we can only maintain n registers instead of 2n, and we do not need to worry about
the content of the other register when the abort register contains an abort. Note that otherwise, this is mostly equivalent as
we can test if a party aborted by simply measuring (|⊥ ⟩⟨ ⊥| , I − |⊥ ⟩⟨ ⊥|), without disturbing the state if it is only spanning
(|0⟩ , |1⟩).

4A might be bounded or unbounded depending on the assumptions on the protocol.
5We can also equivalently purify A and the protocols using the Stinespring dilation, and simply trace-out all the registers

except for the output register owned by the honest party. The Stinespring dilation allows us to postpone any measurement
by essentially replacing them with a CNOT on an auxiliary qubit, and to sample randomness by creating a |+⟩ state
measured using the postponed measurement that we just described.
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Figure 3: Concrete resource for generic graph state verification protocols

3.3 Security proof

In this section we prove our main result, namely the composable security of any graph state verification
protocol. Following the Security Definition 2.1, we will prove the following theorem in the rest of this
section:

Theorem 3.2. Let |G⟩ be an arbitrary graph state, and let Π be an ε-graph state verification protocol

according to Definition 3.1. Then, Π (2
√
2ε− ε2)-realizes the functionality Vf|G⟩, where the allowed

corrections f are defined as follows: let U, r,R be defined like in Lemma A.11, then we define f(M,x, y)

as the function that outputs ⊤ iff the last |n| − r vectors of Ux are 0’s, and if (UT )−1(z ⊕GHx) =
[
b

RT b

]
for some arbitrary vector b ∈ {0, 1}r.

3.3.1 Correctness

Proof. The first step is to prove the correctness of the protocol when all parties are honest, i.e. we need
to show that π[n]RπS ≈ ⊥[n]Vf|G⟩⊥S. This is also pictured in Fig. 4, where on the left-hand side we

represented the filtered version of the Vf|G⟩ resource, simply outputting the final—expected—state, and

corresponding to a honest use of the resource.

Figure 4: Correctness of the protocol: ⊥[n]Vf|G⟩⊥S ≈ π[n]RπS
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This is actually a direct consequence of the correctness of the protocol. First, we can easily see that
since the filters disable any malicious behavior, ⊥[n]Vf|G⟩⊥S is the system that outputs |G⟩ with probability

1. Moreover, due to the correctness property of Π, π[n]RπS outputs a state indistinguishable from |G⟩.
Hence, any distinguisher trying to distinguish between the two resource only gets indistinguishable copies
of |G⟩, i.e. π[n]RπS ≈ ⊥[n]Vf|G⟩⊥S. This ends the correctness proof.

3.3.2 Security

The next step in the security proof, (see Definition 2.1), is to study the case of dishonest parties tampering
with the verification protocol. This means that some subsetM ∈ [n]∪{S} of the parties, possibly including
the source, are no longer following their local protocols πi. The concrete resource representing the real
protocol becomes πHR where H ⊆ [n] ∪ {S} are the honest parties.

On the ideal resource, the malicious behavior of some subset M of the parties is represented by
removing the filters {⊥i}i∈M , letting the adversaries access interfaces of the ideal resource ⊥HVf|G⟩. We

need to find a simulator σM such that there exists an ϵ such that πHR ≈ϵ ⊥HVf|G⟩σM . We show the
representation in AC in Fig. 5.

Figure 5: General case of the security proof: we need to find σM such that πHR ≈ϵ ⊥HVf|G⟩σM

In order to construct such a simulator, and thus to prove that all graph state verification protocols are
composable, we first study a property of graph states that we call “mergeable”.

Mergeable states. In order to motivate this property, let us try to prove that a given graph state
verification protocol Π = (π1, . . . , πn, πS) is composably secure, where πS is the protocol followed by the
source while πi’s are the protocols followed by other parties. As explained above, this is done by finding a
simulator to emulate on the ideal resource the interfaces of the concrete resource left open when removing
the converters πi corresponding to the dishonest parties. Let us try naively to find such a simulator. If H
is the set of honest parties and M := H̄ is the set of malicious parties, possibly including the source, we
want to find a simulator σM such that πHR ≈ε ⊥HV|G⟩σM :

πH R ≈ε ⊥H V|G⟩ σM (6)

where we represented the interfaces of honest parties on the left and the interface of malicious parties on
the right, and where ⊥H is the filter blocking the honest interfaces of the ideal resource.
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For the sake of explanation, let us first try to find a simulator that works when the distinguisher is
first running the honest protocol πM (let us write this part of the distinguisher D0): in that case, we can
rewrite Eq. (6), which gives us:

πH R D0 ≈ε ⊥H V|G⟩ σM D0 (7)

i.e., after replacing the definition of this first naive distinguisher:

πH R πM ≈ε ⊥H V|G⟩ σM πM (8)

Due to the correctness of Π, in the real world both parties will share |G⟩, i.e. we can simplify the LHS
with:

|
M

|
H

|G⟩
≈ε ⊥H V|G⟩ σM πM (9)

Since we want our simulator to work for any protocol Π, the most natural thing to do is to let the
simulator start with simulating πHR directly in a black-box manner otherwise we would not even know
what to send to the distinguisher. The simulator hence forwards all messages received on the outer
interface to the appropriate honest party via R, and all messages from honest parties to the outer interface.
At the end of this interaction, the simulator will obtain a state outputted by the honest parties: if one
party aborted, the simulator can tell the ideal functionality to abort but this should never occur in this
simplified analysis where the distinguisher is running the honest protocol. If no party aborted, and if Π is
secure, then:

• we should get from πH a state close to |G⟩H ,

• and on the other hand, the simulator will receive from the ideal functionality V|G⟩ a state |G⟩M .

By the correctness of π and the definition of V|G⟩, we can therefore rewrite the RHS of Eq. (9) as follows,

where ? represents a yet unknown operation run by the simulator that we need to determine:

⊥H V|G⟩ σM πM (10)

= ⊥H V|G⟩ ? πH R πM

σM

(11)

= |
M

|
H

|
M

|
H

|G⟩ |G⟩
?

(12)

We can inject this back into Eq. (9) to get:

|
M

|
H

|G⟩
≈ε |

M
|
H

|
M

|
H

|G⟩ |G⟩
?

(13)

We should therefore search for a “merging” operation that can combine two shared state |G⟩ into a single
copy of |G⟩ while working only on (different) parts of two copies of |G⟩. Unfortunately, it is easy to see
that it is impossible to obtain such a merging map. For instance, if we take |G⟩ to be a Bell pair, one of
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the simplest graph state, then after tracing out the registers of ? (that cannot signal any measurement

outcome to the outside world) we obtain two un-entangled states, which cannot possibly be equal to a
single entangled Bell pair. This can be seen for instance diagrammatically using the formalism described
in [CK17], or using non-signaling as formalised in Theorem 3.3:

? = = ̸= (14)

This is not surprising since, for instance, in quantum teleportation after the Bell measurement Bob needs
to apply additional corrections to recover the original state. We formalise now this statement:

Theorem 3.3 (Impossibility of black-box realization of V|G⟩). There exists some6 graph states |G⟩ such
that for any graph state verification protocol Π := {πi}i∈[n]∪S using a resource R and producing |G⟩ (i.e.
{πi}i∈[n]∪SR outputs |G⟩ shared among the n parties), it is impossible to prove that Π is ε-realizing V|G⟩
(Resource 3.1) for any ε < 1/2 if the simulator is black-box7, in the sense that the simulator interacts with
the interface controlled by the environment by running {πi}i∈HR, forwarding all messages between the
malicious interfaces of R and the environment.

See proof in Appendix B.1.

We are therefore left with two options:

• either we change the functionality,

• or we change the protocol.

We present both approaches in this article. We will focus in this section on the first approach, while the
second approach will be seen in Section 4, building on the results introduced here.

The previous impossibility result suggests a first modification: Let the simulator be allowed to
communicate the output x of their measurements to the ideal functionality. This in turns let the
functionality apply these corrections ξH(x) to the honest part of the graph state. This brings us to the
following picture, building on Eq. (13):

|
M

|
H

|G⟩
≈ε |

M
|
H

|
M

|
H

|G⟩ |G⟩
ξH ?

Vf|G⟩

|
H

x
(15)

Remark 3.4. It is important to allow only certain, harmless, corrections, by letting the functionality
check that the corrections x are valid, after verifying that f(x) = ⊤. Indeed, allowing arbitrary corrections
would allow the adversary to perform attacks that might be impossible to perform with only access to

6Actually most graph states have this property as soon as they are not separable.
7We call it black-box since the definition of the simulator is mostly independent of the protocol, as it can only execute Π

without having access to its code. This definition of black-box simulator is relatively generic: if the simulator does not know
the definition of the protocol Π, it can basically only forward the messages of the protocol to the distinguisher. For instance,
if all exchanged messages are signed with a key unknown to the simulator (but which is part of the public description of the
protocol), the only way to communicate with the distinguisher is to forward the messages sent by running {πi}i∈HR. We
could formalize this by giving an even more generic definition of black-box simulator that is not explicitly asked to forward
the messages of {πi}i∈HR to the distinguisher, but this would obfuscate our proof without clear benefits.
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|G⟩M . For instance, if we allow arbitrary corrections on a GHZ state 1√
2
(|0 . . . 0⟩+ |1 . . . 1⟩), then nothing

prevents an adversary from flipping the bit of the honest parties in a different way, for instance to produce
1√
2
(|10 . . . 0⟩+ |01 . . . 1⟩), where the honest parties get the first two qubits. This would be disastrous, for

instance if we build a coin tossing protocol from this GHZ state by measuring the first two qubits in the
computational basis, since the first two parties would get different outcomes, which is impossible to obtain
from a normal GHZ. Note that it might be hard to justify why a correction x is harmless as it might
depend on the protocol that we target. Protocols that expect a graph state |G⟩ should in theory reprove that

they are secure when using the functionality Vf|G⟩, or use, instead, the result that we present in Section 4.

However, we believe that the set of corrections we obtain is harmless, since it is basically a subset of the
stabilizers of the graph state. Therefore, intuitively, any correction x such that f(x) = ⊤ can be done by
the adversary by applying a stabilizer on his side, which will automatically propagate some corrections
to the honest players. This property is actually formalized later in order to obtain our second result in
Section 4.

Informally speaking, a state is mergeable if the following holds: if this state is shared between two
parties Alice and Bob, and if another copy of this state is shared between Bob and Charlie, then is is
be possible to obtain a single copy of this state between Alice and Charlie, under the constraint that
Charlie should not do any operation, that Bob should perform an arbitrary measurement to obtain an
outcome m, and that Alice only does an operation that only depends on m. In a sense, this can be seen
as a generalization of entanglement swapping to arbitrary states, with additional constraints on the set of
allowed operations. Said differently, we will say that a state |G⟩ is mergeable with respect to f and ξH if

we can find ? (called ξσ from now) such that Eq. (15) is true, where f(x) = ⊤. Since this must

be true for any set of corrupted party, the function f and ξH will be different for any subset H of honest
parties. More formally:

Definition 3.5 (Mergeable states). A state |ψ⟩R1,...,Rn on n registers {Ri}i∈[n] is said to be mergeable
with respect to a function f : P([n]) ×M (taking as input a set of honest party and a measurement
outcome), and a collection of quantum maps {ξH}H⊆[n] (taking as input the registers Ri for i ∈ H,
together with an additional classical input, and outputting the same Ri’s registers) if for any subset
H ⊆ [n] of registers, there exists a quantum map ξσ (taking inputs from the registers RH̄ of a first state,
and RH of a second state, and outputting a single classical value inM such that f(H,x) = ⊤) and ξH
(taking the register RH of the first state and the classical output of ξσ, and outputting a quantum register),
such that:

(ξH ⊗ In−|H|)(I|H| ⊗ ξσ ⊗ In−|H|)(|ψ⟩RH ,RH̄ ⊗ |ψ⟩RH ,RH̄ ) = |ψ⟩RH ,RH̄ (16)

Note that this is always trivially possible if H is empty or equal to [n]. In picture:

ξH

ξσ

|ψ⟩RH ,RH̄

|ψ⟩RH ,RH̄

= |ψ⟩RH ,RH̄ (17)

We show now that any graph state is mergeable. Note that during a first reading, it might help to
start with the simpler construction of Corollary 3.7 that focuses only on GHZ states.

