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ARTICLE

Risk prediction of late-onset Alzheimer’s disease
implies an oligogenic architecture
Qian Zhang1, Julia Sidorenko 1, Baptiste Couvy-Duchesne1, Riccardo E. Marioni2, Margaret J. Wright 3,4,

Alison M. Goate 5,6, Edoardo Marcora 5,6, Kuan-lin Huang 5,6, Tenielle Porter7, Simon M. Laws 7,8, &

Australian Imaging Biomarkers and Lifestyle (AIBL) Study*, Perminder S. Sachdev 9,10, Karen A. Mather9,11,

Nicola J. Armstrong12, Anbupalam Thalamuthu9,11, Henry Brodaty 9,13, Loic Yengo1, Jian Yang 1,

Naomi R. Wray 1,3, Allan F. McRae1 & Peter M. Visscher 1✉

Genetic association studies have identified 44 common genome-wide significant risk loci for

late-onset Alzheimer’s disease (LOAD). However, LOAD genetic architecture and prediction

are unclear. Here we estimate the optimal P-threshold (Poptimal) of a genetic risk score (GRS)

for prediction of LOAD in three independent datasets comprising 676 cases and 35,675

family history proxy cases. We show that the discriminative ability of GRS in LOAD prediction

is maximised when selecting a small number of SNPs. Both simulation results and direct

estimation indicate that the number of causal common SNPs for LOAD may be less than 100,

suggesting LOAD is more oligogenic than polygenic. The best GRS explains approximately

75% of SNP-heritability, and individuals in the top decile of GRS have ten-fold increased odds

when compared to those in the bottom decile. In addition, 14 variants are identified that

contribute to both LOAD risk and age at onset of LOAD.
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A lzheimer’s disease (AD) is the most common form of
dementia. The majority (~90–95%) of AD cases are
sporadic and occur after 65 years of age (late-onset Alz-

heimer’s disease, LOAD)1. The reported heritability of LOAD
liability is 58.0% (95% CI 19.0–87.0%) from twin studies2, and its
estimated common single nucleotide polymorphism (SNP) based
heritability on the liability scale (h2SNPðlÞ) ranges from 0.13 to
0.333–5. APOE alleles (ɛ2, ɛ3 and ɛ4, determined by two coding
variants, rs7412 and rs429358 from chromosome 19), especially
APOE ɛ4, explain around a quarter of the total heritability6,7, and
can be regarded as a proxy monogenic mutation.

In addition to APOE alleles, genome-wide association studies
(GWASs) have identified over 40 LOAD-associated risk loci8–15.
Similar to other brain-related diseases (e.g., schizophrenia16,17,
major depression18 and Parkinson’s disease19), LOAD has been
described as polygenic20. A genetic risk score (GRS) derived from
13,959 cases and 35,600 controls based on a large number of
SNPs (i.e., SNPs with PGWAS ≤ 0.5) was reported to have better
prediction accuracy than using SNPs selected with a more
stringent PGWAS. However, a recent study14 with 24,087 AD cases,
47,793 family history proxy cases, 55,058 controls and 328,320
proxy controls showed that the optimal P-threshold (Poptimal) for
prediction was achieved with a stringent threshold of ~10−5,
which implies that using more SNPs at lower stringency does not
improve prediction accuracy. The Poptimal of GRS on diseases
(e.g., schizophrenia) was previously reported to be related to the
discovery sample size21. Nevertheless, it was observed that the
best fitting P-value for GRS prediction of schizophrenia changed
little from 0.2 with 2615 cases and 3338 controls to 0.1 with
32,838 cases and 44,357 controls16. The reasons for this incon-
sistency in Poptimal for LOAD (from 0.5 to ~10−5) across studies is
unclear, in particular whether it may be solely due to the increase
of discovery sample size. These conflicting reports on the number
of common risk variants associated with LOAD led us to inves-
tigate the genetic architecture of the disease, and to compare the
prediction accuracy between a multiple SNP genetic predictor of
LOAD (including or excluding APOE) versus APOE alone.

For LOAD, age at onset (AAO) is also heritable. Its heritability
is reported to be 0.42 (s.e.= 0.04)22 and can be predicted
genetically using a genetic hazard score (GHS)23. The effect size
of each SNP in GHS is usually estimated based on Cox propor-
tional hazards regression (survival analysis)24. Previous studies
have identified four genomic regions (APOE, BIN1, MS4A and
PICALM) with SNPs genome-wide significantly (P < 5 × 10−8)
associated with LOAD AAO, all of these being LOAD risk
loci13,25–28. A direct comparison of LOAD risk and AAO on the
same data may provide new insight into the genetics of LOAD.

In the present study, we investigate the prediction pattern of
GRS to estimate the optimal P-value cut-off, and thereby quantify
the genetic architecture of LOAD. To ensure the robustness of
our results, we use four sets of (overlapping) GWAS summary
statistics to calculate the GRS (with or without SNPs from
chromosome 19) and examine their prediction patterns in three
independent datasets (out-of-sample prediction). The results
suggest that LOAD is oligogenic compared to other disorders of
the brain, since only a small number of common SNPs are
conditionally associated with LOAD. Furthermore, we compare
the prediction performance of GRS against APOE and find that
individuals in the upper decile of GRS have higher disease risk
than those who are APOE ɛ4 heterozygous carriers. Finally, risk
of LOAD and AAO of LOAD are found to be genetically similar.

