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SUMMARY
Brain states are frequently represented using a unidimensional scale measuring the richness of subjective
experience (level of consciousness). This description assumes a mapping between the high-dimensional
space of whole-brain configurations and the trajectories of brain states associated with changes in con-
sciousness, yet this mapping and its properties remain unclear. We combine whole-brain modeling, data
augmentation, and deep learning for dimensionality reduction to determine a mapping representing states
of consciousness in a low-dimensional space, where distances parallel similarities between states. An
orderly trajectory from wakefulness to patients with brain injury is revealed in a latent space whose coordi-
nates represent metrics related to functional modularity and structure-function coupling, increasing along-
side loss of consciousness. Finally, we investigate the effects of model perturbations, providing geometrical
interpretation for the stability and reversibility of states. We conclude that conscious awareness depends on
functional patterns encoded as a low-dimensional trajectory within the vast space of brain configurations.
INTRODUCTION

The collective behavior of the human brain emerges from the

non-linear interactions of billions of neurons interacting at tril-
This is an open access article under the CC BY-N
lions of time-dependent and highly specific synaptic connec-

tions.1,2 The emergent neural activity displays convergent signa-

tures of complex behavior, including an ample repertoire of

transitory states, long-range correlations in time and space,
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and a rapid re-organization upon perturbations, indicative of

flexible and efficient information processing.3,4 Even though

there is a vast number of degrees of freedom available to brain

activity, the computations underlying cognitive function likely

require this activity to be integrated, resulting in a lower effective

number of relevant configurations.5,6 Nevertheless, it is consid-

ered that brain activity should also be highly differentiated to ac-

count for the large repertoire of possible mental states, either

subjectively experienced or influencing behavior beyond the

scope of conscious awareness.5

Despite the microscale complexity of the brain, integration

contributes to the spontaneous self-organization of brain activity

into a discrete number of global brain states characterized by

specific behavioral patterns, capacity for cognitive processing,

and reports of subjective experiences.7 Examples of these

global states include everyday wakefulness and sleep, general

anesthesia, and pathological conditions resulting from brain

injury, such as coma or unresponsive wakefulness syndrome.

These states are difficult to define in terms of the specific con-

tents of first-person experience; instead, they involve overall re-

ductions in the capacity to sustain consciousness, possibly to

the point of becoming utterly devoid of subjective experiences.

When assessed in terms of the accompanying behavior, it is

important to note that global brain states can be characterized

using the total score of unidimensional scales, with prominent

examples given by the sleep staging criteria of the American

Academy of Sleep Medicine (AASM),8 the coma recovery scale

(CRS-R)9 for disorders of consciousness (DOCs), and the Ram-

say scale for sedation and anesthesia.10 The level of arousal is

frequently introduced as an additional dimension necessary to

characterize global and temporally extended states of con-

sciousness. For instance, deep sleep is generally considered a

state of unconsciousness and low arousal, while high arousal

can co-exist with reduced consciousness in certain patients

with brain injury.11

As described above, the level of consciousness usually refers

to a scalar index determined by observations of behavior but, at

the same time, is used to characterize brain states with their

distinct neurobiology and capacity to sustain subjective experi-

ence. Brain activity underlying different levels of consciousness

(defined in this way) is multi-dimensional and ever-changing and

thus seemingly incompatible with a unidimensional parametriza-

tion, resulting in an apparent mismatch between neurobiological

and behavioral characterizations. The mapping from neural ac-

tivity to behavioral metrics and to the intensity of reported sub-

jective experience is inconclusive; for instance, the average local

properties of single-cell dynamics (e.g., firing rates) sometime

fail to correlate with the level of consciousness,12 suggesting

that thismapping is based onmore complex properties of collec-

tive neural behavior. We hypothesize that brain activity impli-

cated in the capacity to sustain conscious experiences is inte-

grated in a way that reduces the effective number of degrees

of freedom and allows a low-dimensional representation not

only in terms of behavioral data and subjective reports but also

based on objective quantification of neuroimaging data. Thus,

as individuals transition fromwakefulness into a state of reduced

consciousness, a significant part of the variance in their brain ac-

tivity fluctuations is organized alongside a low-dimensional tra-
2 Cell Reports 42, 112491, May 30, 2023
jectory encoding the level of consciousness. Moreover, we hy-

pothesize that external perturbations are capable of reversing

this trajectory, which constitutes a potential mechanism underly-

ing the reversibility of certain states of unconsciousness.

To assess these hypotheses, we first turned to the problem of

obtaining a low-dimensional latent space capable of spanning

whole-brain functional connectivity patterns indicative of multiple

states of consciousness, including wakefulness, three stages of

non-rapid eye movement (REM) sleep (N1, N2, and N3 sleep;

REM sleep data were not included due to technical constraints

in measuring it), two doses of the general anesthetic propofol

(sedation [S] and loss of consciousness [LOC]), and two groups

of patients with brain injury diagnosed with DOCs of different

severity (minimally conscious state [MCS] and unresponsive

wakefulness syndrome [UWS]). Note that we introduced phenom-

enological whole-brain models as a generative mechanism for

data augmentation,13 considering the large amount of data

required to successfully perform non-linear dimensionality reduc-

tion with deep variational autoencoders.14 To avoid overfitting

during the data-driven discovery of this latent space, we exam-

ined whether only part of this data (i.e., wakefulness, N3 sleep,

and patients in UWS) contained sufficient regularities for the

adequate representation of all other brain states. We examined

the relationship between the latent space encoding and previously

introduced signatures of consciousness, such as metrics of func-

tional integration15,16 and structure-function coupling.17,18 Finally,

we addressed the stability of the latent space representation in

terms of external perturbations,19 mainly in the context of known

differences in the reversibility of unconscious states (for instance,

sleep or S vs. patients in UWS).

RESULTS

Methodological overview
The procedure followed in this work is showcased in Figure 1.

