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A B S T R A C T   

Background: Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better 
knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic 
treatment approaches. 
Methods: In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Mag-
netic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various 
neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic 
neurotransmission. 
We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively 
healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation 
carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC 
FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. 
Results: In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with 
spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and 
serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family 
Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and 
acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor 
response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and 
serotonin pathways (all p < 0.01). 
Conclusions: This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight 
into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.   

1. Introduction 

Frontotemporal dementia (FTD) is a neurodegenerative disorder 
characterized by progressive behavioral, linguistic, dysexecutive and 
motor disturbances (Rascovsky et al., 2011; Gorno-Tempini et al., 
2011). Its causes are genetic in about a third of cases, with mutations in 
microtubule-associated protein tau (MAPT), progranulin (GRN) and chro-
mosome 9 open reading frame 72 (C9orf72) being the commonest causes 
(Borroni and Padovani, 2013; Greaves and Rohrer, 2019). Behavioral 
variant FTD (bvFTD) is the most common presentation, followed by 
Primary Progressive Aphasias (PPAs) (Greaves and Rohrer, 2019). 
Symptomatic MAPT mutation carriers show a symmetrical brain atrophy 
involving mainly the anteromedial temporal lobes, symptomatic GRN 
mutation carriers exhibit a striking asymmetrical pattern of cortical at-
rophy, whereas symptomatic C9orf72 mutation carriers display diffuse 
and symmetric cortical atrophy, involving also posterior regions, thal-
amus and cerebellum (Cash et al., 2018; Boeve et al., 2012; Whitwell 
et al., 2012). Early neuroimaging alterations are described around 5–10 
years before phenoconversion with a specific distribution in each group 
(Rohrer et al., 2015). 

Despite the continuous advancement of knowledge on disease- 
related mechanisms, little is known about neurotransmitter processes 
that occur in FTD. Exploring neurotransmitter pathways involved might 
shed more light on disease pathogenesis; moreover, since each mutation 
group is characterized by different clinical and imaging features, we 
might hypothesise that different neurotransmitter pathways are 
involved. As a consequence, research in this field might aid in identify 
tailored therapeutic targets for symptomatic interventions. 

Although impairment of dopaminergic, serotoninergic, GABAergic 
and glutamatergic pathways in autopsy studies has been demonstrated 
(Murley and Rowe, 2018), clinical trials have failed to report substantial 
benefits from neurotransmitter modulation on clinical symptoms in FTD 
(Panza et al., 2020). This discrepancy may be due to weaknesses in 
research methodology and small studies in unstratified populations. 

Recent advancements in positron emission tomography (PET) and 
single photon computed emission tomography (SPECT) tracer develop-
ment resulted in novel tracers that can reliably measure the availability 
of specific receptors. However, the need of large samples and of 
comparing multiple tracers in the same subjects have prevented reliable 
results on in vivo neurotransmitter pathways in neurodegenerative 
disorders, and especially in FTD. Indeed, only a few small series studies 
or case reports are available in FTD and in FTD-related mutations 
(Sperfeld et al., 1999; Miyoshi et al., 2010; Meloni et al., 2017; Care-
cchio et al., 2014; Leuzy et al., 2016; Takeshige et al., 2018; Murley 
et al., 2020). 

To fill this gap, JuSpace toolbox has been recently developed with 
the aim to gather neurotransmitter pathways abnormalities combining 
MRI-based measures and a list of included PET and SPECT maps 
covering various neurotransmitter pathways (Dukart et al., 2018). 
JuSpace considers spatial pattern of brain alterations based on MRI 
measures derived by comparison between different groups (e.g. patients 
versus healthy controls), and it performs a correlation between these 
alterations and each receptor/transporter map included in the toolbox 
(Dukart et al., 2021). JuSpace therefore is able to explore if the spatial 
patterns of observed brain changes in the disease of interest are related 
to the distribution of specific neurotransmitters pathways, as derived 
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from independent healthy volunteer populations. 
In the present study, we aimed to indirectly unravel neurotransmitter 

pathways changes, in particular in the earliest disease phases, namely in 
prodromal FTD, and to assess correlation with clinical symptoms. To 
achieve this, we applied JuSpace tool on a large sample of subjects from 
the international Genetic FTD Initiative (GENFI), considering in-
dividuals at different disease stages and with different pathogenetic 
mutations, and we evaluated impairment of dopamine, serotonin, 
glutamate, GABA, noradrenaline and acetylcholine systems. 