Results
Current GWAS summary statistics on late-onset Alzheimer’s
disease. To date, eight studies8–15 have reported a total of 44

common loci (minor allele frequency >0.01) that are associated
with LOAD at a genome-wide significant level (P < 5 × 10−8)
(Supplementary Fig. 1). As expected, the number of reported loci
increased with effective sample size (Fig. 1) (Supplementary
methods).

We collected four sets of GWAS summary statistics from the
public domain to calculate GRS12–14. They are based on samples
from stage 1 in Lambert et al.12, samples from UK Biobank
(UKB) parents (a meta-analysis between GWASs on maternal
and paternal LOAD), a meta-analysis between summary statistics
from Lambert et al.12 and UKB parents in Marioni et al.13, and a
recent meta-analysis from Jansen et al.14. These summary
statistics are from samples with partial overlap and some of
them are independent (i.e., samples from Lambert et al.12 and
UKB parents). Genetic correlations between these summary
statistics estimated by LDscore regression (LDSC)29 were all close
to unity (Supplementary Table 1). Among them, two estimates
(genetic correlations between Lambert et al. (stage 1)12/Marioni
et al. (UKB)13 and Marioni et al. (meta)13) were significantly (P <
0.05) different from one (Supplementary Table 1). This
discrepancy was not expected since they were all GWAS results
on the same trait and had overlapping samples. LDSC assumes
that the effect sizes of SNPs follow a normal distribution, we
therefore removed all SNPs from chromosome 19 to avoid the
potential effect of APOE when estimating the genetic correlation.
We also re-calculated the sample size for each SNP based on the
standard error of its effect size (“Methods”). We used the flag
“--intercept-gencov” to constrain the intercept by our calculated
value while computing the genetic correlation. We found that the
estimated genetic correlation between Marioni et al. (UKB)13 and
Marioni et al. (meta)13 was 1.06 (s.e.= 0.11), and the genetic
correlation between Lambert et al. (stage 1)12 and Marioni et al.
(meta)13 was 1.14 (s.e.= 0.11), both not significantly (P > 0.05)
different from unity. We noted that the sample size and therefore
the weights used in the meta-analysis of Jansen et al.14 were not
optimal and show that the effective sample size (sample size
under balanced design) should be used (Supplementary
methods).

Genetic risk score in late-onset Alzheimer’s disease. We used
1,056,156 SNPs (1,056,154 HapMap3 SNPs and two APOE SNPs:
rs429358 and rs7412) shared between all four sets of summary
statistics to calculate the GRS (GRSfull). We retained HapMap3
SNPs in our study since they are common (minor allele frequency
>0.01), well-imputed and available across all GWASs. For each set
of summary statistics, we chose different P-value thresholds (1 ×
10−8, 1 × 10−7, 1 × 10−6, 1 × 10−5, 3 × 10−5, 1 × 10−4, 3 × 10−4,
1 × 10−3, 3 × 10−3, 0.01, 0.03, 0.1, 0.3, 1) and performed LD
clumping (R2= 0.01, window size= 1Mbp) to select near-
independent SNPs using PLINK30. Based on the selected SNPs,
we calculated the weighted sum of the SNP dosage and used it as
the GRS for each individual21. We evaluated the performance of
GRSfull using samples from the Australian Imaging, Biomarker &
Lifestyle Study (AIBL, 216 cases and 631 controls), the Sydney
Memory and Ageing study (Sydney MAS, 77 cases and 588
controls) and the UKB (383 cases and 1915 controls) (Table 1).
We found that the prediction accuracy (R2) on the liability scale
(Fig. 2a) (“Methods”) increased when lowering the P-value
threshold. Since the prediction pattern could be affected by the
SNPs with major effects (e.g., APOE ɛ4 and ɛ2) (Supplementary
Fig. 2) (“Methods”), we removed SNPs from chromosome 19 and
re-calculated the GRS based on the remaining 1,037,804 SNPs
(termed GRSno19). Although the R2 reduced compared to that
from GRSfull, the optimal P-value threshold remained small
(Fig. 2b). The P-value thresholds that maximised out-of-sample
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prediction (R2) in AIBL were 1 × 10−8 (Lambert et al., stage 112),
1 × 10−7 (Jansen et al., meta14), 1 × 10−8 (Marioni et al., meta13)
and 3 × 10−4 (Marioni et al., UKB13). Samples from UKB were
only evaluated based on summary statistics from Lambert et al.
(stage 1)12 to avoid the sample overlap. Results based on Sydney
MAS were highly variable (Fig. 2b) since the number of cases is
small, yielding limited power compared to the other two cohorts
(Fig. 2b). We found that the odds ratio between individuals in the
top 50% of GRSno19 and those in the bottom 50% (Supplementary
Fig. 3) also increased with a decrease in P-value threshold. We
further explored the GRSno19 prediction performance of Lambert
et al. (stage 1)12 on the UKB parental LOAD (Table 1). Although
the prediction accuracy is small, its pattern is consistent with that
from other cohorts (Fig. 2b). Furthermore, we used less stringent
R2 (0.2) to perform LD clumping so that more SNPs could be
included in GRSno19. We found no improvement in prediction
accuracy or change in the pattern (Supplementary Fig. 4). In
addition, we estimated the optimal fraction of causal SNPs for
prediction using LDpred31 (on SNPs outside of chromosome 19)
(“Methods”) (Supplementary Fig. 5), and found the optimal
proportion of SNPs was lower than 0.3% in most situations.