Theorem 3.6 (Any graph state is mergeable). For any graph G = (V,E), |G⟩ is mergeable (Definition 3.5)

with respect to the maps {ξH}H⊆[n] that take two lists of X and Z corrections (x, z) ∈ (Z|H|2 )2 and applies
XxZz on the input qubits.
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The merge procedure is described diagrammatically in Fig. 6, and for completeness we reformulate it
here. Let n = |V |, H and M be any partition of V . For simplicity, we assume that we reorder elements of
V to have elements of H ordered before elements of M . Let Γ be the biadjency graph between H and M
(cf. Definition A.4). Then, we define ξσ as follows (cf. illustration Fig. 6), where the i-th qubit of |G⟩
belongs to register H (resp. M) iff i ∈ H (resp. M).

• It applies ∧Z gates on any pair (i, j) of qubits of register H iff (i, j) ∈ GH and similarly it applies
∧Z gates on any pair (i, j) of qubits of register M iff (i, j) ∈ GM .

• It applies Hadamard gates on all qubits of register M .

• It computes U , V , r and R according to Lemma A.11 and applies the unitary |x⟩ 7→
∣∣V −1x〉 on

register M and |x⟩ 7→ |Ux⟩ on register H. This is always possible since U and V are invertible. We
propose moreover in Lemma A.12 a way to implement them more efficiently, without auxiliary qubits
and using only CNOT and swap operations.

• It performs r Bell measurements (projection on one of the four Bell states) between the first r qubits
of each register. The Bell measurements are between the i-th qubit of register M with the i-th qubit
of register H, where a measurement outcome (bi, ci) ∈ {0, 1}2 means that the i-th pair was projected
on the Bell state |0ci⟩+ (−1)bi |1c̄i⟩. The outcomes are gathered into two vector b = (bi)i∈[r] and
c = (ci)i∈[r].

• It performs a measurement in the {H |ai⟩}ai∈{0,1} basis on the |M | − r remaining qubits of register
M (the outcomes are gathered into a vector a), and a measurement in the computational basis
{|di⟩}di∈{0,1} on the |H| − r remaining qubits of register H (the outcomes are gathered into a vector
d).

• It computes x := U−1
[
c⊕Rd

0

]
, and z :=

(
UT

[
b

RT b

])
⊕Gx where Gx is the set of neighbours of

x as defined in Lemma A.7, and returns the corrections (x, z).

((UT (b::RT b))⊕Nv)π xπ

x:=U−1((c⊕Rd)::0)

G

GM
V −1

bπ

aπ

GH
U

cπ

G dπ

|
|H|

|
|M |

ξσ

ξH

Figure 6: Representation in ZX-calculus of the procedure to merge two copies of a graph state into a
single copy. The orange area denotes the merging map ξσ while the blue one represents the corrections ξH
to apply. Note that H and M form a partition of the vertices of G, and that GH , GM , Γ, U , V and R
are defined like in Definition A.4 and Lemma A.11.

Note that this lemma is at the heart of our construction. Since the proof is quite technical and heavily
relies on scalable ZX-calculs, we defer the full proof to Appendix B.1.

Since the above theorem is true for any graph state, it is also true for GHZ states. However, the
merging operation can be significantly simplified in that setting:
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Corollary 3.7 (GHZ states are mergeable). Any GHZ state of size |n| (each qubit being a separate register)
is mergeable (Definition 3.5) with respect to the collection of quantum maps {ξH}H⊆[n], where ξH takes
two bits (x, z) ∈ {0, 1}2 as input, applies Zz of the first qubit, and Xx on all its input qubits (if |H| is
empty, it does not do anything).

See proof in Appendix B.1.

Security proof of Theorem 3.2. Building on this corollary, we prove now the security part of
Theorem 3.2, schematised in Fig. 5. The simulators that we will define are informally drawn in Fig. 7.

(a) Special case where the subset of
corrupted parties M contains only
the source (i.e. M = {S}).

(b) Special case where the subset
of corrupted parties M contains
only some parties (excluding the
source).

(c) Special case where the subset of
corrupted parties M contains the
source and a coalition of dishonest
parties.

Figure 7: Simulators for (a) a dishonest source, (b) a subset of dishonest parties and (c) a coalition of
dishonest parties and source. Note that even if we describe three simulators depending on the set of
corrupted resources for clarity, in the proof we directly describe the generic case where the set M of
corrupted parties can be arbitrary.

Lemma 3.8 (Security proof of Theorem 3.2). Let M ⊆ [n] ∪ {S} be an arbitrary subset of corrupted
parties, and H = [n] ∪ {S} \ M be the honest parties. Then there exists a simulator σM such that

πHR ≈ ⊥HVf|G⟩σM for each possible subset M .

Proof sketch. This proof is relatively technical and is therefore deferred to appendix. Yet, the informal
idea is to use the fact that the state is mergeable. More precisely, the simulator can simulate the protocol
run by honest parties, forwarding all messages from/to the distinguisher, to get the state outputted by the

honest parties. If no party aborted, then the state should be close enough to |G⟩H (part of the technicality
is to write this properly since part of this state is owned by the adversary). In that case, the simulator

will then get from Vf|G⟩ another copy of |G⟩M , and use the fact that this state is mergeable in order to

merge these two copies of |G⟩ into a single state close to |G⟩ up to some corrections, shared between the
distinguisher and the functionality. The merging operation will provide these corrections to the simulator,
that can forward them to the ideal resource. The resource will then apply these corrections to ensure that
the shared state is now close to |G⟩, before outputting its part of |G⟩ to the distinguisher.

See full proof in Appendix B.1.

Note that while we focus in this proof only on graph states, the result in this section also easily extend
to any mergeable state.

4 Realizing the ideal resource without corrections

We showed in Theorem 3.2 that all verification protocols, provided some basic security properties, realize
without any change the resource Vf|G⟩. However, this resource does allow the adversary to apply some
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corrections on the state of the honest parties. While we believe that such corrections are harmless for the
security as they can already, to a certain degree, be created by applying some operations on the state
owned by the malicious party, one might prefer a “cleaner” interface for the resource, at the cost of having
a slightly more involved protocol. In this section, we show that any protocol realizing Vf|G⟩ can be turned

into a new protocol that realizes a new resource V|G⟩ (note that the dependency on f is gone).

The modification consists in applying a random stabilizer of G on their share of the graph state at the
end of the protocol. We abstract the sampling and distribution of this stabilizer in a separate, additional,
resource. In practice, this operation can for instance be done via a coin flipping protocol.

We formally describe the resource V|G⟩ in Resource 4.1. Apart from allowing malicious adversaries to
abort and to get their share of the quantum state before honest parties, it simply sends |G⟩ to all parties.
We also define the filters ⊥i for each party i that sends ci = ⊤ and we show an informal representation of
the filtered resource ⊥[n]∪SV|G⟩ in Fig. 8.

Resource 4.1 Ideal resource V|G⟩

1. Create a quantum state |G⟩.

2. Receive for each party i a bit ci ∈ {⊤,⊥}. If any ci = ⊥, send the i-th qubit of |G⟩ to party i, and
wait for another abort bit c′i ∈ {⊤,⊥}: if any c′i = ⊥, abort by sending ⊥ on all interfaces; otherwise,
for each i such that ci = ⊤, send the i-th qubit of |G⟩ to party i.

Additionally, we include in V|G⟩ an additional communication channel C that can forward any—possibly
quantum—message between any party (see Remark 2.2).

Figure 8: Ideal filtered resource π[n]∪SV|G⟩ representing a more ”clean” ideal graph state verification
resource than in the previous section.

We define in Resource 4.2 the ideal functionality that samples a random x, abstracting a common
randomness generation resource. Note that one might want a simpler version of Resource 4.2 where the
random x is simply sent to all parties without considering any abort. In practice such protocols are
impossible to obtain without a trusted third party, as a malicious adversary can usually first check the
value of the random bit, and abort before letting the other party aware of this value. For this reason, we
need to add an exchange of messages to allow the adversary to abort without letting the other parties
know the value of the random bit.

We define in Protocol 4.1 the protocol {τi}i∈[n] that realizes V|G⟩ from Vf|G⟩ and RCoinFlip. We prove
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Resource 4.2 Ideal resource RCoinFlip

1. Sample a random bit string x $← {0, 1}n

2. For each party i ∈ [n], receive ci ∈ {⊤,⊥}. If any ci = ⊥, send x to party i, and wait for another
abort bit c′i ∈ {⊤,⊥}: if c′i = ⊥, abort by sending ⊥ on all interfaces, and otherwise send x to all
parties.

We define the associated filter that, connected to interface i, sets ci = ⊤ and forwards the x to the outer
interface.

Protocol 4.1 {τi}i∈[n] Realizing V|G⟩ from Vf|G⟩ and RCoinFlip

1. For each honest party i ∈ H, τi receives from ⊥HVf|G⟩ a share of a quantum state |G⟩ or an abort

message (in which case they output ⊥ and abort).

2. Each honest party {τi}i∈H asks from RCoinFlip a message x or an abort bit (in which case they
output ⊥ and abort).

3. Each honest party {τi}i∈H applies the stabilizer XxiZ(Gx)i on their qubit, and outputs the resulting
qubit.

now that Protocol 4.1 realizes V|G⟩.
Theorem 4.1. Protocol 4.1 realizes V|G⟩.

Proof sketch. The full proof is in appendix, but the main idea of the security proof is as follows: first, the
simulator will send to the distinguisher the state sent by V|G⟩ after partially applying on it a random
stabilizer x. Then, the simulator will receive back a set of corrections from the distinguisher to apply
on the side of the honest parties: since the simulator cannot apply these corrections as the qubits are
on the side of the functionality, we use the fact that for stabilizer states, we can instead apply these
corrections on the side of the adversary. Unfortunately, the simulator has also no access to the quantum
register of the adversary: instead, the simulator adds this additional correction to x, and sends this to
the distinguisher, pretending it was the random stabilizer sampled by RCoinFlip. We provide an extensive
analysis of this simulator in the full proof in Appendix B.2.

Corollary 4.2. Assuming the existence of a protocol for graph state verification fulfilling properties
described in Theorem 3.2 and a coin flipping protocol realizing RCoinFlip, there exists a protocol realizing
V|G⟩.

See proof in Appendix B.2.
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5 Use cases

Our result readily applies to some already existing protocols in the literature. In the following we show
two such use cases and discuss their implication and improvement over previous works.

5.1 Generic translation tools

Before studying specific protocols, it is handy to first derive some generic theorems in order to translate
between the notations used in existing graph state verification protocols and the notion of distance used
in Definition 3.1. Indeed, while our notion of distance uses a single parameter ε quantifying the average
distance to the ideal graph state (which is handy since in AC we have a single parameter ε′ used to denote
the distance between two systems A ≈ε′ A), existing works consider instead two parameters, namely the
probability δ of being η-close to the ideal graph state.

Remark 5.1. We also emphasize that most existing protocols implicitly assume that either all parties abort
or that they all accept the final state together. We will refer to that property as simultaneous abortion.
While Definition 3.1 does not strictly enforce this behavior, any protocol that does not fulfill simultaneous
abortion with high probability will also have low guarantee in term of security. Said differently, the ε
obtained in Definition 3.1 and Theorem 3.2 will be far from 0. This makes sense since our resource
Resource 3.1 always sends the same abort/accept bit to all parties. So, if the adversary can send different
abort bits to different parties, this gives directly a simple way to distinguish the ideal world from the real
world, by simply checking if all parties share the same abort bit.

This could be a real issue in practice, for instance in [PCW+11] if a malicious verifier is picked, the
verifier could send different abort bits to all parties. As a result, without further checks, this protocol could
only be proven composably secure for some constant ε (as a reminder, in the original protocol, we expect
to be able to get ε as small as wanted, the running time scaling polynomially with O(1/ε)). We have two
options to avoid this issue:

• Either change the definition of V|G⟩ to get rid of simultaneous abortion, meaning that some honest
parties could abort while others would not.

• Or we could slightly adapt the protocol using a broadcast channel, i.e. a channel where all parties
receive the same bit, in order to notify to all parties at the same time the final abort bit.

Since the first option makes the resource harder to use, we will opt for the second solution. This makes
even more sense as in existing protocols, the protocol already needs to obtain a random string known
to all parties, which often already implicitly requires a broadcast channel. One might also ask whether,
reciprocally, a broadcast channel is needed to realize V|G⟩. It turns out that Vf|G⟩ can already be (ab)used

to obtain a kind of broadcast channel: since all parties see the same abort bit, one could decide that “abort”
means 0 and that “accept” means 1. Therefore, it should come at no surprise that a broadcast channel is
needed to realize V|G⟩.