2. Methods 

2.1. Subjects 

Data for this study were drawn from the GENFI multicenter cohort 
study, which consists of 26 research centers in Europe and Canada. In-
clusion and exclusion criteria have been previously described (Rohrer 
et al., 2015). Local ethics committees approved the study at each site 
and all participants provided written informed consent according to the 
Declaration of Helsinki. 

We considered both symptomatic patients fulfilling current clinical 
criteria for FTD (Rascovsky et al., 2011; Gorno-Tempini et al., 2011), 
and asymptomatic participants at risk to carry GRN, C9orf72 or MAPT 
mutations. Between January 2012 and March 2020, we considered 668 
participants, of which 392 were mutation carriers (157 with C9orf72, 
164 with GRN, and 71 with MAPT mutations) and 276 were mutation 
non-carriers. Mutation carriers were grouped according to disease 
severity, as measured by Clinical Dementia Rating Dementia Staging 
Instrument plus behaviour and language domains from the National 
Alzheimer’s Coordinating Center and Frontotemporal lobar degenera-
tion modules (CDR® plus NACC FTLD, from here on referred as CDR) 
(Miyagawa et al., 2020) into asymptomatic subjects (CDR = 0), pro-
dromal FTD (CDR = 0.5) or symptomatic FTD patients (CDR ≥ 1). 
Mutation non-carriers were considered as healthy control group (HC). 

Included subjects underwent a careful recording of demographic 
data and a standardized clinical and neuropsychological assessment, as 
previously published (Premi et al., 2019). 

2.2. MRI acquisition 

MRI protocol was common to all the GENFI sites, and adapted for 
different scanners. Each subject underwent a 3 T MRI at each local site 
from three different manufacturers (Philips Healthcare- 215 subjects, GE 
Healthcare Life Sciences- 19 subjects, Siemens Healthcare Diagnostic- 
434 subjects). The protocol included a volumetric T1-weighted MRI scan 
(magnetization-prepared rapid gradient echo, MPRAGE), as previously 
reported (Rohrer et al., 2015; Premi et al., 2017; Cash et al., 2018; 
Gazzina et al., 2019; Borrego-Écija et al., 2021). During scanning, sub-
jects were asked to keep their eyes closed, not to think of anything in 
particular, and not to fall asleep. 

2.3. MRI preprocessing and analyses 

T1-weighted images were processed and analysed with the voxel- 
based morphometry (VBM) pipeline implemented in the Computa-
tional Anatomy Toolbox (CAT12 v.1742) (www.neuro.uni-jena.de/cat) 
for SPM12 (SPM12 v.7219) (www.fil.ion.ucl.ac.uk/spm/softw 
are/spm12) running on MATLAB R2019b (the MathWorks, Inc., 
Natick, Massachusetts, United States). The VBM pipeline consists of 
several stages (tissue segmentation, spatial normalization to a standard 
Montreal National Institute [MNI] template, modulation and smooth-
ing), as previously described (Kurth et al., 2015). CAT12 potentially 
provides more robust and accurate performances compared to other 
VBM pipelines (Farokhian et al., 2017). The normalized and modulated 
grey matter images were then smoothed with 8 mm full width at half- 
maximum Gaussian kernel to reduce the probability of misalignment 

errors, increasing the chance to detect differences over small regions of 
the brain. 

To test for group differences in grey matter volume (GMV) a General 
Linear Model using SPM12 was implemented, considering age, gender 
and site as nuisance variables. The statistical threshold was set to p <
0.05 corrected for multiple comparisons (whole-brain family-wise error, 
FWE). 