Given the LD between SNPs, the number of effective independent
markers would be even lower.

The highest prediction accuracy of GRSfull (based on 22 SNPs,
Supplementary Table 2) was 19.1% (95% bootstrap CI
13.1–26.9%, 1000 replications) of variance explained on the
liability scale (“Methods”), with APOE (rs429358 and rs7412)
contributing the majority (17.4%, 95% bootstrap CI 11.3–25.0%,
1000 replications). We compared this prediction accuracy with
the transformed common SNP-based heritability on the liability
scale (h2SNPðlÞ) reported in previous studies (ranges from 8.9 to

31.2% across studies)3–5 (Supplementary Table 3 and Supple-
mentary Fig. 6) (“Methods”). The SNP-heritability was estimated
by different methods and our simulations (“Methods”) suggested
that when most of the SNP-based heritability was explained by a
single variant, the estimated value from LDSC was lower than the
simulated heritability, but the result from genome-based
restricted maximum likelihood (GREML) was unbiased (Supple-
mentary Fig. 7). Therefore, only h2SNPðlÞ based on GREML is

considered here. We found that the prediction accuracy achieved
could account for around three quarters of inverse-variance

Table 1 Description of late-onset Alzheimer’s disease cases and controls from different cohorts.

N(proxy) case N(proxy) control Agea (sd) (proxy) case Agea (sd)(proxy) control Female

AIBLb 216 631 77.6 (7.6) 72.2 (6.4) 45.3%
Sydney MASc 77 588 86.8 (4.6) 84.7 (4.5) 55.6%
UKB 383 1915 64.4 (4.5) 64.5 (2.6) 53.0%
UKB mother 22,557 231,767 83.7 (6.8) 78.1 (8.4) 100%
UKB father 13,118 241,206 81.8 (6.9) 76.2 (8.1) 0%

aFor the UKB mother and father samples, age of parental case was used as a proxy for age at onset.
bThe Australian Imaging Biomarkers and Lifestyle Study.
cThe Sydney Memory and Ageing Study.
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weighted average of h2SNPðlÞ (26.2%, 95% CI 22.7–29.7%),
suggesting that the best GRSfull could explain most of the SNP-
heritability. Besides, the best GRSfull accounts for one-third of the
reported total heritability (58.0%, 95% CI 19.0–87.0%) from twin
studies2 (Supplementary Fig. 8). However, the differences
between the prediction accuracy of APOE, GRSfull, h2SNPðlÞ, and
total heritability are not statistically significant (P > 0.05).

Genetic architecture and optimal threshold in GRS. The pre-
diction pattern of GRS on LOAD is different from that of poly-
genic traits like BMI32, height32, schizophrenia16 and major
depression18. Our simulation study suggests that this difference is
related to their distinct genetic architectures, and that LOAD is
much less polygenic compared to these other complex traits. In
our simulations, we randomly selected 100,000 unrelated indivi-
duals from the UKB and simulated traits with an SNP-heritability
of 9% (close to the reported SNP-heritability of LOAD excluding

the effect of APOE), varying the number of causal variants
(“Methods”)21. We selected 10,000 individuals as a (hold–out)
test set and chose different number of individuals (from 10,000 to
90,000) as a training set. We ran GWAS on the training set and
examined the prediction pattern of the GRS on the test set. We
observed an increase in the optimal P-value threshold of GRS as
the number of causal SNPs increases (from 16 to 131,072) (Fig. 3
and Supplementary Fig. 9). The pattern of GRS on LOAD was
consistent with simulations on fewer than 256 causal SNPs
(Poptimal < 1 × 10−5). In addition, we used a recently developed
Bayesian regression method (SBayesR33) that estimates the
number of SNPs with non-zero effect size from GWAS summary
statistics. We only used the Marioni et al. (meta)13 summary
statistics, since these are based on the largest effective sample size
(“Methods”). We estimated the number of SNPs with non-zero
effects on LOAD to be 99 (s.e.= 6), which represents only
~0.01% of HapMap3 SNPs. This number decreased to 56
(s.e.= 6), if SNPs from chromosome 19 are removed before the
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analysis. For context, these estimates are much lower than those
of other common diseases such as Parkinson’s disease (33,728,
s.e.= 11,968), schizophrenia (184,879, s.e.= 25,250) and major
depression (172,735, s.e.= 43,219) (“Methods”).

Comparison of prediction performance between GRS and
APOE. For coronary artery disease, GRS could identify indivi-
duals with risk equivalent to monogenic mutations34. Here, we
compared the prediction performance of APOE with GRS (based
on the most stringent P-value threshold: 1 × 10−8). In AIBL,
individuals who are APOE ɛ4 heterozygous carriers were found to
have a higher disease risk (43.6%) than those in the highest decile
of a GRSno19 (35.7%). Using both APOE SNPs and variants on
other chromosomes, the disease risk of individuals in the top
decile of the GRSfull was 57.1% (Fig. 4a). The odds ratio was 10.0
(95% CI 4.5–22.0) compared to individuals in the bottom decile
(Fig. 4b). This disease risk is larger than the individuals who are
APOE ɛ4 heterozygous carriers (43.6%), but smaller than indi-
viduals who are homozygous for APOE ɛ4 (59.6%). Nevertheless,
individuals in the last percentile of GRSfull have larger disease risk
(75.0%) than individuals who are homozygous for APOE ɛ4. We
observed the same pattern in the Sydney MAS and UKB samples
(Fig. 4a). Across the different target datasets, around 1%
improvement of the area under the ROC curve (AUC) could be
achieved by a GRSfull (ranges from 57.1 to 73.2%) compared to
APOE. Ignoring SNPs from chromosome 19, the AUC based on
GRSno19 ranges from 51.8% (95% CI 51.4–52.3%) to 59.0% (95%
CI 54.2–63.1%), all of them are significantly different (P-value <
0.05) from 50% (Supplementary Fig. 10).