Lemma 5.2. Let Π = {πi}i∈[n]∪S be a protocol generating, when all parties are honest, a state |G⟩ shared
among all parties but the source. We assume that Π has simultaneous abortion (Remark 5.1), i.e. that for
any adversary A, either all honest parties abort at the same time with some probability 1− p or accept
and output the averaged state ρ⊤. Then, if any of the following conditions is fulfilled, this protocol is an
ε-graph state verification protocol according to Definition 3.1:

• If p(1 − F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|))) ≤ ε. This denotes the fact that the probability of accepting and
outputting a state far from |G⟩ to the honest parties is small.

• Or if F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|)) ≥ 1− ε. This corresponds to the protocol’s property to create a state
close to the desired state. Note that this condition is strictly stronger than the first one, since an
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adversary might be able to produce such a state with negligible probability. Yet, unconditionally
secure protocols might prefer this formulation.

See proof in Appendix B.3.

Lemma 5.3. If a protocol has simultaneous abortion (Remark 5.1), and if the probability (on the
randomness of A and the whole protocol) to have no abort and a final state far from the target |G⟩ is
small, more formally:

Pr
[
Tr[n]\H |ψi⟩ ≠

∣∣⊥H〉 ∧√1− F 2(Tr[n]\H |ψi ⟩⟨ ψi| ,Tr[n]\H |G ⟩⟨ G|) ≥ η
∣∣ |ψi⟩ ← πHRA

]
≤ δ (18)

or, equivalently,

Pr
[
Tr[n]\H |ψi⟩ ≠

∣∣⊥H〉 ∧min
U

TD((IH ⊗ UM ) |ψi⟩ , |G⟩) ≥ η
∣∣ |ψi⟩ ← πHRA

]
≤ δ (19)

then this protocol is an (δ + η2)-graph state verification protocol according to Definition 3.1.

See proof in Appendix B.3.

5.2 GHZ-state verification

In [PCW+11], the authors develop and analyze an n-party verification protocol consisting only of classical
communication and local quantum operations once the state is shared. One of the parties, called the
Verifier, has a central role in the protocol: it sends instructions to all parties and broadcasts the output
of the verification. We recall the protocol of [PCW+11] in Protocol 5.1. In the AC language, it uses
quantum and classical authenticated secret channels, a broadcast channel and a Common Random String
resource (CRS) as concrete resources to build an ideal GHZ-state sharing functionality. Note that it is
important that the random string is sent by the CRS once all parties received the state from the source.

This protocol has been extensively studied and presents desirable properties: notably the probability
of aborting increases when the state sent by the source is further away from the target state (locally
equivalent to) |GHZ⟩, and this probability can be made arbitrary small by increasing the number of
rounds. More precisely, for one round, if ρ denotes the state shared among the parties by the source, and

if the verifier is honest, the probability of aborting is Pr [ bout = 1 ] = τ2

4 with:

τ = min
U

TD(|GHZ ⟩⟨ GHZ| , UρU†) (20)

where TD is the trace distance and U is an operator acting only on the space of the dishonest parties.
Since the verifier might not always be honest, we can repeat this protocol to increase the abort probability
when the state is maliciously prepared. The verification protocol thus consists in rounds where the source
shares a state to the parties, who then samples r $← {0, 1}S to decide if they verify the state or if they
keep it. This process goes on until until either r = 0 . . . 0 in step (3), in which case the parties output a
quantum state, or if bout = 1 in step (8), in which case the parties abort. The fact that the parties decide
to verify or keep the state after it is shared ensures that possible malicious parties do not adapt their
behaviour to a particular round. In [PCW+11], the authors prove that the probability that a state |ψ⟩ is
accepted after repeating the protocol until r = 0 · · · 0, and |ψ⟩ is further than ε from the GHZ state is
given by:

Pr
[
|ψ⟩ accepted ∧min

U
TD(U |Ψ⟩ , |GHZ⟩) ≥ ϵ

]
= 2−S

4n

hε2
(21)

where U acts on the space of the dishonest parties, n is the total number of parties and h is the number
of honest parties.

In later work [MPB+16], an experimental realization of a loss-tolerant variant of this protocol has
been implemented, hinting towards practicability of this protocol in real-life networks. Note that the

21



Protocol 5.1 Multipartite entanglement verification protocol

1. The source creates an n-qubit state locally equivalent to the GHZ state (up to local Hadamard and
phase shift

√
Z gate) and sends each qubit i to party i.

2. After receiving the state, the parties receive r $← {0, 1}S and i $← [n] from a CRS resource, where S
is a security parameter. Note that the source should not reveal r and i before the state is received
by all parties.

3. If r = 0 . . . 0, the state received at step 1 is outputted by each party and the protocol stops.

4. Otherwise, if r ̸= 0 . . . 0, party i is designed as the Verifier.

5. The Verifier selects for each i ∈ [n] a random input xi ∈ {0, 1} such that
∑n
i=1 xi ≡ 0 mod 2 and

sends it to the corresponding party via an authenticated private classical channel resource. The
Verifier keeps one to themselves.

6. If xi = 0, party i performs a Z operation on their qubit. If xi = 1, party i performs a Hadamard
operation.

7. Each party i measures their qubit in the {|0⟩ , |1⟩} basis and sends their outcome yi to the Verifier
via the classical channel.

8. The Verifier accepts and broadcasts bout := 0 if and only if

n∑
i=1

yi ≡
1

2

n∑
i=1

xi mod 2

Otherwise, the Verifier broadcasts bout = 1 and the protocol aborts.

9. If the Verifier has not rejected, we restart from Step 1.
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result that we show in this section also applies to this variant.

A previous composable security study of this protocol [YDK21] could not show the composable security
of this protocol in the case of a coalition on malicious party and source and conjectured that it was
impossible to prove in the AC framework. Our present work answers this conjecture by the negative. The
key difference with the previous work lies in Remark 2.2, which allows local simulators to communicate
between each others via an additional communication channel resource. Equivalently, this allows to
consider a single global simulator having access to all the corrupted interfaces of the ideal result, which
is actually the choice made by the Universal Composability framework. Building on the work from the
previous sections, we can show the following lemma proving composable security of the protocol from
[PCW+11]:

Lemma 5.4. The protocol defined in [PCW+11], assuming that we use a broadcast channel to transmit
the abort bit, is an ε-graph state verification protocol for ε := 1

2S/2 (4n+1), where 2S is the average number
of tests before outputting a state as defined in [PCW+11] and n is the total number of parties. As a

result, it (2
√
2ε− ε2)-realizes Vf|G⟩ as defined in Theorem 3.2, and can be turned into a protocol that

(2
√
2ε− ε2)-realizes V|G⟩.

See proof in Appendix B.3.

5.3 Graph state verification

The work of [UM22] presents a generalization of the previous protocol to arbitrary graph states, where
the verifier will ask parties to measure random stabilizers of the graph state. We can similarly show that
it is composably secure. Note however that this protocol, like the previous one, shows security scaling
polynomially with the security parameter while we usually expect it to scale super-polynomially. However,
this allows significantly simpler protocols and most existing graph state verification protocols have this
property. But our framework, of course, also applies to protocols that are super-polynomially secure.

Lemma 5.5. We define, as in the theorem 3 of [UM22] (where we use the fact that conditioned on
non-aborting, we have Npass ≥ λJNtest − Ntest

2J as described in protocol 2 to simplify the expression of p0
and avoid any dependency on a number that might be different every time we run the protocol):

• J = 2n or J = n depending on G as described in [UM22, Thm. 2],

• λ be the security parameter growing polynomially with the number of tests

• m and c some positive constants chosen so that p0 and η0 defined later are greater than 0,

• p0 := [1−∑λ
x=0(1− 1

n )
x( 1nJ

−2cm
3 )λ−x]J (we got rid of the number of honest parties |H| ≥ 1 since

we want this to be independent of the number of malicious parties)

• η0 :=
(
1
λ − 1

λ2

)
+
(
1 + 1

λ

) √c+1/2
J

The symmetric protocol 2 defined in [UM22], assuming that we use a broadcast channel to transmit the abort
bit, is an ε-graph state verification protocol for ε := 1− p0 + 2η0 − η20. As a result, it (2

√
2ε− ε2)-realizes

Vf|G⟩ as defined in Theorem 3.2, and can be turned into a protocol that (2
√
2ε− ε2)-realizes V|G⟩.

See proof in Appendix B.3.

6 Conclusion

In this work, we studied the composable security of generic graph-state verification protocols, i.e. protocols
consisting of a source sharing graph-states to a network of parties, who then only perform local operations
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and classical communications, to decide whether they can use some of the states for another protocol. We
showed that they can be considered equivalent to an ideal abstract resource, up to an ε that we explicited.
This resource shares graph-states while allowing a restricted class of corrections to be applied to them
by malicious parties. We proved that without modifying the original protocols, these malicious actions
cannot be prevented when considering generic black-box simulators. We thus showed how to modify the
original verification protocols to prevent the malicious parties to effectively act on the shared graph-state.
The modification consists in asking the parties to jointly apply a random stabilizer to the state that they
receive. By doing so, the modified protocol can be considered equivalent to a ideal functionality simply
sharing graph-states. In this modified version, the dishonest parties can only force the protocol to abort.

To prove our results, we studied the class of mergeable states, to which graph-states belongs. We showed
that we can merge two copies of a graph state into one copy, by acting only on a partition of the qubits.
This generalizes entanglement swapping to arbitrary graph state. We explicited the measurements and
local operations to do this swapping using scalable ZX-calculus [CHP19]. For graph-state manipulation,
the scalable ZX-calculus formalism proved to be more handy than the usual density matrix formalism, and
we provide an introduction in Appendix A. We believe this work is one of the first using such methods in
the context of quantum cryptography.

We emphasize that our results mostly preserves the security features of the original protocol. Notably,
if the initial protocol is ε-secure, our claim is that it ε′-realizes the above functionalities where ε′ is
polynomially related to ε. In particular, if ε is scaling inverse polynomially with the security parameter,
ε′ will also scale inverse polynomially. On the other hand if ε is negligible, so will ε′.

Our results are crucial in the context of network protocol development. The class of verification
protocols that we studied are use as building-blocks in many quantum network protocols. Our work
explicits to which extent they can be repeatedly used by computing of communication protocols to get
verified graph-state without threatening the overall security. We showed in the last section of the paper
how to apply our result to two existing verification protocols [PCW+11, UM22]. In the process, we
answered negatively a conjecture posed in [YDK21] stating that graph-state verification protocols cannot
be proven composably secure in the Abstract cryptography framework. Moreover, our composability
proof readily applies in a network where trusted parties wish to build trust on a source of graph-state.
This is the case in many real-life scenario where a group of people wish to get a graph-state from an
untrusted network to perform, for example, a multiparty computing protocol. In future works, we will
study different contexts in which our result can apply.
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A Introduction to the (scalable) ZX-calculus

A.1 Introduction to the (scalable) ZX-calculus.

ZX-diagrams. A ZX-diagram is a graph with some inputs (on the left) and outputs (on the right). We
can associate to any ZX-diagram a matrix, using the following interpretation of the generators, where the
colored nodes are being called “spiders”, and H being strictly speaking only a syntactic sugar:

q
n ... α

...m
y
= |0⟩⊗m ⟨0|⊗n + eiα |1⟩⊗m ⟨1|⊗n

q
n ... α

...m
y
= |+⟩⊗m ⟨+|⊗n + eiα |−⟩⊗m ⟨−|⊗n

J K = |00 ⟩⟨ 00|+ |10 ⟩⟨ 01|+ |01 ⟩⟨ 10|+ |11 ⟩⟨ 11|
J K = |+ ⟩⟨ 0|+ |− ⟩⟨ 1|

J K = |0 ⟩⟨ 0|+ |1 ⟩⟨ 1|
J K = |00⟩+ |11⟩
J K = ⟨00|+ ⟨11|

J K =
(
1
)

Note that when α = 0, we can omit the angle in the spiders. Moreover, we can compose these generators
sequentially (resp. in parallel). We then obtain the resulting natural interpretation, by inductively
computing the matrix product (resp. tensor product) of the interpretation of the sub-diagrams.