First, we implemented a whole-brain model with local dynamics

given by the normal form of a Hopf bifurcation.20 Depending on

the bifurcation parameter (a), the dynamics present two qualita-

tively different behaviors: fixed-point dynamics (a < 0) and os-

cillations around a limit cycle (a > 0). When noise is added to

the model, dynamics close to the bifurcation (a z 0) change

stochastically between both regimes, giving rise to oscillations

with complex amplitude modulations.20 Regional dynamics

were coupled by the structural connectivity (SC) matrix ob-

tained from diffusion tensor imaging (DTI) measurements. The

model was used to directly simulate narrow band (0.04–

0.07 Hz) fMRI time series; hence, the dominant oscillatory fre-

quency of the model was inferred from the data.21 The whole-

brain model has different bifurcation parameters in each region

of the parcellation, which are constrained by the spatial maps of

anatomical priors given by resting state networks (RSNs); thus,

each RSN can add its own contribution to the regional bifurca-

tion parameter.22 Following Ipina et al., these contributions are

free parameters that were optimized using a genetic algorithm,

with the functional connectivity (FC) matrix being the optimiza-

tion target.22 Different FC matrices were considered, one for

each of the following states of consciousness: wakefulness;

N1, N2, and N3 sleep; anesthesia (S and LOC); and patients



Figure 1. Methodological overview

A whole-brain model with local dynamics given by Hopf bifurcations was implemented at nodes defined by the AAL parcellation, coupled with the anatomical

connectome. We included spatial heterogeneity based on RSN in the model parameters. The model was tuned to reproduce the empirical FC for each condition,

and the resulting parameters were used to generate a surrogate database of simulated FC matrices that were represented in a latent space using a VAE. Finally,

perturbations were introduced in the model as an external periodic force, resulting in a set of trajectories in latent space (one per pair of homotopic AAL regions)

parameterized accordingly the amplitude of the forcing parameter.
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with DOCs (MCS and UWS). Afterward, we used the inferred

parameters to simulate surrogate FC matrices that were en-

coded into a two-dimensional space using a deep learning ar-

chitecture known as variational autoencoder (VAE). VAEs are

autoencoders trained to map inputs to probability distributions

in latent space, which can be regularized to produce meaning-

ful outputs after the decoding step We characterized the latent

space in terms of different FC metrics and then explored the ef-

fects of external perturbation given by wave stimulation (peri-

odic perturbation delivered at the natural nodal frequency).19

After systematically applying the perturbations to all pairs of

homotopic nodes and encoding the resulting FC matrices, we

obtained low-dimensional perturbational landscapes consist-

ing of trajectories in latent space parametrized by the stimula-

tion intensity. In turn, these trajectories can be classified by

geometrical metrics in latent space such as how closely they

bring the dynamics to a predefined target state (in this case,

conscious wakefulness).

Latent space representation of brain states
Using the optimized whole-brain model, we generated 15,000

FC matrices for each brain state; next, we trained the VAE using

an 80/20 split for training/testing (see STAR Methods for details

on model training and evaluation). Note that since our goal is to

determine how the different states of consciousness are orga-

nized in a low-dimensional space, we constructed such repre-

sentation following a process that consisted of training a VAE

with FC belonging to a reduced set of brain states representing

the most extreme cases in term of consciousness (wakefulness

[W] and UWS) plus one intermediate state (N3). In this way, we

can avoid overfitting the VAE to all states of consciousness,

which would result in a trivial result without any meaningful

generalization between states. We then investigated how the

latent space represented the complete set of intermediate states

(which were not used as inputs to the VAE). Importantly, the in-

clusion of N3 as an intermediate state arises due to its similarity

with LOC, S, and MCS in terms of several metrics, as found in

previous work.19 After training, we encoded 300 FC matrices

per state used for training, finding the results shown in Figure 2A

(left). We then applied the trained autoencoder to simulated FC

corresponding to all the remaining stages. This procedure gener-
ated separate clusters into the two-dimensional space orga-

nized according to the reduction of the level of consciousness

(Figure 2A, middle). Advancing alongside the trajectory repre-

sented by a dashed line resulted in FC matrices associated

with reduced consciousness.

We investigated the optimality of the two-dimensional repre-

sentation by quantifying how this representation distinguishes

the states compared with the original high-dimensional space

of whole-brain FC, as well as with reduced spaces with dimen-

sions higher than two. To do so, we trained a support vector ma-

chine (SVM) with polynomial kernel as implemented in the

MATLAB function fitcecoc with the objective of distinguishing

between eight class labels (each representing a state of con-

sciousness). We subdivided the 300 samples used for each state

into training (90%) and validation (10%) sets and assessed

model performance using a 10 k-fold scheme with four different

sets of features: (1) the lower triangular part of the FC matrix in

the original data dimension; (2) z1, standing for the encoding of

the 300 matrices in one-dimensional latent space; (3) the z1,z2

pair representing the encoding of the FC matrices in the two-

dimensional latent space; and (4) three dimensions representing

the encoding of the FC matrices in the three-dimensional latent

space. For each case, we repeated this procedure 100 times,

and we assessed the statistical significance of each classifier

by comparing it with the same SVM but trained using data with

scrambled class labels as a null model. We then constructed

an empirical p value by counting how many times the accuracy

of the classifier with scrambled class labels was greater than

that the original classifier, and we found p < 0.001 for the four

cases. In terms of accuracy of the classifiers, we obtained the

following values: 0.75 ± 0.01 (full data); 0.77 ± 0.01 using one-

dimensional latent dimension; 0.89 ± 0.01 using two-dimen-

sional latent dimension; and 0.91 ± 0.01 using three-dimensional

latent dimension (Figure S1). Thus, we established that latent

space representations have better classification performance

compared with the original high-dimensional data and that the

classification performance increases with the dimension of the

latent space representation. We also noted that the improve-

ment in the performance is considerably higher when the latent

space dimension changes from one to two thanwhen the dimen-

sion increases from two to three, which is comparatively very
Cell Reports 42, 112491, May 30, 2023 3



Figure 2. Latent space encoding of whole-brain FC reflects loss of consciousness alongside a low-dimensional trajectory

(A) We trained the VAE using simulated FCmatrices corresponding to statesW, N3, and UWS (left panel). We then applied the trained autoencoder to FCmatrices

corresponding to all other brain states, obtaining clusters of points organized alongside a low-dimensional trajectory (dashed line) representing progressive loss

(legend continued on next page)
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small and close to ceiling performance. Given that two dimen-

sions resulted in an acceptable reproduction of the data and

that the improvement in accuracy from two to three dimensions

was relatively marginal, we decided on a bidimensional repre-

sentation, which also allows straightforward visualization.