Genetic similarity between LOAD risk and AAO. To explore
whether there are more genomic loci associated with both LOAD
risk and AAO, we tried to detect new AAO loci and investigate

whether they have been identified to be associated with LOAD
risk. We used the parental AAO of LOAD as reported in UKB as
a proxy of AAO and performed genome-wide survival analysis
(GWSA) on maternal and paternal AAO of LOAD separately
(“Methods”). Six independent (pairwise R2 < 0.01) genome-wide
significant (P < 5 × 10−8) SNPs were identified after meta-
analysing the parental AAO results (Supplementary Fig. 11a).
Furthermore, we meta-analysed the UKB results with previously
reported AAO GWSA summary statistics28, and identified 16
genomic loci with SNPs showing genome-wide significant (P <
5 × 10−8) association with LOAD AAO (Table 2) (Supplementary
Fig. 11b). Among these, 14 loci were genome-wide significantly
associated (P < 5 × 10−8) with LOAD risk, the remaining two
SNPs also have P-values <5 × 10−5. The correlation between the
effect sizes of the 16 SNPs on disease risk and AAO was 1.00
(s.e.= 0.02), suggesting the risk alleles of LOAD also decrease the
AAO of LOAD.

Discussion
In this study, we investigated the predictive performance of GRS
on LOAD using four sets of summary statistics and applied them
to three independent datasets. We found a clear pattern in that
prediction performance of GRS increases with the use of a more
stringent P-value threshold for SNP selection and therefore with
fewer SNPs in the model. Consistent with simulations and direct
estimation (SBayesR), we conclude that a relatively small number
(in the hundreds) of common variants contribute to LOAD risk.
APOE was responsible for most of the prediction accuracy of
LOAD, but other variants also show significant prediction accu-
racy (maximum R2 on liability scale= 2.0%, 95% bootstrap CI
0.5–4.5%, 1000 replications). Genetic variants that contribute to
the risk of disease are also associated with an earlier AAO.

Taking all of our results together, we conclude that the
empirical data are consistent with an oligogenic common variant
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architecture of LOAD (~0.01% of SNPs with MAF > 1% have
non-zero effects on LOAD). This is smaller than the polygenicity
estimate of 0.26% (s.e.= 0.19%) reported in a previous study35.
However, considering the standard error of that estimate, it is not
significantly (P > 0.05) different from our estimate of 0.01%
(s.e.= 0.0006%). Besides, this architecture contrasts with many
other common diseases and disorders which are highly polygenic.
For comparison, we applied the SBayesR method33 to GWAS
summary statistics for schizophrenia16,17, major depression18 and
Parkinson’s disease19, and estimated the proportion of HapMap3
SNPs with non-zero effects size as 17.5% (s.e.= 2.4%), 3.2%
(s.e.= 0.8%) and 16.4% (s.e.= 5.8%), respectively. In addition,
their optimal P-value thresholds of GRS for these diseases were all
≥0.0516,18,19. LOAD was previously labelled as polygenic by
Escott-Price et al.20, who reported a best fitting P-value threshold
of 0.5. However, most of the control samples (~6000 out of 7277)
in their test dataset (Genetic and Environmental Risk in

Alzheimer’s Disease consortium) were younger than 60 years old
when their disease status was reported, and the ages of most cases
were over 75 years12. Treating these samples as controls might
bias prediction results, since the typical AAO of LOAD is above
65 years. In addition, sample overlap between training and test
sets would also lead to a large optimal P-value threshold. In
Jansen et al.14, the best fitting P-value threshold was 1.69 × 10−5

when the test set was independent of the training set. For a test set
that overlaps with the training set (accounting ∼3% of training
set36), the optimal P-value threshold was 0.5. Our simulations
show that when the test set is part of a training set, the best P-
value threshold is close to 1 (Supplementary Fig. 12) (“Methods”),
even if the proportion is small (e.g., only 1%), consistent with
theory37. Therefore, taken together, we conclude that the previous
report of LOAD being polygenic is likely biased by sample
overlap and/or the ascertainment of controls that may go on to
develop LOAD at a later stage.

0.6

a

0.4
0.3
0.2
0.1
0.0

0.15

0.10

0.05

0.00
0 25

Deciles of GRSfull
Deciles of GRSno19
APOE e2/e2 or e2/e3

APOE e4/e2 or e4/e3
APOE e3/e3

APOE e4/e4
Average disease risk
Last percentile of GRSfull

50 75 100

AIBL Sydney MAS

AIBL Sydney MAS

UKB mother

GRSfull

GRSno19

UKB

UKB cases UKB mother

UKB father

UKB father

0.4

0.2

0.0

0.6

A
b

so
lu

te
 d

is
ea

se
 r

is
k

0.4

0.2

0.0

0.100

0.075

0.050

0.025

0.000

20 8
6
4
2
0

2.5

2.0

1.5

1.0

15
10
5
0

20

O
d

d
s 

ra
ti

o
 (

95
%

 C
I)

 c
o

m
p

ar
ed

 t
o

 1
st

 d
ec

ile
 o

f 
G

R
S

)