Circuit to ZX. One can turn any quantum circuit into a ZX-diagram. Let (a, b) ∈ {0, 1}2 and α ∈ R.
Then, up to a non-relevant re-normalisation scalar and global phase, we represent basic states using
aπ = |a⟩, aπ = H |a⟩ and one-qubits gates using = H, α = Rx(α) and α = Rz(α). We

have in particular aπ = Xa and aπ = Za. Two qubit gates are represented as8 = CNOT

and = ∧Z. Moreover, we represent a measurement in the computational basis whose outcome is a

using aπ = ⟨a| and a measurement in the Hadamard basis, i.e. the projection on |0⟩+ (−1)a |1⟩, whose

outcome is a aπ = ⟨a|H . Finally,
aπ

bπ
represents a Bell measurement (projection on |0b⟩+(−1)a

∣∣1b̄〉)
with outcomes (a, b).

Scalable ZX. The scalable ZX-calculus [CHP19] generalises these generators: wires can be grouped
(or ungrouped) together. We represent these grouped wires as bold wires, where we specify above the
number of wires in the group when there can be a confusion. The grouping/ungrouping of wires is done
using so-called gatherers and dividers, shown in the first two diagrams of Eq. (22) below. In scalable ZX,
spiders can contain lists of real numbers, corresponding to stacked spiders, as we show for example in the
two last diagram of Eq. (22) with α ∈ R and β ∈ Rn−1:

|
n+m|

n

|
m

|
n+m |

n

|
m

|
n

|
n

|
n

|
n

α::βk ...
... l

Z
:=

|
n

|
n

|
n

|
n

α

β

k ...
... l |

n+m
|

n+m

W
:=

|
n

|
m

(22)

The interest of the ZX-calculus is that we can rewrite a ZX diagram using some rewriting rules while
preserving the interpretation of the corresponding matrix. The first rule is that only connectivity matters,
i.e. we can bend wires arbitrarily as soon as the corresponding undirected graph is left unchanged. Other
rules and theorems are described in Fig. 9. Note that, for simplicity, we will remove all scalars, i.e.
sub-graphs having no input nor output, as they correspond to global phases (not observable physically)
and/or a re-normalisation of the state.

Lemma A.1 (Rewiring rule R [CHP19, Thm. 3.2]). Two diagrams composed only of identity, gatherers
and dividers are equal iff their respective number of inputs and outputs are equal.

8Although the generators do not allow vertical wires, we will see that we can freely bend wires and move nodes since
“only topology matters”. We can therefore consider ZX-diagrams as undirected graphs.
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α

β

...
...

...
...

. . . S
= α+β

...
...

EU
= π

2
π
2

π
2 α

...
...
H
= α

...
...

I
=

aπ θ
...
C
=

aπ

aπ

... aπ θ
...
Pi
=

aπ

(−1)aθ

aπ

...
B
=

Ho
=

Figure 9: Rules and theorems of the SZX calculus (the rules also hold when read from right to left and
after exchanging colors, note that we omit the more generic Euler rule as it is not needed for the Clifford
fragment that we use here). a ∈ {0, 1}n and b ∈ {0, 1}n are arbitrary vectors of binary variables, θ ∈ Rn
is an arbitrary vector, and operations between vectors are component-by-component. In the S rule, at
least one connection must exist between both spiders, and bold wires indicate wires of size ≥ 1.

The scalable ZX-calculus also provides a way to use arbitrary binary matrices to specify the connectivity
between nodes: for any matrix A ∈ Zm×n2 , we have:

r
A

z
(23.a)
:= (|x⟩ 7→ |Ax⟩) A (23.b)

= A
...

...
A (23.c)

:=
A

(23)

Where, in the second equation, A represents the biadjency matrix of the bipartite green/red graph.

For any binary vector u and binary matrix A and B of appropriate size, we also have the following
rewriting rules, that informally come from the fact that a green spider copies states in the computational
basis while a red spider performs the modulo sum of its inputs:

[
A
B

]

(24.a)
=

A

B

[
A B

]
(24.b)
=

A

B

A+B (24.c)
=

A

B

(24)

BA (25.a)
=

A B A
uπ

(25.b)
= ATuπ

A A
uπ

(25.c)
= ATuπ (25)

uπ
A (26.a)

=
A

Auπ uπ
A (26.b)

= Auπ (26)

Lemma A.2 ([CHP19, Thm. 4.8, 4.9]). If A is injective, we have
A A

= and similarly, if A is

surjective, we have
A A

= . In particular, if A is bijective, we have:

A A.2
=

A A−1 A−1
(25.a)
=

A−1A A−1

=
I A−1

(23.b)
=

A−1

(27)

A.2 Graph states

We list below some basic properties to graphically represent and manipulate graph states. Most of these
facts and proofs can be found in [Car20, CHP19].

Lemma A.3. Let Γ ∈ Zm×n2 , then the following ZX diagram applies a ∧Z between the i-th qubit of the
first group of qubits and the j-th qubit of the second group of qubits iff Γj,i = 1, or, more formally:

Γ

|
n

|
n

|
m

|
m

=
∏

(i,j),Γj,i=1

∧Zi,m+j (28)

28



where ∧Zi,j applies a ∧Z between the i-th and j-th qubit, assuming i, j and the qubits are all indexed
starting from 0.

Definition A.4. Let G = (V,E) be an undirected graph on n ordered vertices in V . By slightly abusing
notations, we will also denote its representation in term of an adjacency matrix as G ∈ Zn×n2 , the rows
and columns of G being indexed by elements in V , where Gi,j = 1 iff there exists an edge between i and j
and Gi,j = 0 otherwise. We also denote G and G as, respectively, the upper and lower triangular matrix
of G (note that G has zeros on its diagonal). In particular, G = G + G , and since GT = G, we also
have (G )T = G . For any partition (A,B) of V of G (for simplicity, we assume that elements in V are

ordered so that elements in A appear before elements in B), we define GA ∈ Z|A|×|A|2 , GB ∈ Z|B|×|B|2 , and

ΓA→B ∈ Z|B|×|A|2 (or simply Γ) such that:

G =

[
GA ΓT

Γ GB

]
(29)

In particular, GA and GB are the subgraphs of G restricted to vertices in A and B respectively, and Γ is
the biadjency matrix between elements in GA and elements in GB.

Definition A.5. For any undirected graph G = (V,E) on n ordered vertices, we define G|
n

|
n

as the

operation that applies a ∧Z gate between all input qubits connected in G (the wires being ordered following
the order on V ). We can represent this operation diagrammatically (see [Car20]) as:

G := G (30)

Moreover, we define the graph states G as G := G .

Lemma A.6. For any graph G,

s
G

{
= |G⟩.

The proof of this statement can be found in [Car20], but the main idea is to show that this state is
stabilized by the stabilizers of |G⟩, which is formalized by the following lemma:

Lemma A.7 ([Car20]). Let G = (V,E) be a graph, and x ∈ Z|V |2 be a vector (indexed by vertices in V ).
Then, xπ Gxπ is a stabilizer of G:

G xπ Gxπ = G (31)

Proof. The proof of this statement can be found in [Car20], but we rewrite it here for completeness:

G xπ Gxπ
(30)
= G

xπ Gxπ

Pi
=

G

xπ xπ

Gxπ

H,(26.a)
=

xπ G xπ

G

Gxπ

(32)

Pi
=

G xπ xπ

G

Gxπ

H,(25.b)
=

G

G xπ G xπ

Gxπ

S
= G

(Gx⊕Gx)π

I
= G (33)
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Lemma A.8. For any graph G, G G = .

Proof. This fact is a direct consequence of the property ∧Z∧Z = I. More formally:

G G
A.5
= G G

S
= G G

H
=

G

G
(34)

(24.c)
=

G +G

=

0

(23.b)
=

H,S,I
= (35)

Lemma A.9. For any graph G, G = G .

Proof. This is a direct application of the spider rule on the definition of G .

We describe now a way to partition a graph G into two subgraphs.

Lemma A.10. Let G = (V,E). Let H ⊆ V and M := V \ H be a partition of V (for simplicity we
assume that we re-order elements in V so that elements in H are smaller than elements in M). Then,
using notations from Definition A.4, we have:

G =

GH

ΓGH→M

GM

(36)

Proof. Intuitively, this lemma only means that in order to create G, we can first create the graph states
GH and GM , and apply after ∧Z gates between elements in GH and GM . This can be formalized
diagrammatically using the decomposition rules for block matrices:

|G⟩ A.5=
G

(29)
=

[
GH 0
Γ GM

]

(24.a)
=

[
GH 0

] [
Γ GM

]

(37)

(24.b)
= GH 0 Γ GM

(23.b)
= GH Γ GM (38)

Z,W,R
=

GH

Γ

GM

S,H
=

GH

Γ

GM

(39)
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Lemma A.11. Let Γ ∈ Zm×n2 be a binary matrix. Then, there exists an invertible matrix U ∈ Zn×n2 , an
integer r (the rank), a matrix R ∈ Zr×n−r2 and an invertible matrix V ∈ Zm×m2 such that:

Γ = V

[
Ir R
0 0

]
U (40)

where Ir ∈ Zr×r2 is the identity matrix and 0 is the zero matrix.

Proof. This is a direct consequence of the Gaussian elimination algorithm: using Gaussian elimination
we can obtain a row echelon form (using only elementary row operations, i.e. swapping rows and adding
a multiple of one row to another row). Then using column swap, we can reorder the row echelon form
matrix to bring the pivots on the diagonal of the matrix. Finally, by subtracting for each row j (starting
from the last row) the rows i (for any i > j) if j’s row contains a one on i-th column, we can remove
all elements above the diagonal, leading to the identity in the upper right corner. By combining all
(invertible) elementary row and column operations into U and V , we obtain our final form.

Lemma A.12. Let U ∈ Zn×n2 be an invertible matrix, then
U

is physically implementable without

auxiliary qubits using only CNOT and swap operations, and
U

=
U−1

.

Proof. The fact that
U

=
U−1

is a direct consequence of [CHP19, Lem. 4.8, 4.9]. To see that
it can be written as a sequence of CNOT and swap operations, we can first realize that since U is
invertible, using the Gaussian elimination, we can find elementary row and column operations E1, . . . , En
and E′1, . . . ,×E′n such that:

E1 . . . EnUE
′
1 . . . E

′
n = I (41)

The elementary row (resp. column) operations can either be:

• Operation 1: Multiply line (resp. column) j by a non-null scalar: since the only non-null scalar
modulo 2 is 1, all operations of this form would be identity so we can remove such operations.

• Operation 2: Exchange the j-th line (resp. column) and the j′-th line (resp. column).

• Operation 3: Add the column j to column j′ (in theory, we can multiply first the j-th line by an
arbitrary factor, but since we are working modulo 2, the only interesting case is when this scalar is 1
since when it is equal to 0 nothing happens)

We can see that all these operations are self-inverse, so we have:

U = En . . . E1E
′
n . . . E

′
1 (42)

i.e.

U
=

E′
1
...

E′
n E1

...
En

(43)

Moreover, any such operation can be implemented using a swap or a CNOT gate. If the elementary
operation E is Operation 2, i.e. a swap, then E can literally be implemented by the same swap operation.
This can be seen for instance by realizing that a swap can be realized via a matrix of this form:

E =


1k

0 1
1l

1 0
1m

 (44)
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where 1k is the diagonal matrix of size k × k with ones on its diagonal, and k = j − 1, l = j′ − j − 1.
Therefore, using the characterization in Eq. (23), we have:

E (23.b)
= E

...
...

(44)
=

|
k

|
l

|
m

I
=

|
k

|
l

|
m

(45)

Similarly, if E is Operation 3, then we can write E as a matrix of this form (the 1 might be on the other
side of the diagonal if j′ < j):

E =


1k

1
1l

1 1
1m

 (46)

where k = j − 1, l = j′ − j − 1 which gives, using the characterization in Eq. (23):

E (23.b)
= E

...
...

(46)
=

|
k

|
l

|
m

I
= (47)

which corresponds exactly to a CNOT gate where the j-th qubit is the source and the j′-th qubit is the
target.

B Proofs

We details in this appendix some proofs of the main paper.

B.1 Proofs of Section 3

Theorem 3.3 (Impossibility of black-box realization of V|G⟩). There exists some9 graph states |G⟩ such
that for any graph state verification protocol Π := {πi}i∈[n]∪S using a resource R and producing |G⟩ (i.e.
{πi}i∈[n]∪SR outputs |G⟩ shared among the n parties), it is impossible to prove that Π is ε-realizing V|G⟩
(Resource 3.1) for any ε < 1/2 if the simulator is black-box10, in the sense that the simulator interacts
with the interface controlled by the environment by running {πi}i∈HR, forwarding all messages between
the malicious interfaces of R and the environment.