Characterization of FC decoded from the latent space
Applying a decoder network to all latent space coordinates in

ðz1; z2Þ visualizes the FC matrices that correspond to different

regions of this space, in particular those that were visited

when advancing in the trajectory that interpolates the encoded

brain states (Figure 2A, right). A sequence of matrices obtained

in this way is shown in Figure 2B, both with (bottom) and

without (top) normalization (i.e., all matrix entries add up to a

fixed value). From the non-normalized matrices, it is clear that

reductions in consciousness are paralleled by an overall

decrease in FC values. The normalized matrices show that

this decrease is not homogeneous but tends to be concen-

trated in certain pairs of off-diagonal entries corresponding to

inter-modular connections. Based on previous work, we hy-

pothesized that LOC would increase the FC-SC similarity17,18

Figure 2C shows how the decoded latent space coordinates

are characterized in terms of the mean FC (left panel), the

network modularity (middle panel), and the coupling between

FC and SC (right panel). These plots converge in the presence

of a gradient from the top left to the bottom right in the values

of all metrics, which parallels the trajectory interpolating the en-

coded brain states. Finally, Figure 2D summarizes the value of

these metrics for the 300 FC matrices encoded for each brain

state, corroborating that LOC is associated with decreased

mean FC (left), increased network modularity (middle), and

increased FC-SC coupling (right). Moreover, these plots are

monotonous with the exception of jumps in S (for modularity)

and N3 (for FC-SC coupling). To further investigate the relation-

ship between the latent variables and the dimensions of con-

sciousness, we decoded all ðz1; z2Þ pairs from the latent space

within a 5 3 5 grid to generate FC matrices. We then computed

the mean across rows to obtain the nodal projection of the FC,

i.e., the node connectivity strength, for each decoded FC ma-

trix. We rendered the obtained functional networks for each

pair into a brain surface (Figure S2). We noted that z1 latent

space coordinate could be related to the W dimension, with un-

specific increasing of all the functional connections (this is

observed as a flattening of the node strength in the brain ren-

ders). While the interpretation of the other dimension, z2, seems

to be more subtle, it represents a reconfiguration of the func-

tional networks that could be related to the functional changes

associated with LOC independent of the overall level of activa-

tion or arousal.
of consciousness (middle panel). Applying the decoder to the latent space coor

space, including those included in the trajectory (right panel).

(B) FC matrices sampled homogeneously along the trajectory identified in (A), mi

normalization.

(C) Characterization of the latent space in terms of mean FC (left panel), network

(D) Mean FC (left panel), network modularity (middle panel), and SC-FC coupling (

(mean ± SD) (W, wakefulness; N1, N2, and N3, stages from light to deep sleep; S,

unresponsive wakefulness syndrome).
Perturbational analysis of the latent space trajectory of
brain states
We investigated how each state of consciousness responded to

an external perturbation modeled by the inclusion of a periodic

forcing at the natural frequency of each node. Following previous

work,19 we applied this perturbation at different pairs of homo-

topic brain regions, and we parametrized it by the strength of

the forcing (F0). As a result, we obtained a sequence of FC

matrices per region pair, which we encoded in the latent space

to visualize the behavior of the system under the perturbation.

Figure 3A (left panel) illustrates the outcome of increasing the

forcing for the stimulation applied to a single region pair, while

Figure 3A (middle panel) represents one trajectory per choice

of homotopic brain regions. In both cases, it is clear that the dis-

tance in latent space reaches an asymptotic value as the forcing

keeps increasing. Averaging these terminal points across all

region pairs, we estimate the mean displacements shown as ar-

rows in Figure 3A (right panel). We note that all arrows point to-

ward the top left corner of the latent space, which was associ-

ated with conscious W; thus, overall, the net result of the

forcing is to displace the system toward this state.

To summarize the effect of the perturbation on the latent space

geometry, we introduced the metrics shown in the left panel of

Figure 3B. The distance to W measures the separation between

the terminal state obtained for large forcing and the centroid

of theW cluster (represented with blue circles in Figure 2A), while

the distance to the origin measures the separation between the

terminal state and the centroid of the brain state that is being

stimulated. Note that to compute these metrics, we considered

the latent space of VAEs to be Euclidean, which is the most

parsimonious conjecture, following Kingma et al.23 (the Euclidian

assumption of the latent space could be guaranteed by including

an extension of VAE proposed by Chen and colleagues24). The

right panel of Figure 3B shows that the stimulation fails to bridge

the gap between pharmacological and pathological uncon-

scious states andW. Also, it highlights that the least stable states

(i.e., those with the largest distance to origin values) comprise in-

termediate sleep stages. As expected, patients with DOCs pre-

sented highly stable states. The asymptotic behavior of these

two metrics vs. the forcing is shown in the two rightmost panels

of Figure 3B. It is important to note that the 2D localization of per-

turbations in the latent space and its proximity to W provides

more information than one-dimensional metrics such as the

goodness of fit (GOF) between the perturbed FCs and the FC

of W, including the trajectory of the perturbation (Figure S3).

Finally, to further characterize the perturbative landscape, we

leveraged the results obtained in Figure 2C, where we endowed

the latent space with measures obtained from the decoded FC.

Figure 3C confirms the observation that stimulation tends to
dinates, we illustrate the FC matrices corresponding to each part of the latent

ddle (indicated with red stars), both for matrices with (up) and without (bottom)

modularity (middle panel), and SC-FC coupling (right panel).

right panel) for the 300 encoded FCmatrices corresponding to each brain state

sedation; LOC, loss of consciousness; MCS, minimally conscious state; UWS,

Cell Reports 42, 112491, May 30, 2023 5
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displace the latent space encoding toward the region associated

with consciousW,withmean FC increasing vs. the forcing ampli-

tude and with modularity and SC-FC coupling decreasing vs.

forcing amplitude. Overall, the metrics introduced in Figure 3B

allow us to characterize brain states in terms of intuitive geomet-

rical observations, which indicate the sensitivity to external per-

turbations and the directionality of this perturbed state.

Neuroanatomical representation of the response to
external stimulation
Applying the stimulation to each pair of homotopic regions re-

sults in latent space trajectories, which can be characterized

by the value of different metrics computed using the terminal

FC matrix. Figure 4 represents the effect of stimulation applied

to states of consciousness investigated in this study. In Fig-

ure 4A, we show that the top 20% regions, when perturbed,

move the initial state closer to W, quantified as the geometrical

measure called distance to W. Note that we displayed the differ-

ence between the maximum across regions and the single

regional value to obtain a metric that higher values mean a better

transition towardW. The radar plot shows themean value across

the top 20% regions for each state. Stimulation at regions

located in posterior nodes of the default mode network (DMN)

(i.e., precuneus) for all brain states (except S and early sleep)

was more prone to generate trajectories closer to W. Frontal re-

gions were also featured for all brain states, also encompassing

anterior midline DMN nodes (e.g., orbito-frontal cortex). We then

extend the stimulation behavior assessment adding the

following metrics: distance to origin, mean FC, modularity, and

SC-FC coupling (in all panels, darker values indicate larger

changes in the corresponding metric) (Figure 4B). Accordingly,

similar regions were found for modularity and SC-FC coupling.