15

10

5

0

2.0

1.6

1.2

1 2 3 4 5 6 7 8 9

Decile of genetic risk score (GRS)

10

1 2 3 4 5 6 7 8 9 10

0 25 50 75 100

Quantile (%)

b

Fig. 4 The comparison of LOAD prediction performance between GRS and APOE. a The disease risk of late-onset Alzheimer’s disease of individuals in
different deciles of GRS (both GRSfull and GRSno19), last percentile of GRSfull and in individuals with APOE ɛ2/ɛ2 or ɛ2/ɛ3, APOE ɛ3 homozygotes (ɛ3/ɛ3),
APOE ɛ4 heterozygotes (ɛ4/ɛ3 or ɛ4/ɛ2) and APOE ɛ4 homozygotes (ɛ4/ɛ4). Samples from AIBL, Sydney MAS, UKB cases, UKB mother and UKB father
were examined. b Odds ratio between individuals in the other deciles and first decile of GRS. GRSfull was calculated based on 1,056,154 HapMap3 SNPs and
two APOE SNPs. GRSno19 was calculated based on HapMap3 SNPs but excluding SNPs from chromosome 19. Only independent (R2 < 0.01) SNPs with P <
1 × 10−8 were used to calculate the GRS. The error bars in b represent 95% confidence interval.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18534-1

6 NATURE COMMUNICATIONS |         (2020) 11:4799 | https://doi.org/10.1038/s41467-020-18534-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


There is a wide range of LOAD SNP-heritability reported
across studies, ranging from 8.9 to 31.2% (Supplementary
Table 3). Except for the difference due to the estimation methods,
such differences could also be caused by differences in age dis-
tributions between datasets (Supplementary Fig. 8), since the
genetic effect on LOAD was reported to be age-dependent38.
Based on the same method, the estimated heritability in datasets
with younger individuals was found to be larger than that using
older individuals (Supplementary Table 3). Another potential
reason could be heterogeneity between datasets, for example with
respect to diagnostic criteria. For the summary statistics based on
meta-analysis in particular, this heterogeneity would attenuate
heritability estimates5.

There are a number of limitations in this study: (1) We focused
on the additive effect of common variants, and did not explore
non-additive genetic or gene by environment effects; (2) our
analysis was based on summary statistics from a meta-analysis of
a number of datasets. Heterogeneity (e.g., based on different
diagnostic criteria) and measurement error (e.g., proxy cases from
UKB are self-reported) in these datasets (and those used in this
study) might have affected our result. The estimated number of
conditionally associated SNPs could be smaller than reported if
there is heterogeneity and/or measurement error; (3) the sample
sizes of the datasets with real cases and controls used in this study
are small, a larger dataset would be required to test the sig-
nificance of the difference in prediction accuracy (R2) between
GRSs based on optimal P-value and other P-value thresholds; (4)
rare variants were not considered. There are several genes with
rare mutations with large effects on LOAD39–41. Those mutations
contribute little to heritability and to prediction accuracy in
population samples because of their low frequency. Larger GWAS
samples should allow identification of the remaining undiscov-
ered common SNPs associated with LOAD but also offer the
opportunity to identify rarer SNPs (e.g., MAF in 0.001–0.1) in
order to refine and improve the GRS.

Methods
Study populations. AIBL: we selected 216 cases and 631 controls (participants
with mild cognitive impairment were regarded as controls) with genotype infor-
mation from the Australian Imaging, Biomarker & Lifestyle Flagship Study
(Table 1). We removed SNPs with minor allele frequency smaller than 0.01, SNP

missingness rate larger than 0.05, and not passing Hardy–Weinberg equilibrium
test (P < 5 × 10−6). Genotypes were imputed to the sequencing data from the
Haplotype Reference Consortium (r1.1) using the Sanger Imputation Service
(https://imputation.sanger.ac.uk). A total of 6,972,431 SNPs with info score larger
than 0.8 were selected after imputation. Data were collected by the AIBL study
group. AIBL study methodology and acquisition of genetic data have been reported
previously42,43. Ethics approval for the AIBL study and all experimental protocols
were provided by the ethics committees of Austin Health, St Vincent’s Health,
Hollywood Private Hospital and Edith Cowan University. Informed consent was
obtained from all participants.

Sydney MAS: we selected 77 cases and 588 controls (including participants with
mild cognitive impairment) with genotype information from the Sydney Memory
and Ageing Study44 (Table 1). We applied the same quality control steps and
imputation as in that in AIBL. In total, 4,303,719 SNPs with info score larger than
0.8 were selected after imputation. Acquisition of genetic data has been described
previously45. Informed consent was obtained from all participants, and Sydney
MAS was approved by the Human Research Ethics Committee of the University of
New South Wales (# HC14327).