Proof of Theorem 3.3. This proof is diagrammatically illustrated with equations starting from Eq. (10). In
the following, we will consider the graph state |G⟩ := |00⟩+ |11⟩, consisting of a Bell pair. By contradiction,

9Actually most graph states have this property as soon as they are not separable.
10We call it black-box since the definition of the simulator is mostly independent of the protocol, as it can only execute Π

without having access to its code. This definition of black-box simulator is relatively generic: if the simulator does not know
the definition of the protocol Π, it can basically only forward the messages of the protocol to the distinguisher. For instance,
if all exchanged messages are signed with a key unknown to the simulator (but which is part of the public description of the
protocol), the only way to communicate with the distinguisher is to forward the messages sent by running {πi}i∈HR. We
could formalize this by giving an even more generic definition of black-box simulator that is not explicitly asked to forward
the messages of {πi}i∈HR to the distinguisher, but this would obfuscate our proof without clear benefits.
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we assume the existence of a protocol Π := {π0, π1, πS} ε-realizing V|G⟩, where the simulator σ is black-box
as defined in Theorem 3.3. In particular, we can consider the case where parties 0 and S are honest and
party 1 is corrupted. We also consider the following distinguisher D:

• D runs the honest protocol π1, interacting with the corrupted interfaces. At the end of the protocol,
it gets a bipartite quantum state ρ0,1 from the output from π1 and from the honest interface of the
functionality V|G⟩.

• Then, D will measure both qubits in the computational basis, outputting 0 if both outcomes are
equal and different from ⊥ and 1 otherwise.

We will show that this distinguisher can distinguish the real world from the ideal world with an
advantage greater than ε, raising a contradiction since both worlds must be indistinguishable against any
distinguisher and any subset of corrupted parties.

First, if he distinguisher is interacting with the real world π{0,S}R, because D is following the honest
protocol, we have ρ = {πi}i∈[n]∪SR. Since Π is correct by assumption (recall that {πi}i∈[n]∪SR outputs
|G⟩ = |00⟩+ |11⟩), we always have ρ = |00⟩+ |11⟩, and therefore D will always measure 2 identical bits,
hence always outputting 0.

On the other hand, let us consider the case where the distinguisher is interacting with the real world.
Since the simulator is black-box according to definition given in Theorem 3.3, and since Π expects no
input from any party, we can assume, without loss of generality, that the simulator starts by running
{πi}i∈{0,S}R, forwarding all messages between the malicious interfaces of R and the environment, and
obtaining a state ρ0 outputted by π0. Moreover, since D is honestly running π1, we know, by the
correctness of the protocol, that ρ0 is half of a Bell-state shared with D. Similarly, since in the ideal
world, the protocol never aborts, without loss of generality we can assume that the simulator also sends
c1 = ⊤ to V|G⟩ when starting (otherwise, we can always convert any simulator that sets c1 = ⊥ into a
better simulator that sets c1 = ⊤): the simulator will then receiving a state ρσ from V|G⟩, where ρσ is half

of a Bell pair shared with the distinguisher. Then, we can call Uσ(ρ0,
∣∣0l〉 , ρσ) the rest of the quantum

map performed by the simulator after receiving ρ0 and ρσ, where
∣∣0l〉 is an arbitrary auxiliary register.

Therefore, the global state obtained when the simulator has finished to run is:

(I2 ⊗ Uσ ⊗ I2)(|00⟩+ |11⟩)⊗
∣∣0l〉⊗ (|00⟩+ |11⟩) (48)

where I2 is the identity acting on a single qubit. If we consider now the view of the distinguisher right
before performing its measurement, we can trace out the map performed by the simulator:

Trσ((I2 ⊗ Uσ ⊗ I2)(|00⟩+ |11⟩)⊗
∣∣0l〉⊗ (|00⟩+ |11⟩)(⟨00|+ ⟨11|)⊗

〈
0l
∣∣⊗ (⟨00|+ ⟨11|)(I2 ⊗ Uσ† ⊗ I2))

(49)

By the non-signaling principle, Uσ cannot modify this state since it is traced out. As a consequence, this
state is equal to:

Trσ((I2 ⊗ I2l+2 ⊗ I2)(|00⟩+ |11⟩)⊗
∣∣0l〉⊗ (|00⟩+ |11⟩)(⟨00|+ ⟨11|)⊗

〈
0l
∣∣⊗ (⟨00|+ ⟨11|)(I2 ⊗ I2l+2 ⊗ I2))

(50)

But it is easy to see that this state is equal to the identity density matrix of 2 qubits, as we discard, twice,
one share of a Bell pair. Hence, after measuring this state in the computational basis, the distinguisher
will obtain 0 with probability 1/2 instead of 1, so the advantage in distinguishing is 1/2 > ε. Therefore, Π
cannot ε realize V|G⟩, raising a contradiction.

Theorem 3.6 (Any graph state is mergeable). For any graph G = (V,E), |G⟩ is mergeable (Definition 3.5)

with respect to the maps {ξH}H⊆[n] that take two lists of X and Z corrections (x, z) ∈ (Z|H|2 )2 and applies
XxZz on the input qubits.

The merge procedure is described diagrammatically in Fig. 6, and for completeness we reformulate it
here. Let n = |V |, H and M be any partition of V . For simplicity, we assume that we reorder elements of
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V to have elements of H ordered before elements of M . Let Γ be the biadjency graph between H and M
(cf. Definition A.4). Then, we define ξσ as follows (cf. illustration Fig. 6), where the i-th qubit of |G⟩
belongs to register H (resp. M) iff i ∈ H (resp. M).

• It applies ∧Z gates on any pair (i, j) of qubits of register H iff (i, j) ∈ GH and similarly it applies
∧Z gates on any pair (i, j) of qubits of register M iff (i, j) ∈ GM .

• It applies Hadamard gates on all qubits of register M .

• It computes U , V , r and R according to Lemma A.11 and applies the unitary |x⟩ 7→
∣∣V −1x〉 on

register M and |x⟩ 7→ |Ux⟩ on register H. This is always possible since U and V are invertible. We
propose moreover in Lemma A.12 a way to implement them more efficiently, without auxiliary qubits
and using only CNOT and swap operations.

• It performs r Bell measurements (projection on one of the four Bell states) between the first r qubits
of each register. The Bell measurements are between the i-th qubit of register M with the i-th qubit
of register H, where a measurement outcome (bi, ci) ∈ {0, 1}2 means that the i-th pair was projected
on the Bell state |0ci⟩+ (−1)bi |1c̄i⟩. The outcomes are gathered into two vector b = (bi)i∈[r] and
c = (ci)i∈[r].

• It performs a measurement in the {H |ai⟩}ai∈{0,1} basis on the |M | − r remaining qubits of register
M (the outcomes are gathered into a vector a), and a measurement in the computational basis
{|di⟩}di∈{0,1} on the |H| − r remaining qubits of register H (the outcomes are gathered into a vector
d).

• It computes x := U−1
[
c⊕Rd

0

]
, and z :=

(
UT

[
b

RT b

])
⊕Gx where Gx is the set of neighbours of

x as defined in Lemma A.7, and returns the corrections (x, z).

Proof of Theorem 3.6. First, we can decompose the graphs given as input to the merge procedure given
in Fig. 6 as described in Lemma A.10 (note that the outcome state might depend on the measurement
outcomes a, b, c, d, hence the notation):

|ψa,b,c,d⟩ :=

GH
((UT (b::RT b))⊕Gx)π

xπ

x:=U−1((c⊕Rd)::0)

Γ

GM GM
V −1

bπ

aπ

GH GH
U

cπ

Γ dπ

GM

(51)

Then, we can see that:

GM GM
A.9
= GM GM

A.5
= GM GM

A.8
=

S,I
= (52)
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The same is of course true for GH instead of GM , we can therefore simplify the above graph as follows:

|ψa,b,c,d⟩
(52)
=

GH
((UT (b::RT b))⊕Gx)π

xπ

x:=U−1((c⊕Rd)::0)

Γ V −1

bπ

aπ

Γ U
cπ

dπ

GM

(53)

We will first simplify the colored part , but we prove before an equivalent form of Γ that will also be
useful later: Let U , V , r and R be like in Lemma A.11. We claim that:

Γ
=

U R V
(54)

This is easy to see by mechanically using the diagrammatic representation of block, identity, and zero
matrices:

Γ A.11
=

V

[
Ir R
0 0

]
U

(25.a)
=

U

[
Ir R
0 0

]

V (24.a)
=

[
Ir R

]

U V

0
(23.b)
=

[
Ir R

]

U V

(55)

S,I
=

U
[
Ir R

]

V (24.b)
=

U Ir

R V (23.a)
=

U R V
(56)

Therefore, we have:

Γ U

dπ

(54)
=

V R U U

dπ

A.2
=

V R

dπ

R
=

V R
dπ (57)

(26.b)
=

V
Rdπ (58)

By injecting this into the colored part of Eq. (53), we get:

|ψa,b,c,d⟩
(52)
=

GH
((UT (b::RT b))⊕Gx)π

xπ

x:=U−1((c⊕Rd)::0)

Γ V −1

bπ (c⊕Rd)π

aπ

V

GM

(59)
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We focus now on the yellow-colored part of this diagram. First, we can use the well-known equality
= that is easy to prove as follows:

I
=

H
=

I
= (60)

which gives:

Γ V −1

bπ (c⊕Rd)π

aπ

(60)
=

Γ V −1

bπ (c⊕Rd)π

aπ

(56)
=

U R V V −1

bπ (c⊕Rd)π

aπ

(25.a)
=

U R
bπ (c⊕Rd)π

aπ

R
=

U R
bπ (c⊕Rd)π

aπ Scalar we
can remove

Pi
=

bπ

U R
bπ (c⊕Rd)π

(25.b)
=

bπ

U
RT bπ

R
(c⊕Rd)π

Z
=

U
(b::RT b)π

R
(c⊕Rd)π

(25.b)
= UT (b::RT b)π

U R
(c⊕Rd)π

S,I
=

(c⊕Rd)π

UT (b::RT b)π
U R

Z
= UT (b::RT b)π

U
((c⊕Rd)::0)π

R (27)
= UT (b::RT b)π

U−1

((c⊕Rd)::0)π
R

(26.a)
= UT (b::RT b)π U−1((c⊕Rd)::0)π

U−1 R (27)
= UT (b::RT b)π U−1((c⊕Rd)::0)π

U R

(61)

We inject this back into the yellow-colored part of Eq. (59), after defining x := U−1((c⊕Rd)::0):

|ψa,b,c,d⟩
(61)
=

GH
((UT (b::RT b))⊕Gx)π

xπ

x:=U−1((c⊕Rd)::0)

UT (b::RT b)π xπ
U R

V

GM

(54)
=

GH
((UT (b::RT b))⊕Gx)π

xπ

x:=U−1((c⊕Rd)::0)

UT (b::RT b)π

xπ

Γ

GM

S,Pi
=

GH Gxπ xπ

x:=U−1((c⊕Rd)::0)

Γ

GM

(31)
=

GH

Γ

GM

A.10
= G = |G⟩ (62)

Which concludes the proof.

Corollary 3.7 (GHZ states are mergeable). Any GHZ state of size |n| (each qubit being a separate register)
is mergeable (Definition 3.5) with respect to the collection of quantum maps {ξH}H⊆[n], where ξH takes
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two bits (x, z) ∈ {0, 1}2 as input, applies Zz of the first qubit, and Xx on all its input qubits (if |H| is
empty, it does not do anything).

Proof of Corollary 3.7. While this is a direct consequence of Theorem 3.6, we provide here a simpler proof
specific to GHZ states. First, we note that if |H| is empty, Eq. (16) is trivially achieved by defining ξσ as
the map that measures completely its input state, and outputs, say, x = 0 and z = 0. Since neither ξσ nor
ξH touch the second state at all, this outputs the second state hence achieving Eq. (16).

If H = [n], on the other hand, ξσ has only access to the second state. If we define ξσ that measures
completely its input state, and outputs x = 0, z = 0 to ξH , then ξH will left the first state intact, therefore
achieving Eq. (16).

If |H| is not empty, then we define ξσ as follows:

• ξσ performs a Bell measurement (i.e. a projection11 on one of the four Bell states |0x⟩+ (−1)z0 |1x̄⟩,
where (x, z0) ∈ {0, 1}2) between the last qubit of the registers in RH̄ , and the first qubit of RH ,
getting outcomes (x, z0).