2.4. Spatial correlation with neurotransmitter density maps 

We used the JuSpace toolbox to test if the spatial patterns of GMV 
alterations in asymptomatic, prodromal and symptomatic FTD subjects 
(relative to HC) are correlated with specific neurotransmitter systems 
(Dukart et al., 2021). We considered a list of included PET and SPECT 
maps in JuSpace toolbox, covering various neurotransmitter systems 
(Dukart et al., 2021). 

JuSpace creates a spatial pattern of GMV, comparing two different 
groups (e.g. patients versus healthy controls), and therefore aims to 
assess if the spatial patterns of brain changes observed in patients (as 
compared to healthy controls) are related to the distribution of specific 
neurotransmitters systems, these latter derived from independent 
healthy volunteer populations (Dukart et al., 2021). Thus, it performs a 
correlation between these alterations and each receptor/transporter 
map included in the toolbox. 

Confounding effects of age, gender and site were regressed out from 
all images prior to these analyses (Dukart et al., 2021). 

We considered serotonin transmission, i.e. the 5-hydroxytryptamine 
1a (5-HT1a) receptor, the 5-HT1b receptor, the 5-HT2a receptor, and the 
serotonin transporter SERT; dopamine transmission, i.e. the D1 receptor, 
the D2 receptor, the dopamine transporter (DAT), and the FluoroDOPA, 
the GABAa receptors, the vesicular acetylcholine transporter (VAChT), 
the metabotropic glutamate receptor type 5 (mGLUR5), and the 
noradrenaline transporter (NAT). Each map included in Juspace toolbox 
was derived by PET data with the exception of DAT, which was derived 
from SPECT data, and each map was built up with specific numbers of 
healthy volunteers (Supplementary Table 1 for details). Using JuSpace 
toolbox, native normalized, modulated and smoothed grey matter im-
ages were parceled in regions of interest using the Neuromorphometrics 
Atlas (MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas 
Labeling, www.masi.vuse.vanderbilt.edu/workshop2012/index.ph 
p/Challenge_Details). Mean regional values of GMV were extracted for 
all patients and HC. Spearman correlation coefficients (Fisher’s Z 
transformed) were calculated between these z-transformed GMV maps 
of the patients and the spatial distribution of the respective neuro-
transmitter maps included in JuSpace toolbox. Exact permutation-based 
p-values as included in JuSpace (10,000 permutations randomly 
assigning group labels using orthogonal permutations) were computed 
to check if the distribution of the observed Fisher’s z-transformed indi-
vidual correlation coefficients were significantly different from zero. All 
analyses were Family Wise Error (FWE) corrected for the number of 
tests. Spearman correlation coefficients (Fisher’s Z transformed) were 
calculated between these z-transformed GMV maps and the spatial dis-
tribution of the respective neurotransmitter maps. Exact permutation- 
based p-values as implemented in JuSpace (10,000 permutations 
randomly assigning group labels using orthogonal permutations) were 
computed to test if the observed correlation coefficients across patients 
deviate from a null distribution. 

2.5. Statistical analysis 

Comparisons of demographic and clinical characteristics were per-
formed by the Student’s t-test for continuous variables and the χ2 test for 
categorical variables. 

Spearman correlation was used to assess the relationship between 
each neurotransmitter output obtained with Juspace (i.e., the GMV- 
neurotransmitters correlation, Fisher’s Z transformed) and clinical or 
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behavioral data. Statistical significance was set at p < 0.05, corrected for 
multiple comparisons (Family Wise Error-FWE) (SPSS Statistics 22.0, 
Chicago, USA). 

3. Results 

3.1. Participants 

Demographic characteristics of mutation carriers and non-carriers 
are reported in Table 1. In the present study, we considered 157 
C9orf72 expansion carriers, namely 85 asymptomatic, 33 prodromal and 
39 symptomatic subjects; 164 with GRN mutation carriers, namely 107 
asymptomatic, 33 prodromal and 24 symptomatic subjects, and 71 
MAPT mutation carriers, namely 39 asymptomatic, 18 prodromal and 
14 symptomatic subjects. 