UKB family history: UKB data (http://www.ukbiobank.ac.uk) were collected on
over 500,000 individuals aged between 37 and 73 years from across Great Britain
(England, Wales and Scotland) at the study baseline (2006–2010), including health,
cognitive and genetic data. Family history of AD was ascertained via self-report.
Participants were asked “Has/did your father ever suffer from Alzheimer’s disease/
dementia?” (Data-Field: 20107) and “Has/did your mother ever suffer from
Alzheimer’s disease/dementia?” (Data-Field: 20110). Self-report data from the
initial assessment visit (2006–2010), the first repeat assessment visit (2012–2013)
and the imaging visit (2014+) were aggregated. We only included participants with
parents older than 60 years or whose parents died after 60 years of age. Only
genetically unrelated individuals (genetic relationship correlation <0.05) with
European ancestry were selected. In total, 22,557/13,118 individuals with maternal/
paternal LOAD were selected as proxy case samples, 231,767/241,206 individuals
without maternal/paternal LOAD were selected as proxy control samples.
Imputation and QC steps on SNPs have been detailed elsewhere46, 8,545,378 SNPs
left after QC.

UKB: additional information on LOAD was obtained for participants
themselves from UKB. Briefly, 383 participants with a diagnosis of “Alzheimer’s
disease” (ICD10 code: G30.1 and G30.9) or “Dementia in Alzheimer’s disease”
(ICD10 code: F00.1 and F00.9) or “dementia/Alzheimer’s/cognitive impairment”
(UKB Data-Coding 6: 1263) were selected. We randomly selected 1915 participants
(with age at baseline greater than 60) from the remaining samples as controls.
These samples were used as a test set. Informed consent was obtained by UKB from
all participants, and the ethics approval for the UKB study was obtained from the
North West Centre for Research Ethics Committee (11/NW/0382).

The estimation of intercept for LDSC. An inaccurately estimated intercept in
LDSC could affect the precision of the estimate of the genetic correlation29. We
therefore calculated the intercept directly other than estimating it in LDSC. The
intercept was calculated as Nsffiffiffiffiffiffiffiffi

N1N2

p , N1 and N2 are the average per SNP sample size in

each study, Ns is the number of overlapping samples between studies. The intercept

Table 2 Genome-wide significant SNPs associated with age at onset (AAO) of late-onset Alzheimer’s disease.

CHR BP SNP A1 Closest Genea BETA_AAO P_AAO BETA_RISKb P_RISKb

1 207786289 rs6701713c A CR1 0.079 3.5E− 12 0.132 1.6E− 28
2 127891427 rs4663105c A LOC105373605 −0.139 1.8E− 28 −0.162 7.3E− 49
6 32573415 rs601945c A HLA-DRB1 0.070 4.2E− 08 0.106 1.2E− 14
6 47432637 rs9381563c T . −0.066 1.2E− 08 −0.075 5.8E− 14
7 99990364 rs34995835c T PILRA −0.066 1.3E− 10 −0.094 1.1E− 18
8 27464929 rs4236673c A CLU −0.074 1.9E− 10 −0.110 1.1E− 28
11 85867875 rs10792832c A PICALM −0.088 2.9E− 20 −0.124 5.1E− 36
11 121435587 rs11218343c T SORL1 0.171 6.1E− 12 0.213 4.8E− 17
11 60021948 rs1582763c A MS4A −0.084 2.5E− 18 −0.088 1.0E− 18
14 92937293 rs4904929c T SLC24A4 −0.068 6.0E− 09 −0.075 1.1E− 10
15 59022615 rs442495c T ADAM10 0.058 5.3E− 09 0.067 5.5E− 11
17 5139808 rs58124010c T SCIMP 0.078 2.6E− 08 0.108 2.0E− 10
19 45412955 rs1081105c A APOE −0.783 5.1E− 216 −0.941 6.5E− 199
19 1039444 rs3795065c T ABCA7, CNN2 −0.076 1.2E− 08 −0.077 3.7E− 10
1 161151844 rs11265563d A B4GALT3 0.078 8.9E− 09 0.049 4.4E− 05
4 11027619 rs4351014d T . 0.057 2.3E− 08 0.060 3.4E− 07

aClosest gene from variant effect predictor (VEP v98)60.
bBETA and P-value from GWAS on LOAD from Marioni et al.13, A1 is the effect allele.
cSNPs genome-wide significantly associated with both LOAD AAO and LOAD risk.
dSNPs genome-wide significantly associated with LOAD AAO only.
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between Marioni et al. (UKB)13 and Marioni et al. (meta)13 was estimated to be
0.75 (it was 0.77 from LDSC), and the intercept between Lambert et al. (stage 1)12

and Marioni et al. (meta)13 was 0.67 (it was 0.68 from LDSC).

Heritability and prediction accuracy on liability scale. The heritability on lia-
bility scale (h2SNPðlÞ) can be transformed from heritability on observed scale (h2o ,
treating case/control as 1/0)47:

h2l ¼ h2o
Kð1� KÞ

z2
Kð1� KÞ
Pð1� PÞ ; ð1Þ

where K is the population disease prevalence, P is the proportion of cases in the
ascertained sample and z is the height of the standard normal probability density
function at the truncation threshold t which corresponds to probability K. z can be
calculated using the R functions qnorm() and dnorm(): t= qnorm(1− K) and z=
dnorm(t). The formula is more complicated for transforming prediction accuracy
on the observed scale (R2

o) to the liability scale (R2
l )
48:

R2
l ¼

R2
oC

1þ θR2
oC

; ð2Þ

where C is Kð1�KÞ
z2

Kð1�KÞ
Pð1�PÞ and θ is z P�Kð Þ

K 1�Kð Þ ðz P�Kð Þ
K 1�Kð Þ � tÞ. We used 5% as the population

disease lifetime prevalence in this study49.
The following equation was used to transform h2SNPðlK1Þ estimated using

population prevalence K1 to h2SNPðlK2Þ using population prevalence K2:

h2SNPðlK2Þ ¼ h2SNPðlK1Þ ´
zK1
zK2

K2ð1� K2Þ
K1ð1� K1Þ

� �2

; ð3Þ

where zK1 and zK2 are the values of the standard normal probability density
function at the truncation threshold z-score, which corresponds to probabilities K1
and K2.