• Then ξσ measures all remaining qubits in the Hadamard basis, getting outcomes {zi}i∈{1,...,n−2}
• Finally, ξσ outputs x and z := ⊕i∈{0,n−2}zi.

We prove now that this ξσ quantum maps achieves Eq. (16) using ZX calculus:

⊕iziπ xπ

xπ

z1π

zn−|E|−1π

xπ

z0π

zn−|E|π

zn−2π

... |E| times
...

...

...

... n− |E| times

ξσ, outputs (x,⊕iziπ)

ξE

=

⊕iziπ xπ

xπ

⊕iziπ

xπ

... |E| times
...

... n− |E| times

(63)

=

xπ

xπ

xπ

... |E| times...

... n− |E| times

=
... n times (64)

Lemma 3.8 (Security proof of Theorem 3.2). Let M ⊆ [n] ∪ {S} be an arbitrary subset of corrupted
parties, and H = [n] ∪ {S} \ M be the honest parties. Then there exists a simulator σM such that

πHR ≈ ⊥HVf|G⟩σM for each possible subset M .

11This measurement can be done via a CNOT gate, and measuring the first qubit in the Hadamard basis to get z0 and the
second qubit in the computational basis to get x.
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Proof of Lemma 3.8. Let M ⊆ [n]∪ {S} be the subset of corrupted parties, and H = [n]∪ {S} \M be the

honest parties. We need to prove that there exists a simulator σM such that πHR ≈ ⊥HVf|G⟩σM for each

possible subset M .

Remark B.1. Note that for simplicity, we consider σM to be global (i.e. it is a single entity able to
communicate will all interfaces), while the constructive cryptography framework typically expect simulators
to be local12: this is without loss of generality since we can easily turn it back into a set of local simulators,
one simulator performing the operations of σM , where the input (resp. outputs) are obtained (resp.

forwarded) from (resp. to) the right interface by mean of the channel C included in Vf|G⟩, using the

appropriate simulator connected to this interface as a proxy.

Since it is the most general case, we will focus on proving security for an arbitrary coalition of dishonest
parties and source (Fig. 7c). The other cases follow directly from this one. The simulator σM can
informally be summarized as follows:

|
M

|
H

ci=⊥ if abort⊥H |G⟩
Forward if
ci’s ̸= abort
and f(x)=⊤,

else |⊥⟩H
ξH ξσ

Forward if
no abort

πH R

Vf|G⟩

σM

ci=0

Interface of
honests parties

|
H

|
H

x

|
H

|
H Interface of

corrupted
parties

(65)

More formally, σM is defined as:

1. σM will first locally simulate πHR, where the interfaces of the malicious parties are directly connected
to the distinguisher.

2. If an honest party in the local simulation πH aborts within σM , the simulator will send ⊥ to the
ideal functionality and abort. Otherwise, we denote as ρRH the state outputted at the end of the
protocol by the honest parties in H \ {S} (if this set is empty, ρRH is just the empty state).

3. Then, the simulator will send ci = 1 to the functionality for all i ∈M \ {S} to obtain a quantum

state |G⟩RM (similarly, if M \ {S} is empty, the simulator does not send any message and defines

|G⟩RM as the empty state).

4. The simulator runs the merging map ξσ described in Theorem 3.6 applied to ρRH and |G⟩RM (notice

that |G⟩RH is replaced with ρRH ), and gets (x, y) ∈ ({0, 1}|H|)2.

5. The simulator sends (x, y) on an arbitrary malicious interface in M \ {S} (if M \ {S} is empty, i.e.
only the source may be malicious, then the simulator does not do anything at that step).

We will prove now that πHR ≈ϵ′ ⊥HVf|G⟩σM for some ϵ′ defined later, by defining a series of hybrid

systems close to each others. We recall that πHR and ⊥HVf|G⟩σM are the resources corresponding

respectively to the concrete protocol and ideal protocol with a subset H of honest parties and M = H̄ of
dishonest parties.

The first step will be to simplify the system combining the functionality and simulator. We first
remark that verifying if f(x) = ⊤ is useless since ξσ always output x such that f(x) = ⊤ (we defined f
exactly to have this property). The second remark we can make is that it is much simpler to analyse this
system if we group the operations differently in order to remove any interaction between the functionality
and the simulator. So informally, we will group the operations related to the merging operation together

12Note that some framework do not make that choice, like in universal composability.
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instead of having them shared between the simulator and the functionality, while we will check if we need
to abort only at the very end, giving this informal picture:

|
M

|
H

|G⟩
Output |⊥⟩H if

input contains ⊥,
else forward

ξH ξσ πH R
Merge

(if input contains ⊥, do identity)
Check

Interface of
honests parties

|
H

|
H

x

|
H Interface of

corrupted
parties

(66)

More formally, let Merge be the map working on the registers RH outputted by the honest parties
that applies the identity if one of its input qubit is |⊥⟩ (this can be done via a partial measurement
like in the step 2 of the definition of the simulator) and that applies otherwise the merging operation

ξH(I|H|⊗ ξσ)(|G⟩RH ,RH̄ ⊗ I|H|) that merges the state in RH with a newly created state |G⟩ after applying
the corrections. With this definition, the system representing the simulator and the functionality and
filters is strictly indistinguishable from this system:

• First we simulate locally πHR with the distinguisher’s input to obtain ρH on register RH .

• Then, we apply Merge.

• Then, we do a partial measurement of the state obtained at the previous step, checking if one

input is |⊥⟩. If yes, we replace the state with |⊥⟩⊗|H|, otherwise we apply the identity (we call this
operation Check).

• Finally, for each i ∈ H \ {S} we send the i-th qubit to the party i.

This hybrid system is obviously indistinguishable from ⊥HVf|G⟩σM as the system is only an identical

simplification of the original system (again, f(x) is always equal to ⊤, and otherwise in both cases we
abort if any input contains |⊥⟩ and apply the merging operation otherwise).

We remark now that it is nearly equal to πHR, except for the application of Merge and Check at the
end. To prove that these two operations do not significantly change the state obtained after the first step,
we consider the quantum state obtained at the end of the first step, i.e. when getting the outcomes of
πH . Without loss of generality, we can assume that we run a purified version of the distinguisher and
protocol, or, equivalently, that we consider the averaged state (averaging over all randomness involved in
the protocol and in the distinguisher) where the purification of the density state is kept on a register kept
by the environment13. We can also show that the dimension of the purified system is at least 2(n+ 1)
(if needed we can add |0⟩ states on the distinguisher’s state, this dimension is just chosen large enough

so that any later purification has at most this dimension). We call |ψ⟩Rσ,RE the joint state between the
simulator and the environment and distinguisher after receiving the outputs of πH :

13This purification is only used to simplify computations as this way we do not need to consider each run separately. Note
that this cannot decrease the distinguishing probability of the distinguisher to purify the protocol, since we can purify any
protocol and distinguisher by simply replacing any sampling operation by a measurement of a |+⟩, and any measurement in
the computational basis can be replaced by a CNOT on an auxiliary qubit kept by the environment, where the target state
will then contain the result of the measurement. One can easily see that this is equivalent since we can consider that the
state given to the environment is traced out.
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(67)

Since |ψ⟩RH ,RE is the state obtained in the real world, and because all the operations performed
by the distinguisher are the same in both the ideal and the concrete worlds, it is enough to prove that
TD(((Check ◦Merge)RH ⊗ IRE ) |ψ⟩RH ,RE ), |ψ⟩RH ,RE ) is small to conclude that the distinguisher cannot
distinguish the two worlds. Indeed, the distinguisher14 could otherwise distinguish two states close in
trace distance which is impossible by the laws of physics. First, let ρ := TrE(|ψ⟩RH ,RE ). Then, since Π is
secure (Theorem 3.2), by assumption there exists p such that:

F (ρ, σ) ≥ 1− ε(λ) (68)

where σ is defined like in Definition 3.1. However, we can remark that σ admits the following purification:

|Gp⟩ :=
√
p |G⟩ |0⟩

∣∣0k〉+√(1− p) |⊥n⟩ |1⟩
∣∣0k〉 (69)

where k is chosen such that the dimension of |Gp⟩ equals the dimension of
∣∣ψRH ,RE

〉
, since σ =

Tr[n]\H |Gp ⟩⟨ Gp|.
But, by Uhlmann’s theorem (see, e.g. [NC10, Thm. 9.4]), there exists two purifications |ϕσ⟩ and |ϕρ⟩

of, respectively, σ and ρ, such that

F (ρ, σ) = | ⟨ϕσ | ϕρ⟩ | (70)

Without loss of generality, we can append |0⟩’s to |ϕσ⟩ and |ϕρ⟩ to ensure their dimension is equal to

those of |ψ⟩RH ,RE while maintaining the fact that F (ρ, σ) = | ⟨ϕσ | ϕρ⟩ |. Moreover, because |ϕρ⟩ and
|ψ⟩RH ,RE (resp. |ϕσ⟩ and |Gp⟩) have the same reduced density matrix15, there exists Uρ (resp. Uσ) such

that |ψ⟩RH ,RE = (IRH ⊗ Uρ) |ϕρ⟩ (resp. |Gp⟩ = (I ⊗ Uσ) |ϕσ⟩). Therefore:

TD(((Check ◦Merge)RH ⊗ IRE ) |ψ⟩RH ,RE , |ψ⟩RH ,RE ) (71)

= TD(((Check ◦Merge)RH ⊗ URE
ρ ) |ϕρ⟩ , (IRH ⊗ URE

ρ ) |ϕρ⟩) (72)

Then, using the triangle inequality twice we get:

≤ TD(((Check ◦Merge)RH ⊗ URE
ρ ) |ϕρ⟩ , ((Check ◦Merge)RH ⊗ URE

ρ ) |ϕσ⟩)
+ TD(((Check ◦Merge)RH ⊗ URE

ρ ) |ϕσ⟩ , (IRH ⊗ URE
ρ ) |ϕσ⟩)

+ TD((IRH ⊗ URE
ρ ) |ϕσ⟩ , (IRH ⊗ URE

ρ ) |ϕρ⟩)
(73)

Then, using the fact that TD is symmetric, cannot be increased with post-processing, and is left unchanged
when adding/removing/replacing a unitary on both inner terms (needed to replace Uρ with Uσ), we can
simplify it as:

≤ 2TD(|ϕρ⟩ , |ϕσ⟩) + TD(((Check ◦Merge)RH ⊗ URE
σ ) |ϕσ⟩ , (IRH ⊗ URE

σ ) |ϕσ⟩) (74)

= 2TD(|ϕρ⟩ , |ϕσ⟩) + TD(((Check ◦Merge)RH ⊗ IRE ) |Gp⟩ , |Gp⟩) (75)

14To be more precise, we could use the second part of the distinguisher that runs after obtaining |ψ⟩RH ,RE to distinguish
these two states.