In terms of mean FC and distance to origin, the maps were

more diffuse, without clearly outlined regions that preferentially

displace the dynamics toward W. The matrix in Figure S4 sum-

marizes the similarity between the patterns rendered in Figure 4.

Diagonal blocks indicate consistent results when stimulation

was applied to a specific brain state, while off-diagonal blocks

show that similar patterns can be obtained even when the stim-

ulation is applied to different states of consciousness.

DISCUSSION

Subjective experiences encompass a vast range of contents, yet

the global and qualitative modifications of consciousness are

usually described using few parameters. We demonstrated

that several states of consciousness—from W to DOCs—can

be meaningfully represented in a low-dimensional space where
Figure 3. Perturbational analysis of stability and reversibility of brain s

(A) Left panel: example trajectory obtained by encoding in latent space the outc

regions. Middle panel: same as in the left panel but showing trajectories corres

placements for all brain states represented in the latent space.

(B) Left panel: geometric definitions of distance to wakefulness and distance to o

Right panel: parametric behavior of these metrics per brain state as a function o

(C) Mean FC (left panel), modularity (middle panel), and SC-FC coupling (right pan

N2, and N3, stages from light to deep sleep; S, sedation; LOC, loss of consc

syndrome).
the gradual progression toward deep unconsciousness is mani-

fest in a purely data-driven manner. We quantified the goodness

of this representation by assessing the performance of SVM

classifiers trained with full FC matrices and also with one-,

two-, and three-dimensional FC matrices reconstructed from

the corresponding latent space representations. We found that

the two-dimensional latent space representation was optimal

in terms of the balance between the discrimination accuracy of

states of consciousness and the criterion of adopting the

simplest model that adequately captures these states. By finding

this representation, we lend support to the clinical practice of

ordering these states along a unidimensional continuum based

on behavioral assessments. This also suggests that non-linear

compression via VAEs could represent an interesting method

to infer scalar signatures of consciousness from neuroimaging

data. Accordingly, other methods for dimensionality reduction

have revealed consistent results when applied to neural activity

measured during sleep and anesthesia.25–27

While previous computational efforts addressed the outcome

of simulated perturbations in terms of the global state of the

brain,14,19,22,28–32 our work provides a series of distinct insights.

We demonstrated that the overall effect of stimulating the cortex

of unconscious individuals is to displace the state toward

conscious W, as clearly visualized by the arrows in the latent

space of Figure 3A. Despite this, the dissimilarity of certain states

of deep unconsciousness with respect toWprevented the full re-

covery of a conscious global brain state as a result of the stimu-

lation. In dynamical terms, this could be explained by the satura-

tion of the displacement trajectories as a function of the

stimulation amplitude, F0. As expected, the states that could

be displaced the largest distance from their original position in

latent space included the intermediate sleep stages, N2 and

N3, where awakenings are likely to occur due to external sensory

input.8,19 Finally, the application of VAEs to the simulated dy-

namics allowed us to interpret the complex outcome of external

perturbations by means of the latent space geometry. This

development was fundamental for the heuristic assessment of

the simulated perturbations, which otherwise result in multi-

dimensional trajectories of difficult visualization.

We highlight that several of our results were consistent with the

previous literature, regardless of the phenomenological nature of

the Hopf bifurcation model.25–27 It also worthwhile to point out

that SC-FC similarity as a metric biases the results to Gaussian

approximation of data cloud, pushing the model into the linear

regime around a localminimum.Depth of unconsciousness corre-

lated with decreased FC, increased modularity,15,16 and similarity

between SC and FC.17,18 The relationship between these vari-

ables and the depth of unconsciousness was clear except for
tates

ome of introducing periodic forcing in the model at a single pair of homotopic

ponding to all pairs of homotopic regions. Right panel: average maximal dis-

rigin. Middle panel: the two metrics defined in the left panel for all brain states.

f the forcing amplitude.

el) for each state as a function of the perturbation strength (W, wakefulness; N1,

iousness; MCS, minimally conscious state; UWS, unresponsive wakefulness

Cell Reports 42, 112491, May 30, 2023 7



Figure 4. Neuroanatomical representation of the response to external stimulation

(A) The top 20% in terms of distance to wakefulness are rendered in brains for each investigated state of consciousness. Themean values across the top 20%are

represented in the radar plot. Importantly, we represent the maximum value across brain regions minus the single value region to obtain a metric that increases

when the transition toward wakefulness is better.

(B) We extend the analysis to the other proposed metrics in latent space. Each row corresponds to a different metric. Columns contain three-dimensional

renderingswhere the regions are colored depending on how the correspondingmetric behaves asymptotically with the perturbation strength when applied to that

region pair (W, wakefulness; N1, N2, and N3, stages from light to deep sleep; S, sedation; LOC, loss of consciousness; MCS, minimally conscious state; UWS,

unresponsive wakefulness syndrome).
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propofol-induced S, which should perhaps be re-assessed and

placed closer to early/intermediate sleep. Also, the predicted

regions that should be targeted to restore a state of awareness

in the participants was consistent with previous reports, including

highly connected hubswithin posterior regions of the DMNaswell

as in midline frontal and prefrontal regions.19 Moreover,

these spatial profiles were consistent between conditions,

suggesting the presence of a universal dynamical mechanism

underlying the restoration of W upon properly targeted external

perturbations.

The notion of levels of consciousness is ubiquitous in clinical

and translational neuroscience, yet it is also at odds with certain

theoretical accounts and first-person reports. Experimental ev-

idence suggests that conscious perception is determined as

the outcome of an all-or-none bifurcation, which questions

whether consciousness can be graded in terms of intensity.33

When it comes to subjective experience, even though the infor-

mation conveyed by a certain percept can be graded, high-

level perception itself appears to be binary.34 Accordingly,

Bayne and colleagues have argued that consciousness should

not be described in terms of ‘‘levels’’ that determine the degree

or intensity of perception; instead, multiple dimensions are

likely required to adequately express the changes in the nature

of subjective experience across states of consciousness.35 We

note that our finding does not contradict these observations:

even though we were capable of finding a low-dimensional

representation where the brain states are ordered within a uni-

dimensional trajectory, this trajectory does not necessarily

reflect the intensity of the contents of consciousness. Instead,

it likely reflects a combination of multiple variables that is

capable of explaining most of the variance in the characteriza-

tion of progressively impaired consciousness. While our anal-
8 Cell Reports 42, 112491, May 30, 2023
ysis conveyed a characterization of latent space variables in

terms of metrics that have been implicated in the trajectory

from W to unconsciousness (e.g., modularity), a more precise

interpretation of these variables in terms of the phenomenology

of conscious experience across brain states should be the

target of a future investigation, likely requiring more complex

experimental paradigms beyond the measurement of sponta-

neous brain activity.