Genetic correlation. The genetic correlation between two sets of summary sta-
tistics was estimated using LDSC50. To avoid the potential effect of APOE in
determining the genetic correlation, we used the flag “--two-step 30” to remove
SNPs with a chi-square test statistic larger than 30 (corresponds to a genome-wide
significant P-value of 5 × 10−8) in either study. Note that this is the default option
for univariate LDSC analyses.

Simulation of a trait with different number causal SNPs (one of the SNPs is a
major mutation). We randomly selected 100,000 unrelated individuals from UKB.
We simulated a trait with heritability 0.2 using different number of causal SNPs
(24,25,26,27,28,29,210,211,212,213,214) randomly selected from 1,056,156 SNPs. We
chose one of the selected SNPs as a major mutation, and assumed that it explained
20, 50 and 80% of the heritability. For each simulated trait with a certain number of
causal SNPs, we selected 10,000 individuals as a test set and chose 10,000–90,000
individuals from the remaining individuals as a training set. We performed a
GWAS on the training set and examined the prediction performance of GRS on the
test set. GRS were calculated based on near-independent SNPs selected from 80
different P-value thresholds (from 1 × 10−8 to 1) and LD clumping (R2= 0.01,
region= 1Mbp). The optimal value was selected as the P-value threshold that
maximised the prediction accuracy.

Simulation of a trait with different number causal SNPs (no major mutation).
We randomly selected 100,000 unrelated individuals from UKB. We simulated a
trait with heritability 0.06 using different number of causal SNPs
(24,25,26,27,28,29,210,211,212,213,214,215,216,217) randomly selected from 1,037,804
SNPs. For each simulated trait with a certain number of causal SNPs, we selected
10,000 individuals as a test set and chose 10,000–90,000 individuals from the
remaining individuals as a training set. We performed a GWAS on the training set
and examined the prediction performance of the GRS on the test set. GRS were
calculated based on near-independent SNPs selected from 80 different P-value
thresholds (from 1 × 10−8 to 1) and LD clumping (R2= 0.01, region= 1Mbp).

Estimating the number of SNPs with non-zero effect on LOAD. We used
SBayesR33 (implemented in GCTB51) to estimate the number of SNPs with a non-
zero effect on LOAD. We used the GWAS summary statistics based on the meta-
analysis from Marioni et al.13 (the sum of the number of participants in IGAP1 and
IGAP2 and 25% of the number of maternal and paternal samples was used as the
sample size). Summary statistics from Jansen et al.14 was not utilised since the
weights used to generate these summary statistics (in the meta-analysis) were not
optimal. The model did not converge while using summary statistics from Lambert
et al.12. The estimated number of SNPs (excluding SNPs from chromosome 19)
with non-zero effect based on summary statistics from Marioni et al. (UKB)13 was
325 (s.e.= 69). The number was larger than that from Marioni et al. (meta)13 since
the disease status in UKB was reported but not diagnosed. Therefore, SNPs
associated with other diseases might also be detected. The LD matrix was calculated
based on 1,056,156 SNPs (1,056,154 HapMap3 SNPs and two APOE SNPs:
rs429358 and rs7412) using a random sample of 10,000 unrelated (genetic

relatedness <0.05) individuals in the UKB. We set the starting values (π) for each
mixture component to 0.95, 0.03, 0.01 and 0.01, respectively, and their corre-
sponding gamma values to 0, 0.01, 0.1 and 1. π are probabilities of the SNP in the
mixture classes and the gamma coefficients constrain how the common marker
effect variance scale in each class. The total number of iterations for the MCMC
chain was set to 50,000. We used the same parameters for the GWAS summary
statistics of the other disorders considered: Parkinson’s disease52, major depres-
sion53 and schizophrenia17. In addition, we removed SNPs from chromosome 19
and performed the analysis with the same parameters on the remaining
1,037,804 SNPs.

Genetic risk score based on LDpred. We randomly selected 10,000 unrelated
(genetic relatedness <0.05) individuals from UKB as the LD reference of 1,037,804
SNPs (all HapMap3 SNPs excluding SNPs from chromosome 19). We examined the
prediction accuracy of GRSs by assigning 14 proportions of causal SNPs: 1 × 10−8,
1 × 10−7, 1 × 10−6, 1 × 10−5, 3 × 10−5, 1 × 10−4, 3 × 10−4, 1 × 10−3, 3 × 10−3, 0.01,
0.03, 0.1, 0.3, 1.

Genome-wide survival analysis on AAO of LOAD. Two types of parental age
were used in the GWSA as parental proxy AAO of LOAD: parental age at death
and parental age at measurement. We performed GWSA on maternal and paternal
AAO of LOAD separately. Specifically, we used Cox proportional hazard models24

implemented in the “survival” R package54 to identify SNPs associated with par-
ental AAO of LOAD across the genome. Compared to normal GWSA that detect
the SNP effect on AAO of individuals themselves, we expect the effect size from
GWSA on parental AAO to be halved25. The Cox model is defined as:

h tð Þ ¼ h0ðtÞ expðβ0SNP þ β COVÞ; ð4Þ
where h tð Þ is the hazard rate of developing LOAD at age t, t is the proxy parental
AAO for cases and parental age at last assessment for controls. h0(t) is the baseline
hazard of developing LOAD, which is not estimated in Cox regression. β0 is the
effect of a SNP on the hazard ratio (HR) and β are effects of covariates (COV),
including assessment centre, genotype chip array, age of participants, 20 genetic
principal components (PCs), and whether the parent is alive or not.