Standard voxel-wise analyses of GMV demonstrated the typical 
pattern of brain atrophy in mutations subgroups, according to disease 
stage, as previously published (Rohrer et al., 2015; Cash et al., 2018; 
Beck et al., 2008; Boeve et al., 2012; Josephs et al., 2009; Mahoney et al., 
2012; Sha et al., 2012; Whitwell et al., 2012) (see Supplementary Fig. 1). 

3.2. Neurotransmitters deficits in C9orf72 expansion carriers 

In prodromal stage of C9orf72 disease (CDR = 0.5), as compared to 
HC, voxel-based brain changes were significantly associated with spatial 
distribution of dopamine transporter DAT (r = − 0.13, p = 0.02) and 
acetylcholine transporter (r = − 0.12, p = 0.02). In fully symptomatic 
stage (CDR ≥ 1), additional voxel-based brain changes were signifi-
cantly associated with spatial distribution of. 

5-HT1a receptors (r = − 0.30, p = 0.01), D1 receptors (r = − 0.28, p =
0.01), FDOPA (r = − 0.13, p = 0.02), and mGluR5 (r = − 0.20, p = 0.01) 
(see Fig. 1 and Table 2). The negative correlation coefficients indicate 
GMV reduction in patients as compared to HC in areas with high neu-
rotransmitters density. 

There was no significant difference in spatial distribution in 
asymptomatic expansion carriers (CDR = 0) as compared to HC. 

3.3. Neurotransmitters deficits in GRN mutation carriers 

No voxel-based brain changes were significantly associated with 
neurotransmitter spatial distribution in prodromal GRN disease (CDR =
0.5). In fully symptomatic stage (CDR ≥ 1), as compared to HC, voxel- 
based brain changes were significantly associated with spatial distri-
bution of 5-HT1a receptors (r = − 0.25, p = 0.01), D1 receptors (r =
− 024, p = 0.01), dopamine transporter DAT (r = − 0.14, p = 0.01), 
FDOPA (r = − 0.11, p = 0.02), acetylcholine transporter (r = − 0.16, p =
0.02), and mGluR5 (r = − 0.23, p = 0.01) (see Fig. 1 and Table 2). 

There was no significant difference in spatial distribution in 
asymptomatic mutation carriers (CDR = 0) as compared to HC. 

3.4. Neurotransmitters deficits in MAPT mutation carriers 

In prodromal stage of MAPT disease (CDR = 0.5), as compared to HC, 
voxel-based brain changes were significantly associated with spatial 
distribution of 5-HT1a receptors (r = − 0.34, p = 0.01), D1 receptors (r =
− 0.20, p = 0.01), dopamine transporter DAT (r = − 0.30, p = 0.01), 
FDOPA (r = − 0.16, p = 0.01), and SERT (r = − 0.16, p = 0.01). In fully 
symptomatic stage (CDR ≥ 1), additional voxel-based brain changes 
were significantly associated with spatial distribution of 5-HT1b re-
ceptors (r = 0.14, p = 0.02) and acetylcholine transporter (r = − 0.18, p 
= 0.02) (see Fig. 1 and Table 2). 

There was no significant difference in spatial distribution in 
asymptomatic mutation carriers (CDR = 0) as compared to HC. 

3.5. Neurotransmitter impairment and social cognition in monogenic FTD 

We assessed the relationship between GMV-neurotransmitters cor-
relation coefficients and social cognition/loss of empathy data in 
monogenic FTD patients (CDR > 0). We considered only GMV- 
neurotransmitters correlation coefficients significantly impaired in 
FTD and we excluded those highly correlated to each other (Spearman 
correlations coefficients>0.80), namely FDOPA. Thus, we included in 
the present analyses 5-HT1a receptors, D1 receptors, DAT, VAchT, and 
mGLUR5. 