It is also important to mention that variables related to con-

sciousness are not necessarily behind the latent space organiza-

tion reported in this study. While it is reasonable to expect that

this is indeed the case, based on the proximity of states usually

regarded as similar in terms of level of consciousness, other con-

founding factors could be behind this proximity. For example,

states induced by propofol could be more similar (regardless

of the level of consciousness) due to neurochemical changes

associated with the drug that are independent of its modulation

of conscious awareness.36 Similar considerations could apply to

sleep and to patients with DOCs. This problem is difficult to avoid

insofar as states of consciousness involve non-specific modula-

tions of brain activity that encompass neural correlates of con-

sciousness but are not limited to them. We also characterized

the latent space variables by exploring the functional networks

changes that occur in the decoded FC matrices as a function

of latent space coordinate pairs. We found that z1 could be

related to the level of W, while z2 was related to a more complex

reconfiguration of the networks, possibly related to the func-

tional changes implicated with LOC. Nevertheless, the decoded

FCmatrices present a complex non-linear behavior as a function

of the latent space coordinates, and a linear transformation be-

tween this space and a more biologically interpretable set of di-

mensions might not be possible.
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The description of global brain states by means of a low-

dimensional latent space using generative algorithms presents

some interesting advantages. One example is the possibility of

extrapolating the results in different directions of the latent

space, for example generating FC matrices that would corre-

spond to states of deeper unconsciousness than patients in

UWS. Another is the possibility of interpolating between the rep-

resented states, yielding intermediate FC matrices that would

correspond to intermediate levels of consciousness and thus

be interpretable as the transition between the associated brain

states. This is complemented by the computation of different

metrics of interest per pair of latent state coordinates, which en-

ables a simple visualization of how regions in such space relate

to putative signatures of consciousness. Finally, the encoding of

states obtained after simulated external perturbations can pro-

vide a simplified geometric interpretation of the outcome of

complex collective changes in the brain state with clinical and

translational implications.

The clinical perspective of our work is aligned with the current

efforts of the scientific community to develop treatments for

pathological states of reduced or absent consciousness. Several

works have empirically demonstrated that external brain stimula-

tion modulates the behavioral responsiveness in patients

suffering fromDOCs due to brain injury. Specifically, these works

pursue the goal of finding possible interventions that allow or

accelerate the recovery of consciousness as a therapeutic alter-

native in these patients. Invasive electrical stimulation, such as

the deep brain stimulation (DBS) technique, has provided

encouraging results, improving behavioral measures in patients

with DOCs (i.e., CRS-S score37,38). Also, non-invasive electrical

stimulation, such as transcranial direct current stimulation

(tDCS), has been investigated as a potential method to improve

the state of patients with DOCs.39–42 A recent publication sug-

gests a causal effect of tDCS intervention in electroencephalog-

raphy (EEG) biomarkers proposed as a signature of conscious-

ness in a large cohort of patients with DOCs.43 Also, brain

stimulation in anesthetized non-human primates has proven

effective to accelerate the recovery of consciousness.44 In paral-

lel to these experimental results, in the last years, progress in

computational neuroscience has allowed us to robustly define

brain states and to study transitions between them in silico.

While this has been used to provide insights into the diagnosis,

prognosis, and potential treatment of pathological states, the

empirical validation of these models remains to be systemati-

cally addressed.45 One successful example in this direction is

the application of semi-empirical models to the diagnostics

and treatment of other neurologic conditions, such as epilepsy,

which has received significant attention from clinical transla-

tional neuroscience.46 Our work points toward the same direc-

tion but from a broader perspective that is not focused on a

particular disorder; instead, we focused on the more general

concept of conscious states, thus providing potential tools to un-

derstand these states and to study the transitions between them.

Nevertheless, to generate testable hypotheses and to increase

the sensitivity of the method to different pathologies, which

could strengthen the translational impact of the approach, an in-

dividual-level perspective should be considered. One avenue to

reach this objective is to include individualized sources of infor-
mation such as individual SC, disease-specific maps of gray and

white matter atrophy, maps of receptor density, and transcrip-

tomic data, among others. At the same time, to extend this

approach to different pathologies, a pathology-based latent

dimension determination should be considered as away to guar-

antee their meaningful representation.