Based on GWSA results on maternal AAO and paternal AAO, we carried out an
inverse-variance meta-analysis using METAL55 and identified six independent
(pairwise LD < 0.01) genome-wide significant (P < 5 × 10−8) loci (Supplementary
Fig. 11a).

The effect size log(HR) and standard error of each SNP in our survival analysis
on parental AAO of LOAD were multiplied by 2, so that it can be on the same scale
as a traditional design (i.e., survival analysis on AAO of LOAD using individual-
level data)13,25,56. After meta-analysis with these summary statistics, we identified
SNPs in 16 loci that were genome-wide significantly (P < 5 × 10−8) associated with
LOAD AAO (Table 2 and Supplementary Fig. 11b).

The Cox model assumes proportional hazards. We examined whether the
assumption was violated in the 16 genome-wide SNPs by investigating the
association between Schoenfeld residuals from the model and age57. The significant
association suggests a non-constant HR. The SNP effects on both maternal and
paternal AAO of AD were tested. We used the cox.zph function in the R “survival”
package54 to calculate the significance of this association. rs1081105 (APOE) based
on maternal AD AAO was found to be significant (P < 0.05/32), suggesting the HR
of this SNP is not constant with time (Supplementary Fig. 13), there is SNP by age
effect. Given that the HR of this SNP was extremely large (HR= 2.6) and
significant (P= 4.0 × 10−106, Cox proportional hazards model), we retained this
SNP in the model.

Effect of major mutation on the estimation of SNP-based heritability. We
randomly selected 40,000 unrelated individuals from the UKB. We simulated a trait
with heritability 0.2 and 100 causal SNPs randomly selected from 1,056,156
SNPs (1,056,154 HapMap3 SNPs and two APOE SNPs: rs429358 and rs7412).
One of the randomly chosen SNPs was set to be a major mutation. The proportion
of heritability explained by this SNP varied from 0 to 100%. For each proportion
(e.g., 50%), we iterated the following steps 100 times: (1) select 100 SNPs and
choose one as the major SNP; (2) generate a continuous trait with heritability 0.2
using the standardised dosage of the 100 SNPs (with effect sizes of 99 SNPs
sampled from a standard normal distribution and the effect size of the major
variant calculated to make sure it explained a specific proportion (e.g., 50%) of
SNP-based heritability); (3) perform GWAS on the simulated trait with 20 genetic
PCs as covariates; (4) use LDSC to estimate the heritability based on the GWAS
summary statistics. Both default setting (SNPs with χ2 > 30 are removed) and using
all SNPs (SNPs with χ2 > 20,000 are removed) were examined; (5) use
GCTA–GREML to estimate the heritability based on the individual-level data with
20 PCs as covariates.

Estimating per SNP sample size. In logistic regression, the sample size of each
SNP (x) can be estimated based on the standard error (s.e.) of log(odds ratio)58:

N � varðyÞ
s:e:2varðxÞ �

1
2Npð1� pÞPð1� PÞ ; ð5Þ
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where P is the proportion of cases, p is the minor allele frequency and y is the
disease (1 for case and 0 for control). We define P as 0.5 so that it is the sample size
for a balanced design.

Relationship between sample overlap and prediction pattern. We randomly
selected 90,000 unrelated individuals from UKB to simulate a trait with heritability
0.2 and 128 causal SNPs (close to the estimated number SNPs with non-zero effect
on LOAD) selected from 1,056,156 SNPs (1,056,154 HapMap3 SNPs and two
APOE SNPs: rs429358 and rs7412). We chose one of the selected SNPs as a major
mutation, and assumed that it explained 20, 50 and 80% of the heritability. We
performed GWAS on these individuals (training dataset) to get the summary
statistics. We randomly selected a proportion of individuals from the training
dataset (fraction ranges from 1 to 20%) as a test set and examined the prediction
pattern of GRS (based on the GWAS summary statistics) on this test set.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genotype data used in this work were obtained from the UK Biobank, the Australian
Imaging, Biomarker & Lifestyle Flagship Study and the Sydney Memory and Ageing
Study. GWAS summary statistics on late-onset Alzheimer’s disease (LOAD) are available
at Marioni et al.13 [https://cnsgenomics.com/content/data], Lambert et al.12 [http://web.
pasteur-lille.fr/en/recherche/u744/igap/igap_download.php] and Jansen et al.14 [https://
ctg.cncr.nl/software/summary_statistics]. Survival GWAS summary statistics on age at
onset of LOAD are available at Huang et al.28 [https://www.niagads.org/datasets/
ng00058]. Summary statistics from the meta-analysis on LOAD AAO are available at
[https://cnsgenomics.com/content/data]. The data that support the findings of this study
are available from UK Biobank (http://www.ukbiobank.ac.uk/about-biobank-uk/).
Restrictions apply to the availability of these data, which were used under license for the
current study (Project ID: 12505). Data are available for bona fide researchers upon
application to the UK Biobank. All other data are contained in the article and its
Supplementary information, or are available on request.
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