15It is a standard exercise to show, using the Schmidt decomposition, that two states with the same dimension and the
same purification are equal up to a unitary applied on the purification register.
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However, by the definition of the trace distance on pure state and by definition of |ϕρ⟩ and |ϕσ⟩, we have:

TD(|ϕρ⟩ , |ϕσ⟩) =
√
1− | ⟨ϕρ | ϕσ⟩ |2

(70)
=

√
1− F (ρ, σ)

2
(68)

≤
√
1− |1− ε|2 =

√
1− (1 + ε2 − 2ε) (76)

=
√
2ε− ε2 (77)

Moreover, we claim that ((Check ◦Merge)RH ⊗ IRE ) |Gp⟩ = |Gp⟩ and that therefore:

TD(((Check ◦Merge)RH ⊗ IRE ) |Gp⟩ , |Gp⟩) = 0 (78)

This can be seen by starting from the definition of |Gp⟩ (the proof of this claim ends at Eq. (81)):

((Check ◦Merge)RH ⊗ IRE ) |Gp⟩ = ((Check ◦Merge)RH ⊗ IRE )(
√
p |G⟩ |0⟩

∣∣0k〉+√1− p |⊥n⟩ |1⟩
∣∣0k〉)

(79)

Then, since Merge behave as identity when the state contains ⊥, and similarly Check is identity if the
state does not contain ⊥, this can be rewritten as:

((Check ◦Merge)RH ⊗ IRE ) |Gp⟩ =
√
p(MergeRH ⊗ IRE ) |G⟩ |0⟩

∣∣0k〉+√1− p(CheckRH ⊗ IRE ) |⊥n⟩ |1⟩
∣∣0k〉

(80)

Finally Check
∣∣⊥|H|〉 = ∣∣⊥|H|〉 and since any graph state is mergeable (Definition 3.5 and Theorem 3.6),

we have:

((Check ◦Merge)RH ⊗ IRE ) |Gp⟩ =
√
p |G⟩ |0⟩

∣∣0k〉+√1− p |⊥n⟩ |1⟩
∣∣0k〉 = |Gp⟩ (81)

finishing the proof of our claim ((Check ◦Merge)RH ⊗ IRE ) |Gp⟩ = |Gp⟩.
Now, we combine Eq. (78) and Eq. (77) into Eq. (75) to get:

TD(((Check ◦Merge)RH ⊗ IRE ) |ψ⟩RH ,RE , |ψ⟩RH ,RE ) ≤ 2
√
2ε− ε2 (82)

As discussed previously, the advantage in distinguishing these two states directly gives an upper bound on
the advantage of distinguishing the ideal world from the real world (since these two states are actually the
states held by the distinguisher at the end of its interaction with the ideal resource or the real protocol).
But it is a well known fact that the best probability of distinguishing |ϕ⟩ from |ψ⟩ is 1

2 (1 + TD(|ϕ⟩ , |ψ⟩)),
i.e. the advantage in distinguishing |ψ⟩ from |ϕ⟩ is actually TD(|ϕ⟩ , |ψ⟩), so if we define:

ε′ := 2
√
2ε− ε2 (83)

then we have πHR ≈ε′ ⊥HVf|G⟩σM . For any subset of corrupted party M , we are able to construct such a

simulator σM . Following Definition 2.1, Π ε′-realizes the functionality Vf|G⟩, concluding our proof.

B.2 Proofs of Section 4

Theorem 4.1. Protocol 4.1 realizes V|G⟩.

Proof of Theorem 4.1.
As before, we will follow the Security Definition 2.1 and find simulators for each possible dishonest
behaviour. We show the general case in Fig. 10.

Case 1: Correctness. We first need to prove correctness, i.e. ⊥[n]∪SV|G⟩ ≈ τ[n]⊥[n](Vf|G⟩∥RCoinFlip)⊥S.

If all parties are honest, neither Vf|G⟩ nor RCoinFlip will abort, so all parties will receive a part of |G⟩ with
the same x. Then, since each party i applies XxiZ(Gx)i , i.e. a part of a stabilizer, the overall resulting

state is XxZGx |G⟩ A.7= |G⟩. This is exactly the state obtained in ⊥[n]∪SV|G⟩. Hence, there exists no
distinguisher able to differentiates the two resources, concluding the proof of correctness.
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Figure 10: General case of the security proof of Theorem 4.1

Case 2: Security. To prove the security of the protocol, we want to show that for any partition (H,M)

of [n] ∪ {S}, there exists a simulator σM such that ⊥HσMV|G⟩ ≈ τH⊥H(Vf|G⟩∥RCoinFlip). To match the

usual Abstract cryptography terminology, we will denote the left-hand side ⊥HσV|G⟩ as the ideal world

and the right-hand side τH⊥H(Vf|G⟩∥RCoinFlip) as the real world. As before, using the classical channel

allowing communication between malicious parties in Vf|G⟩, we can consider all local simulators as a single

simulator. Let us define the simulator σ formally as in Protocol B.1.

By construction, this simulator follows exactly the abort pattern of the real world protocol, and the
exchanged messages are identical. So without loss of generality, we can assume that the distinguisher
never aborts16, and in particular sends valid corrections. Similarly, we can assume that the distinguisher
is always sending ci = 1 since the case ci = 0 can easily be simulated by the distinguisher given the
transcript for ci = 1 since it contains more information. Under this assumption, both the real and ideal
worlds can significantly be simplified:

• In the real world, the distinguisher receives first |G⟩M , then send some (valid) corrections defining

x′H = ⊕iai and z′H := ⊕ibi, and finally receives the remaining qubits XxH⊕x′
HZz

′
H⊕(Gx)H |G⟩H

together with x that was sampled uniformly at random.

• In the ideal world, the distinguisher receives first XxMZ(Gx)M |G⟩M where x is sampled uniformly
at random, then it sends some (valid) corrections defining x′H = ⊕iai and z′H := ⊕ibi, and finally

receives the remaining qubits |G⟩H together with x⊕ x′ where x′M := (V T )−1
[
b
0

]
, and x′ :=

[
x′H
x′M

]
.

First, we can realize that since XxMZ(Gx)M |G⟩ = XxMZ(Gx)M (XxZGx |G⟩) = XxHZ(Gx)H |G⟩, the ideal
world is indistinguishable from a world where the distinguisher receives |G⟩M while the functionality
applies XxHZ(Gx)H on the remaining qubits. This gives this equivalent hybrid system:

• The distinguisher receives first |G⟩M then it sends some (valid) corrections, defining x′H = ⊕iai
and z′H := ⊕ibi, and finally receives the remaining qubits XxHZ(Gx)H |G⟩H (where x is sampled

uniformly at random) together with x⊕ x′ where x′M := (V T )−1
[
b
0

]
, and x′ :=

[
x′H
x′M

]
.

Then, we can define x̂ := x⊕ x′. Since x is independent of x′, the probability of sampling any x̂ is equal
to the probability of sampling any x, we can therefore sample x′ instead of x, and use the fact that
x = x̂⊕ x′. So, the above system can be turned into the following indistinguishable system:

16We can always turn a distinguisher that aborts into a distinguisher that does not abort while increasing the probability
of distinguishing, for instance by intercepting all abort messages from the original distinguisher, and continuing instead the
protocol with arbitrary non-aborting inputs while sending to the original distinguisher the messages that would have been
sent in both the ideal and the real protocol.
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Protocol B.1 Simulator σ

1. First, σ sends ci = ⊥ to V|G⟩ in order to receive a share |G⟩M of |G⟩ for all malicious parties in the
set M of corrupted parties.

2. Then, σ receives ci from each malicious party i (in the real world these messages are sent to Vf|G⟩ by
the distinguisher). If any ci is equal to ⊥, then σ also aborts after sending c′i = ⊥ to V|G⟩ to make
it abort as well.

3. σ samples a random stabilizer x $← {0, 1}n, applies XxM′Z(G′
Mx)M′ where M ′ := {i | ci = 1} on the

received |G⟩M and sends the resulting qubits of parties in M ′ to the distinguisher.

4. Then, σ receives a set of corrections (ai, bi) ∈ ({0, 1}|H|)2 for i ∈ M ′, computes x′H := ⊕iai and
z′H := ⊕ibi, and checks that fG(M

′, x′H , z
′
H) = ⊤ (otherwise it sends c′i = ⊥ to V|G⟩ for all i and

aborts).

5. Since fG(M
′, x′H , z

′
H) = ⊤, let b be like in Theorem 3.2, and let us define x′M := (V T )−1

[
b
0

]
, and

x′ :=

[
x′H
x′M

]
.

6. If the set of corrupted parties contains no party in [n], the simulator can stop. Otherwise, it will
receive bits c′′i (sent to RCoinFlip in the real world and called ci there). It will then send x⊕ x′ to
parties that sent c′′i = ⊥, wait for a bit from each party (sent to RCoinFlip in the real world and
denoted c′i), and abort if one of these party sent ⊥, by sending c′i = ⊥ to the ideal functionality for
all i ∈M . Finally, it broadcasts x to all parties such that ci = 1.

7. For each party i such that ci = 0, σ will apply on the i-th qubit (that remains from the second step)
the operation Xxi⊕x′

iZ(G(x⊕x′))i , and output the resulting qubit to the distinguisher.

8. Finally, it outputs c′i = ⊤ to V|G⟩ in order to let the functionality broadcast |G⟩M̄ to all honest
parties.
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• The distinguisher receives first |G⟩M then it sends some (valid) corrections defining x′H = ⊕iai and
z′H := ⊕ibi, and finally receives the remaining qubits Xx̂H⊕x′

HZ(G(x̂⊕x′))H |G⟩H (where x̂ is sampled

uniformly at random) together with x̂ where x′M := (V T )−1
[
b
0

]
, and x′ :=

[
x′H
x′M

]
.

Finally, we have:

(Gx′)H =
[
GH ΓT

]
x′ = GHx

′
H ⊕ UT

[
Ir 0
RT 0

]
V Tx′M = GHx

′
H ⊕

(
UT

[
Ir 0
RT 0

]
V T
)(

(V T )−1
[
b
0

])
(84)

= GHx
′
H ⊕ UT

[
b

RT b

]
3.2
= GHx

′
H ⊕ UT (UT )−1(z′H ⊕GHx′H) = z′H (85)

Therefore, we get Xx̂H⊕x′
HZ(G(x̂⊕x′))H |G⟩H = Xx̂H⊕x′

HZz
′
H⊕(Gx̂)H |G⟩H . Hence, this last system is

actually equal to the real world, which concludes the indistinguishability proof.

Corollary 4.2. Assuming the existence of a protocol for graph state verification fulfilling properties
described in Theorem 3.2 and a coin flipping protocol realizing RCoinFlip, there exists a protocol realizing
V|G⟩.

Proof of Corollary 4.2. This is a direct consequence of Theorem 3.2 and Theorem 4.1, where we run in
Protocol 4.1 the graph state verification instead of Vf|G⟩ and the coin flipping protocol instead of RCoinFlip.

More precisely, in Theorem 3.2, we first proved the equivalence π[n]∪SR ≈ ⊥[n]∪SVf|G⟩ between a

concrete verification protocol and an ideal, but gruesome, resource. Then, in Theorem 4.1, we explicited
the protocol {τi}i∈[n], that applies a random stabilizer to the output state of the verification protocol, to
construct a simpler functionality V|G⟩ from this gruesome resource alongside with a coin flipping resource.

In particular, we proved the equivalence ⊥[n]∪SV|G⟩ ≈ τ[n]⊥[n](Vf|G⟩∥RCoinFlip)⊥S.

Let π′[n] be a concrete protocol securely realising the ideal functionality RCoinFlip using resource R′. We

have, in particular, that π′[n]R′ ≈ ⊥[n]RCoinFlip. By composability of resources within the AC framework,
we get the correctness equivalence :

π[n]∪S ◦ τ[n](R∥π′[n]R′) ≈ ⊥[n]∪SV|G⟩. (86)

For all subset of malicious parties M , we can similarly appropriately compose the simulators from
the proofs of the secure construction of RCoinFlip, Vf|G⟩ and V|G⟩ to obtain simulators σM . We can use

these simulators and the composability of AC to similarly prove all the equivalences necessary in the
Security Definition 2.1. This proves the secure construction of the ideal functionality V|G⟩ by a graph state
verification protocol fulfilling properties described in Theorem 3.2 and a coin flipping protocol realizing
RCoinFlip.

B.3 Proofs of Section 5

Lemma 5.2. Let Π = {πi}i∈[n]∪S be a protocol generating, when all parties are honest, a state |G⟩ shared
among all parties but the source. We assume that Π has simultaneous abortion (Remark 5.1), i.e. that for
any adversary A, either all honest parties abort at the same time with some probability 1− p or accept
and output the averaged state ρ⊤. Then, if any of the following conditions is fulfilled, this protocol is an
ε-graph state verification protocol according to Definition 3.1:

• If p(1 − F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|))) ≤ ε. This denotes the fact that the probability of accepting and
outputting a state far from |G⟩ to the honest parties is small.
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• Or if F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|)) ≥ 1− ε. This corresponds to the protocol’s property to create a state
close to the desired state. Note that this condition is strictly stronger than the first one, since an
adversary might be able to produce such a state with negligible probability. Yet, unconditionally
secure protocols might prefer this formulation.

Proof of Lemma 5.2. Since the protocol is correct by assumption, the first point of Definition 3.1 is
trivially fulfilled. We focus now on proving that the protocol is secure according to Definition 3.1. Since
the protocol has simultaneous abortion, the first part of the security statement is trivially true, hence we
just need to find σ such that Eq. (5) is true. Let ρ := Tr[n]\H(πHRA) be the averaged state obtained at
the end of the interaction with A. Then, since π has simultaneous abortion, we know that there exists
p :=

〈
⊥|H|

∣∣ ρ ∣∣⊥|H|〉 (actually this is the same p as in the lemma) such that:

ρ = (1− p) |⊥|H| ⟩⟨ ⊥|H||+ pρ⊤ (87)

where ρ⊤ is a normalized state orthogonal to |⊥|H| ⟩⟨ ⊥|H||, corresponding to the averaged state obtained
when no party aborted.