Obtaining a latent state representation using VAE requires a

large amount of data from training, which is difficult to obtain

considering the typically small sample size of fMRI experi-

ments.47 We explored this using whole-brain computational

models as a potential method for data augmentation, with

encouraging results that prompt further research.13 We can

also hypothesize that model-based training the VAE was more

successful than using real data because model parameters

could be more informative than direct fMRI observables. As an

example, all regional parameters can be interpreted in terms of

their influence in FC but also in relation to the (un)stability of

regional dynamics, which highlights the mechanistic dimension

of these features.48

We acknowledge that our results are based on the a priori se-

lection of the phenomenological Hopf whole-brain model, which

fits observables derived directly from fMRI recordings. The ratio-

nale behind the selection of the Hopf whole-brain model is based

on the fact that it has been shown that emergent collective

macroscopic behavior of brain models depends weakly on indi-

vidual neuron behavior.49 Over the years, many different whole-

brain models with varying degrees of biophysical realism have

been used, ranging from spiking networks to mean-field models

to oscillatory Hopf models.20,50–54 The Hopf model represents a

compromise between the correct reproduction of fMRI observ-

ables without the need to fine-tune parameters related to bio-

physical variables.20 Moreover, the Hopf model easily captures

the oscillatory nature of band-pass-filtered fMRI signals,

whereas spiking and mean-field models are asynchronous,

and therefore the representation of oscillatory couplings is not

straightforward. Still, it is possible to include oscillations in

mean-field models, as we have done in recent work.55 The re-

sults show that the best fit for this oscillatory mean-field model

is exactly at the Hopf bifurcation, highlighting that the use of a

more complex model does not provide an obvious advantage

while resulting in drawbacks related to higher computational de-

mands. Nevertheless, future work should explore other detailed

biophysical models, which might be necessary to test hypothe-

ses related to specific biological interpretations of model param-

eters and their neurophysiological implications. For instance,

future research could explore mean-field models, such as the

dynamical mean field (DMF) model,51 which allows us to simu-

late pharmacological interventions by modeling the neuromodu-

lator effect of the specific drugs.56 At the same time, it is natural

to ask how this framework could be extended to other neuroi-

magingmodalities, such as EEG, which is clinically the gold stan-

dard for identifying the level of consciousness in clinical settings

and is also cheaper than fMRI and thus has the potential to

generate massive amounts of data. In this sense, we can identify

a set of limitations related to building whole-brain models to fit

EEG data, such as the accuracy of source space localization

and its relation to the SC obtained using a different methodology

and that the whole-brain models generate brain signals of each
Cell Reports 42, 112491, May 30, 2023 9
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region with a specific frequency to match the empirical fre-

quency of the fMRI data, yet EEG data present a heterogeneous

power spectrumwithmultiple relevant frequency bands. Howev-

er, an interesting future direction could be to adapt the frame-

work to include EEG data by leveraging large amounts of record-

ings to train deep learning neural networks directly with

empirical data.

In summary, we introduced computational methodologies to

show that global brain states of impaired consciousness can

be represented in a low-dimensional space, where distances

parallel the known similarities between these states. All simu-

lated perturbations displaced the encoded brain state toward

W, but due to their original distance in latent space, some states

(e.g., MCS, UWS) failed to approach conscious W. Our results

highlight the presence of sufficient regularities across brain

states to endow them with a low-dimensional and data-driven

characterization paralleling the level of consciousness, an infor-

mative and practical construct that should be the target of future

investigations.

Limitations of the study
On the other hand, the technical caveats of this work can be

based on the fact that we use anatomical connectivity estimated

in a group of healthy participants to model patient data. Howev-

er, considering that patients with brain injury may present het-

erogeneous lesion locations, the average healthy connectivity

constitutes a reasonable first estimate. Finally, we opted to simu-

late the stimulation of homotopic regions only and with an

external periodical forcing. This restriction ensures that the stim-

ulation protocols explored in the model are experimentally

possible. Future extensions of our work could include the devel-

opment of multi-regional stimulation with different protocols.
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(yonatan.sanz@upf.edu).

Materials availability
This study did not generate new material.

Data and code availability
d Sleep dataset is publicly available since the data of publication. The DOI is listed in the key resources table. Data of disorders of

Consciousness and anesthesia cannot be shared publicly because contains data and information from a clinical population of

patients, and are not publicly available due to constraints imposed by the currently approved ethics protocol, but are available

upon request to Comité d’Éthique Hospitalo-Facultaire Universitaire de Liège (https://www.chuliege.be/jcms/c2_16986309/fr/

comite-d-ethique-hospitalo-facultaire-universitaire-de-liege/accueil): ethique@chuliege.be.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.The software dependencies are MATLAB (2018b); Python (3.6) and Keras.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethic statement
Sleep data:written informed consent and the experimental protocol was approved by the local ethics committee ‘‘Ethik-Kommission

des Fachbereichs Medizin der Goethe-Universität Frankfurt am Main, Germany’’ with the ethics application title ‘‘Visualisierung von

Gehirnzuständen in Schlaf und Wachheit zum Verständnis der Abnormitäten bei Epilepsie und Narkolepsie’’ and the assigned num-

ber: 305/07 in Frankfurt (Germany). Propofol sedation and anesthesia dataset:written informed consent, approval by the Ethics Com-

mittee of theMedical School of theUniversity of Liège.DoCdataset:written informed consent to participate in the studywas obtained

directly from healthy control participants and the legal surrogates of the patients, approval by the Ethics Committee of the Medical

School of the University of Liège.

Experimental data
We analyzed fMRI recordings from 81 participants identified by their scanning site and experimental condition: Frankfurt (15 subjects

during wakefulness and sleep) and Liège (14 healthy subjects during wakefulness and under propofol sedation and anesthesia, 16

patients diagnosed as MCS, 15 patients diagnosed as UWS, and 21 healthy and awake controls).
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Sleep dataset
Simultaneous fMRI and EEG was measured for a total of 73 subjects and a subgroup of 55 was considering (by excluding subjects

who did not fall asleep) (36 females, mean ± SD age of 23.4 ± 3.3 years). EEG via a cap (modified BrainCapMR, Easycap, Herrsching,

Germany) was recorded continuously during fMRI acquisition (1505 volumes of T2*-weighted echo planar images, TR/TE = 2080

m/30 m, matrix 64 3 64, voxel size 3 3 3 3 2 mm3, distance factor 50%; FOV 192 mm2) with a 3 T S Trio (Erlangen, Germany).

EEG measurements allow the classification of sleep into 4 stages (wakefulness, N1, N2 and N3 sleep) according to the American

Academy of Sleep Medicine (AASM) rules. To facilitate the sleep scoring during the fMRI acquisition, pulse oximetry and respiration

were recorded via sensors from the Trio [sampling rate 50 Hz]) and MR scanner compatible devices (BrainAmpMR+, BrainAmpExG;

Brain Products, Gilching, Germany). We selected 15 subjects who reached stage N3 sleep (deep sleep) and contiguous time series of

least 200 volumes for all sleep stages. Written informed consent and the experimental protocol was approved by the local ethics

committee ‘‘Ethik-Kommission des FachbereichsMedizin der Goethe-Universität Frankfurt amMain, Germany’’ with the ethics appli-

cation title ‘‘Visualisierung von Gehirnzuständen in Schlaf und Wachheit zum Verständnis der Abnormitäten bei Epilepsie und Nar-

kolepsie’’ and the assigned number: 305/07 in Frankfurt (Germany). Previous publications based on this dataset can be consulted

for further details.58

Propofol sedation and anesthesia
Resting-state fMRI of three different states following propofol injection: wakefulness, sedation and unconsciousness were acquired

from 18 healthy right-handed volunteers (4 men and 14 women; age range, 18–31 years; mean age ±SD, 23.7 ± 3.7 years). Data

acquisition was performed in Liège (Belgium). Subjects fasted for at least 6 h from solids and 2 h from liquids before sedation. During

the study and the recovery period, electrocardiogram, blood pressure, pulse oximetry (SpO2), and breathing frequency were contin-

uously monitored (Magnitude 3150M; Invivo Research, Inc., Orlando, FL). The clinical evaluation of the level of consciousness was

performed considering the scale used in. The investigator considered if the subject is fully awake if the response to verbal command