We considered a) Ekman facial emotion recognition task and Faux- 
pas recognition test (mini-SEA) scores (the lower the scores the worse 
the performances) (Funkiewiez et al., 2012), and b) loss of empathy and 
c) poor response to social/emotional cues, as reported by caregiver 
(which were rated on a 5-point scale: 0 = absent, 0.5 = questionable/ 
very mild, 1 = mild, 2 = moderate, and 3 = severe). Significant 
threshold was set at p ≤ 0.002, after correction for multiple 
comparisons. 

In C9orf72 expansion carriers, mini-SEA scores (n = 58) were posi-
tively correlated with the strength of GMV colocalization of 5HT1a re-
ceptors (r = 0.449, p < 0.001) and D1 receptors (r = 0.402, p = 0.002); 
loss of empathy (n = 71) was negatively correlated with D1 receptors (r 
= − 0.423, p < 0.001) and poor response to emotional cues (n = 71) with 
5HT1a receptors (r = − 0.406, p < 0.001) and D1 receptors (r = − 0.454, 
p < 0.001). No other significant correlations between cognitive data and 
GMV neurotransmitters co-localization at pre-established statistical 
threshold were reported. 

In GRN mutation carriers, loss of empathy (n = 57) was negatively 
correlated with D1 receptors (r = − 0.439, p = 0.001) and poor response 
to emotional cues (n = 57) with D1 receptors (r = − 0.542, p < 0.001) 
and DAT (r = − 0.497, p < 0.001). 

The relatively low number of prodromal or symptomatic MAPT 
mutation carriers prevented us to run correlation analyses in this group. 

4. Discussion 

In the last years, a giant step forward has been made in the knowl-
edge of genetic basis of FTD and gene-related pathogenetic mechanisms, 
and more recently experimental therapeutic trials targeting C9orf72, 
GRN, or MAPT have been proposed. 

Despite this, neurotransmitter impairment in monogenic FTD and 
differences according to causative gene have not been assessed yet. 
Restoring these deficits, individually or in combination, has the poten-
tial advantage to improve clinical and behavioral symptoms and may 
help in further understanding of the disease. 

In the present work, we investigated if the spatial distribution of grey 
matter atrophy observed in different subtypes of monogenic prodromal 
and symptomatic FTD are related to the localization of specific neuro-
transmitters pathways as derived from independent healthy volunteer 
populations (Dukart et al., 2021). These data have been obtained by 
JuSpace toolbox, which compares PET and SPECT derived neurotrans-
mitter maps with other imaging modalities such as MRI data (Dukart 

Table 1 
Demographic and clinical characteristics of the studied group.  

Variable HC C9orf72 GRN MAPT p- 
value* 

Number 276 157 164 71  

Age, years 
46.5 ±
13.2 

49.6 ±
13.2 

48.5 ±
12.9 

44.6 ±
12.8 0.02 

Sex, female % 57.6 54.1 59.8 52.1 0.14^ 
Education, 

years 
14.3 ±

3.3 14.0 ± 3.2 
14.2 ±

3.8 
14.6 ±

3.0 0.56 

Demographic characteristics are expressed as mean ± standard deviation, unless 
otherwise specified. HC = Healthy controls, C9orf72 = chromosome 9 open 
reading frame 72 mutation carriers; GRN = progranulin mutation carriers; MAPT 
= microtubule-associated protein tau mutation carriers; *Student-t-test, unless 
otherwise specified; ^ Chi-Square test. 
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et al., 2021). In our study, we considered grey matter atrophy as an 
imaging marker of neurodegeneration; however, other biomarkers 
might be even more sensitive, in particular in the prodromal phase (e.g. 
measures derived from functional imaging data). 