Let us define

σ := pTr[n]\H(|G ⟩⟨ G|) + (1− p) |⊥|H| ⟩⟨ ⊥|H|| (88)

and find ε such that F (ρ, σ) ≥ 1− ε, or, equivalently, such that 1−F (ρ, σ) ≤ ε. To compute this quantity,
we can first use the strong concavity of fidelity ([NC10, Thm. 9.7]) that states that F (

∑
i piρi,

∑
i qiσi) ≥∑

i

√
piqiF (ρi, σi). Therefore, we have:

1− F (ρ, σ) ≤ 1− (1− p)F ( |⊥|H| ⟩⟨ ⊥|H|| , |⊥|H| ⟩⟨ ⊥|H||)− pF (ρ⊤,Tr[n]\H(|G ⟩⟨ G|)) (89)

= p(1− F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|))) (90)

where the last equality is a direct consequence of F (|ϕ ⟩⟨ ϕ| , |ϕ ⟩⟨ ϕ|) = 1 when |ϕ⟩ is a pure state. If any
of the first two assumptions of this lemma are fulfilled, we can directly inject it in Eq. (90) to obtain
Eq. (5). This shows that the protocol is an ε-graph state verification protocol according to Definition 3.1
(for the second assumption, we upper bound p by 1).

Lemma 5.3. If a protocol has simultaneous abortion (Remark 5.1), and if the probability (on the
randomness of A and the whole protocol) to have no abort and a final state far from the target |G⟩ is
small, more formally:

Pr
[
Tr[n]\H |ψi⟩ ≠

∣∣⊥H〉 ∧√1− F 2(Tr[n]\H |ψi ⟩⟨ ψi| ,Tr[n]\H |G ⟩⟨ G|) ≥ η
∣∣ |ψi⟩ ← πHRA

]
≤ δ (18)

or, equivalently,

Pr
[
Tr[n]\H |ψi⟩ ≠

∣∣⊥H〉 ∧min
U

TD((IH ⊗ UM ) |ψi⟩ , |G⟩) ≥ η
∣∣ |ψi⟩ ← πHRA

]
≤ δ (19)

then this protocol is an (δ + η2)-graph state verification protocol according to Definition 3.1.

Proof of Lemma 5.3. First, the fact that these two definitions are equivalent comes from the fact that for
pure states, TD(|ψ⟩ , |ϕ⟩) =

√
1− | ⟨ψ | ϕ⟩ |2 ([NC10, Eq. 9.99]), hence:

min
U

TD((IH ⊗ UM ) |ψi⟩ , |G⟩) = min
U

√
1− | ⟨G| (IH ⊗ UM ) |ψi⟩ |2 (91)

=
√
1−max

U
| ⟨G| (IH ⊗ UM ) |ψi⟩ |2 (92)

=
√
1− F 2(Tr[n]\H |ψi ⟩⟨ ψi| ,Tr[n]\H |G ⟩⟨ G|) (93)
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where the last equality comes from Uhlmann’s theorem ([NC10, Ex. 9.15]), and additionally remarking
that all purifications are equal up to a local unitary on the purified space. In the following, we will
therefore only consider the assumption involving the fidelity.

We will now simplify the assumption Eq. (18), but first let us define some notations. First, it will
be handy to denote, like in Lemma 5.2, ρ⊤ as the averaged normalized state obtained by honest parties
assuming that the protocol has not aborted:

ρ⊤ := E
|ψi⟩←πHRA

Tr[n]\H |ψi⟩̸=|⊥H⟩

[
Tr[n]\H |ψi ⟩⟨ ψi|

]
(94)

If we denote by {|ψi⟩}i the set of all states producible by a πHRA, and if pi represents the probability of
outputting |ψi⟩ assuming that it is not aborting (Tr[n]\H |ψi⟩ ≠

∣∣⊥H〉), we have therefore:

ρ⊤ = Tr[n]\H

(∑
i

pi |ψi ⟩⟨ ψi|
)

(95)

To simplify further the notation we define for brevity:

Fi := F (Tr[n]\H |ψi ⟩⟨ ψi| ,Tr[n]\H |G ⟩⟨ G|) (96)

F := F (Tr[n]\H |ψ ⟩⟨ ψ| ,Tr[n]\H |G ⟩⟨ G|) (97)

Using this notation, we can simplify the LHS of the assumption Eq. (18) as:

Pr
[
Tr[n]\H |ψ⟩ ≠

∣∣⊥H〉 ∧√1− F 2 ≥ η
∣∣ |ψ⟩ ← πHRA

]
(98)

= Pr
|ψ⟩←πHRA

[
Tr[n]\H |ψ⟩ ≠

∣∣⊥H〉 ] Pr
|ψ⟩←πHRA

Tr[n]\H |ψ⟩̸=|⊥H⟩

[√
1− F 2 ≥ η

]
(99)

By defining p := Pr|ψ⟩←πHRA
[
Tr[n]\H |ψ⟩ ≠

∣∣⊥H〉 ] as the probability of non aborting, this is equal to:

p Pr
|ψ⟩←πHRA

Tr[n]\H |ψ⟩̸=|⊥H⟩

[√
1− F 2 ≥ η

]
(100)

Then, using the fact that the probability for |ψ⟩ to be equal to |ψi⟩ is pi, we can simplify this as:

p Pr
|ψ⟩←πHRA

Tr[n]\H |ψ⟩̸=|⊥H⟩

[√
1− F 2 ≥ η

]
= p

∑
p

pi Pr

[√
1− F 2

i ≥ η
]
= p

∑
p|
√

1−F 2
i ≥η

pi (101)

Therefore, assumption Eq. (18) is equivalent to:

p
∑

i|
√

1−F 2
i ≥η

pi ≤ δ (102)

Now, we can remark that using Lemma 5.2, it is enough to show that p(1−F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|))) ≤ ε
to prove that the protocol is an ε-graph state verification protocol. Since we aim to upper bound
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p(1− F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|))), we can simplify this expression as follows:

p(1− F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|))) (103)

(95)
= p

(
1− F

(∑
i

piTr[n]\H |ψi⟩ ,Tr[n]\H(|G ⟩⟨ G|)
))

(104)

≤ p
(
1−

∑
i

piFi

)
(Concavity of fidelity ([NC10, Ex. 9.20]))

= p
∑
i

pi (1− Fi) (
∑
i pi = 1)

= p
∑

i|
√

1−F 2
i ≥η

pi (1− Fi) + p
∑

i|
√

1−F 2
i <η

pi (1− Fi) (Split the sum)

≤ δ + p
∑

i|
√

1−F 2
i <η

pi (1− Fi) (Fidelity is ≥ 0 + Eq. (102))

Now, in the remaining terms, we assume
√

1− F 2
i < η, i.e. 1− F 2

i < η2. But since 0 ≤ Fi ≤ 1, we have
0 ≤ F 2

i < Fi and therefore 1− Fi ≤ 1− F 2
i < η2. Therefore, after injecting this in the previous equation,

we get:

p(1− F (ρ⊤,Tr[n]\H(|G ⟩⟨ G|))) ≤ δ + p
∑

i|
√

1−F 2
i <η

piη
2 (105)

≤ δ + η2 (Upper bound probabilities by 1)

Lemma 5.4. The protocol defined in [PCW+11], assuming that we use a broadcast channel to transmit
the abort bit, is an ε-graph state verification protocol for ε := 1

2S/2 (4n+1), where 2S is the average number
of tests before outputting a state as defined in [PCW+11] and n is the total number of parties. As a

result, it (2
√
2ε− ε2)-realizes Vf|G⟩ as defined in Theorem 3.2, and can be turned into a protocol that

(2
√
2ε− ε2)-realizes V|G⟩.

Proof of Lemma 5.4. This is a corollary of Lemma 5.3, using the second version of the assumption
(Eq. (19)). The probability in Eq. (19) corresponds exactly to the Pr [Cε ] defined in [PCW+11] right
before Theorem 3. This same theorem actually states that for any ε > 0, Pr [Cε ] ≤ 4n

2Shε2
, where 2S is

the average number of tests before outputting a state as defined in [PCW+11], n is the total number of
parties, and h is the number of honest parties.

In AC the distance between two resources is the same irrespective of the number of corrupted parties.
We thus aim to upper bound this by a number independent from the number of malicious parties. We can
assume that at least one party is honest, i.e. h ≥ 1, to get Pr [Cε ] ≤ 4n

2Sε2
. Since this is true for any ε, we

can in particular define:

η :=
4

√
1

2S
(106)

δ :=
4n

2Sη2
=

4n

2S/2
(107)

and we have Pr [Cη ] ≤ δ. So we can apply Lemma 5.3 to show that the protocol is a δ + η2-graph state

verification protocol, i.e. an ε-graph state verification protocol for ε := δ+η2 = 4n
2S/2 +

√
1
2S

= 1
2S/2 (4n+1).

Finally, we can conclude the proof by using Theorem 3.2 and Corollary 4.2 that directly show that this
protocol realizes Vf|G⟩ and can be turned, with little changes, into a protocol realizing V|G⟩.
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Lemma 5.5. We define, as in the theorem 3 of [UM22] (where we use the fact that conditioned on
non-aborting, we have Npass ≥ λJNtest − Ntest

2J as described in protocol 2 to simplify the expression of p0
and avoid any dependency on a number that might be different every time we run the protocol):

• J = 2n or J = n depending on G as described in [UM22, Thm. 2],

• λ be the security parameter growing polynomially with the number of tests

• m and c some positive constants chosen so that p0 and η0 defined later are greater than 0,

• p0 := [1−∑λ
x=0(1− 1

n )
x( 1nJ

−2cm
3 )λ−x]J (we got rid of the number of honest parties |H| ≥ 1 since

we want this to be independent of the number of malicious parties)

• η0 :=
(
1
λ − 1

λ2

)
+
(
1 + 1

λ

) √c+1/2
J

The symmetric protocol 2 defined in [UM22], assuming that we use a broadcast channel to transmit the abort
bit, is an ε-graph state verification protocol for ε := 1− p0 + 2η0 − η20. As a result, it (2

√
2ε− ε2)-realizes

Vf|G⟩ as defined in Theorem 3.2, and can be turned into a protocol that (2
√
2ε− ε2)-realizes V|G⟩.

Proof of Lemma 5.5. This is mostly a corollary of Lemma 5.3, using the first version of the assumption
(Eq. (18)). Indeed, using [UM22, Thm. 3], and by denoting by ρi the reduced state outputted by honest
parties during a given run (this corresponds to ρavgH in [UM22, Thm. 3]), we know that for any adversary
A:

Pr
[
F (ρi,Tr[n]\H |G ⟩⟨ G|) ≥ 1− η0

∣∣ ρi ← Tr[n]\H πHRA, ρi ̸=
∣∣⊥H〉 ] ≥ p0 (108)

But for any ρi,

F (ρi,Tr[n]\H |G ⟩⟨ G|) ≥ 1− η0 ⇔
√
1− F 2(ρi,Tr[n]\H |G ⟩⟨ G|) ≤

√
1− (1− η0)2 =

√
2η0 − η20 (109)

So let η :=
√
2η0 − η20 , and δ := 1− p0. We have therefore:

Pr
[√

1− F 2(ρi,Tr[n]\H |G ⟩⟨ G|) ≥ η0
∣∣ ρi ← Tr[n]\H πHRA, ρi ̸=

∣∣⊥H〉 ] ≤ δ (110)

and, since Pr [X ∧ E ] = Pr
[
x
∣∣ E ]Pr [E ] ≤ Pr

[
x
∣∣ E ], we get as well:

Pr
[
ρi ̸=

∣∣⊥H〉 ∧√1− F 2(ρi,Tr[n]\H |G ⟩⟨ G|) ≤ η0
∣∣ ρi ← Tr[n]\H πHRA

]
≤ δ (111)

So according to Lemma 5.3, the protocol is an (δ + η2)-graph state verification protocol, i.e. an ε-graph
state verification protocol for ε := δ + η2 = 1− p0 + 2η0 − η20 . Finally, we can conclude the proof by using

Theorem 3.2 and Corollary 4.2 that directly show that this protocol realizes Vf|G⟩ and can be turned, with

little changes, into a protocol realizing V|G⟩.
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