(‘‘squeezemy hand’’) was clear and strong (Ramsay 2), as sedated if the response to verbal commandwas clear but slow (Ramsay 3),

and as unconscious, if there was no response to verbal command (Ramsay 5–6). This procedure was repeated twice for each con-

sciousness level assessment. Functional MRI acquisition consisted of resting-state functional MRI volumes repeated in the three

states: normal wakefulness (Ramsay 2), sedation (Ramsay 3), unconsciousness (Ramsay 5). The typical scan duration was half an

hour for each condition, and the number of scans per session (200 functional volumes) was matched across subjects to obtain a

similar number of scans in all states. Functional images were acquired on a 3 T S Allegra scanner (Siemens AG, Munich, Germany;

Echo Planar Imaging sequence using 32 slices; repetition time = 2460 ms, echo time = 40 ms, field of view = 220 mm, voxel size =

3.45 3 3.45 3 3 mm3, and matrix size = 64 3 64332). Written informed consent, approval by the Ethics Committee of the Medical

School of the University of Liège. For further details on acquisition of this dataset see previous publication.59

Disorders of consciousness
The cohort included 21 healthy controls (8 females; mean age, 45 ± 17 years), and 43 unsedated patients presenting DoC (25 in MCS

and 18 in UWS; 12 females; mean age, 47 ± 18 years). Patients in UWS show signs of preserved vigilance, but do not exhibit non-

reflex voluntary movements, and are incapable of establishing functional communication. Patients in MCS show more complex

behavior indicative of awareness, such as visual pursuit, orientation response to pain, and non-systematic command following;

nevertheless, these signs are consistent but may be manifested sporadically. The inclusion criteria for patients were brain damage

at least 7 days after the acute brain insult and behavioral diagnosis of MCS or UWS performed through the best of at least five Coma

Recovery Scale–Revised (CRS-R) behavioral assessments. The ethic committee of the University Hospital of Liège (Belgium)

approved the study, where all data were collected. Written informed consents were obtained from all healthy subjects and the legal

representative for DOC patients in accordance with the Declaration of Helsinki. 3T Siemens TIM Trio MRI scanner (Siemens Medical

Solutions, Erlangen, Germany) was used to acquire the data: 300 T2*-weighted images were acquired with a gradient-echo echo-

planar imaging (EPI) sequence using axial slice orientation and covering the whole brain (32 slices; slice thickness, 3 mm; repetition

time, 2000 ms; echo time, 30 ms; voxel size, 33 33 3 mm; flip angle, 78�; field of view, 192 mm by 192 mm). A structural T1 magne-

tization-prepared rapid gradient echo (MPRAGE) sequence (120 slices; repetition time, 2300 ms; echo time, 2.47 ms; voxel size,

1.0 3 1.0 3 1.2 mm; flip angle, 9�).60

METHOD DETAILS

fMRI pre-processing
We used FSL tools to extract and average the BOLD signals from all voxels for each participant in each brain state. The FSL pre-pro-

cessing included a 5mmspatial smoothing (FWHM), bandpass filtering between 0.01 and 0.1 Hz, and brain extraction (BET), followed

by a transformation to a standard space (2 mm MNI brain) and down sampling for a final representation to a 2 mm voxel space.

The next steps were implemented in MATLAB, using in house developed scripts. First, we corrected the data by performing re-

gressions between the displacement parameters, the average signals extracted from the white matter and ventricles, their first de-

rivatives, and the voxel-wise BOLD signals, retaining the residuals for further analysis. In the second step, we applied volume

censoring (scrubbing) and discarded subjects who presented significant relative head displacements in more than 20% of the
14 Cell Reports 42, 112491, May 30, 2023
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recorded frames, with a criterion for movement significance set as a displacement between consecutive frames exceeding 0.5mm.61

Finally, we averaged all voxels within each ROI defined in the automated anatomical labeling (AAL) atlas, considering only the 90

cortical and subcortical non-cerebellar brain regions to obtain one BOLD signal per ROIs.62 During pre-processing, 4 subjects

were removed from the anesthesia dataset, as well as 9 patients in MCS and 3 patients in UWS.

Structural connectivity
Diffusion tensor imaging (DTI) to diffusion weighted imaging (DWI) recordings from 16 healthy right-handed participants (11 men and

5 women; mean age: 24.75 ± 2.54 years) recruited online at Aarhus University, (Denmark) were considered for the computation of the

structural connectome. We used FSL diffusion toodbox (Fdt) with the default parameters to perform the data pre-processing. We

used the probtrackx tool in Fdt to provide automatic estimation of crossing fibers within each voxel, which has been shown to signif-

icantly improve the tracking sensitivity of non-dominant fiber populations in the human brain. The proportion of fibers passing through

voxel i that reached voxel j (sampling of 5000 streamlines per voxel63) defines the connectivity probability from a seed voxel i to

another voxel j. The connectivity probability Pij from region i to region j was calculated as the number of sampled fibers in region i

that connected the two regions normalized by the number of streamlines per voxel (5000) times the amount of voxel in the region

i. All the voxels in each AAL parcel were seeded (i.e. gray and white matter voxels were considered). The resulting SC matrices

were computed as the average across voxels within each ROI in the AAL thresholded at 0.1% (i.e. a minimum of five streamlines)

and normalized by the number of voxels in each ROI. Finally, the data were averaged across participants.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational model
Whole-brain models have been widely used to describe the most important features of empirical brain dynamics. These models are

based on the assumption that macroscopic collective brain behavior is an emergent behavior of millions of interacting units, and that

this emergent behavior can be modeled and analyzed regardless of the microscale details. One example behavior consists of the

transition between asynchronous noisy fluctuations to synchronous oscillations. The simplest dynamical system capable to present

both behaviors is the described by a Stuart Landau non-linear oscillator, which is mathematically described by the normal form of a

supercritical Hopf bifurcation20:

dz

dt
= ða + iuÞz � zjzj2 (Equation 1)

where z is a complex-valued variable (z = x+ iy), u is the intrinsic frequency of the oscillator. The bifurcation parameter a changes

qualitatively the nature of the solutions of the system: if a>0 the system engages in a limit cycle and thus presents self-sustained os-

cillations (oscillating or supercritical regime), and when a<0 the dynamics decay to a stable fixed point (noisy or subcritical regime).64

The collective dynamics of resting state activity can be modeled by introducing coupling between oscillators. Several previous

studies have demonstrated that whole-brain models based on Stuart Landau oscillators ruling the local dynamical behavior coupled

by the anatomical structural connectivity are useful to describe static and dynamic features of brain dynamics captured by neuro-

imaging recordings.20,22,47 The dynamics of region (node i) in the coupled whole-brain system is described in cartesian coordinates

as follows:

dReðziÞ
dt

=
dxi
dt

= aixi +
�
x2i + y2i

�ð� xiÞ � uiyi + G
XN

j = 1

CijðxjðtÞ � xiÞ+ nihiðtÞ (Equation 2)
dImðziÞ
dt

=
dyi
dt

= aiyi �
�
x2i + y2i

�ð+yiÞ � uixi + G
XN

j = 1

Cij

�
yjðtÞ � yi

�
+ nihiðtÞ

Where hi(t) is an additive Gaussian noise with standard deviation n andG is a factor that scales the strength of the coupling equally for

all the nodes. This whole-brainmodel has been shown to reproduce important features of brain dynamics observed in different neuro-

imaging recordings65

Grand average FC fitting procedure
We fitted this whole-brain model to the grand average functional connectivity of each state of consciousness. To this end we applied

the same signal processing to all fMRI recordings. The signals were detrended and demeaned before band-pass filtering in the 0.04–

0.07 Hz range. This frequency range was chosen because when mapped to the gray matter, this band was shown to contain more

reliable and functionally relevant information.21,66 After that, we transformed the filtered time series to z-scores and computed the

FCmatrix as the matrix of Pearson correlations between the fMRI signals of all pairs of regions of interest (ROIs) in the AAL template.

Fisher’s R-to-z transformwas applied to the correlation values before averaging over participants within each state of consciousness.
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We then computed the Goodness of Fit (GoF) of the fitting between the empirical and simulated grand average FC using the struc-

ture similarity index22,67 (SSIM), ametric that balances sensitivity to absolute and relative differences between the FCmatrices. Thus,

the SSIM can be considered a trade-off between the Euclidean and correlation distances, which are two of themost commonmetrics

used to compare simulated and empirical FC.

We proposed to reduce the complexity of the model by grouping brain regions into well-studied functional networks, known as

resting state networks (RSNs).22 We encoded the 90 bifurcation parameters (aj) into six parameters representing the contribution

of each RSN to the local dynamics by the following linear combination:

ai =
XN

j = 1

Di;jMi;j (Equation 3)

Where the grouping matrix Mi;j is 1 in its i; j entry if the region i is in group j and zero otherwise (note that groups could be overlapping).

Each RSN j contributes an independent coefficient to the bifurcation parameter of region i, given by Di;j. Following our previous

studies, we fixed the coupling strength parameters at G = 0.5 and optimized the Di;j to minimized 1-GoF implementing a genetic al-

gorithm inspired in biological evolution.

The algorithm starts with a generation of 20 sets of parameters (‘‘individuals’’) chosen randomly with values close to zero, to then

generate a population of outputs with their corresponding GoF. Afterward, a group of individuals is chosen based on this score and is

transmitted to the next generation based on three operations: 1) elite selection occurs when an individual of a generation shows an

extraordinarily high GoF in comparison to the other individuals, thus this solution is replicated without changes in the next generation;

2) the crossover operator consists of combining two selected parents to obtain a new individual that carries information from each

parent to the next generation; 3) the mutation operator changes one selected parent to induce a random alteration in an individual of

the next generation. In our implementation, 20% of the new generation was created by elite selection, 60% by crossover of the par-

ents and 20%bymutation. A new population is thus generated (‘‘offspring’’) that is used iteratively as the next generation until at least

one of the following halting criteria is met: 1) 200 generations are reached (i.e. limit of iterations), 2) the best solution of the population

remains constant for 50 generations, 3) the average GoF across the last 50 generation is less than 10� 6. Finally, the output of the

genetic algorithm contains the simulated FC with the highest GoF, and the optimal coefficients Di;j.

In silico perturbation
We simulated a stimulation protocol to induce transitions between reduced states of consciousness toward wakefulness and delin-

eate the perturbational landscape in the latent space. As in previous work,19 all stimulations were systematically applied to pairs of

homotopic nodes exploring different strength forcing amplitude. The stimulation corresponds to an additive periodic forcing term

incorporated to the equation of the nodes, given by F0 cos ðu0tÞ, where F0 is the forcing amplitude and u0 the natural frequency

of the nodes.We then varied the forcing amplitude F0 from 0 to 0.2 in order to parametrize the perturbation as a function of the forcing.

Variational autoencoder (VAE) training
We implemented a VAE to encode the FCmatrices in a low-dimensional representation. VAEmap inputs to probability distributions in

latent space, which can be regularized during the training process to producemeaningful outputs after the decoding step, allowing to

decode latent space coordinates. The architecture of the implemented VAE (shown in Figure 1) consisted of three parts: the encoder

network, themiddle variational layer, and the decoder network. The encoder is a deep neural network with rectified linear units (ReLu)

as activation functions and two dense layers. This part of the network bottlenecks into the two-dimensional variational layer, with

units z1 and z2 spanning the latent space. The encoder network applies a nonlinear transformation tomap the FC into Gaussian prob-

ability distributions in latent space, and the decoder network mirrors the encoder architecture to produce reconstructed matrices

from samples of these distributions.14

Network training consists of error backpropagation via gradient descent to minimize a loss function composed of two terms: a

standard reconstruction error term (computed from the units in the output layer of the decoder), and a regularization term computed

as the Kullback-Leibler divergence between the distribution in latent space and a standard Gaussian distribution. This last term en-

sures continuity and completeness in the latent space, i.e. that similar values are decoded into similar outputs, and that those outputs

represent meaningful combinations of the encoded inputs.

We generated 15000 FC matrices corresponding to controls, W, N3 and UWS, using the model optimized as described in the pre-

vious subsection. We then created 80/20 random splits into training and test sets, using the training set to optimize the VAE param-

eters. The training procedure consisted of batches with 128 samples and 50 training epochs using an Adam optimizer and the loss

function described in the previous paragraph.

STATISTICAL ANALYSES

We applied theWilcoxon rank-summethod to test the significance on Supplementary material analyses and additionally, we applied

the False Discovery Rate (FDR) at the 0.05 level of significance to correct multiple comparisons.68
16 Cell Reports 42, 112491, May 30, 2023
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