We reported that grey matter alterations in the prodromal disease 
stages specifically co-localised with different neurotransmitters path-
ways, involving dopamine and cholinergic systems in C9orf72 expansion 
carriers, dopamine and serotonin in MAPT mutation carriers, and with 
no significant detectable changes in GRN mutation carriers. Indeed, it 
has been reported that TDP-43 proteinopathy, the pathological hallmark 
of C9orf72 expansions, may cause dopamine alterations (Funkiewiez 
et al., 2012) and that C9orf72 expansion carriers exhibit more pro-
nounced memory deficits as compared to MAPT and GRN mutation 
carriers (Funkiewiez et al., 2012), tasks for which cholinergic system is 
key. On the other hand, in regard to MAPT mutations, it has been pro-
posed a link between dopamine and serotonin neurotransmission and 
phosphorylation state of tau protein (Koppel et al., 2019; Ramos- 
Rodriguez et al., 2013), with tau being able to disrupt the survival of 
dopaminergic and serotoninergic neurons in Drosophila and in animal 
models (Wu et al., 2013; Khan et al., 2022). Finally, the lack of signifi-
cant findings in GRN mutation carriers is in line with previous imaging 
studies reporting less functional and structural brain abnormalities in 
the prodromal stages than other genetic subtypes (Cash et al., 2018; 
Borroni et al., 2012; Premi et al., 2016; Premi et al., 2021). 

Conversely, symptomatic disease was associated with a broad 
involvement of different circuits and significant changes of dopami-
nergic, serotoninergic and cholinergic pathways in all monogenic FTD 
subtypes. We also found additional glutamatergic pathway involvement 
in C9orf72 and GRN symptomatic mutations carriers. Of note, 
GABAergic and noradrenergic pathways resulted spared in monogenic 
FTD. These findings confirm and extend previous literature data on 
autopsy studies as well as a recent study on a large group of PPA patients 
(Premi et al., 2022), but also suggest an additional involvement of 
cholinergic system in monogenic FTD which is absent in sporadic dis-
ease (Murley and Rowe, 2018; Benussi et al., 2019). As compared to 
previous studies (Murley and Rowe, 2018), we indeed failed to confirm a 
co-localization of grey matter alteration and the GABAergic system. 

Interestingly, we also suggest that dopamine and serotonin pathways 
may be associated with social cognition deficits and loss of empathy, 
which represents an early clinical feature in FTD (Toller et al., 2023). 
Dopamine, in addition to be linked to movement disorders, has long 
been known for its role in reward processing and emotional recognition 
(Fernandez et al., 2017; Schuster et al., 2022), and most recently a 
central role of serotonin circuits has been recognized in emotion 

regulation and social behaviour (Canli and Lesch, 2007; Kanen et al., 
2021; Duerler et al., 2022). 

Most studies evaluating pharmacological approaches in FTD have 
not reported clear-cut results (Panza et al., 2020). Findings herein re-
ported argue for further considering pharmacological manipulation of 
specific neurotransmitters, specifically considering FTD subtypes and 
disease stage to counteract related symptoms. In this view, investigating 
neurotransmitter pathways involved might aid in identifying biochem-
ical alterations, which together with clinical, biological and neuro-
imaging biomarkers might be helpful to characterize more in detail the 
different FTD subtypes. In comparison to other biomarkers, exploring 
neurotransmitter impairment might hold the advantage to identify 
tailored therapeutic targets to improve symptomatic treatment. 

Nonetheless, we acknowledge that this study entails some limita-
tions. First, future implemented neurotransmitters maps in JuSpace may 
further refine the present findings. Moreover, the maps available have 
been recently obtained, and present some limitations that might to be 
addressed, e.g. the variability in the number of controls cases in each 
map and receptor density assessment is not necessarily related to 
neurotransmitter density. Moreover, JuSpace toolbox has not yet been 
validated in aging populations with substantial atrophy. Second, we 
considered prodromal monogenic FTD, and these results cannot be 
extended to prodromal sporadic disease. Third, other toolbox mapping 
neurotransmitter systems and their implementation, such as Neuro-
Maps, may be also considered (Markello et al., 2022). Finally, JuSpace 
toolbox indirectly assess neurotransmitter impairment, and post mortem 
studies are warranted to confirm the results herein observed. 

In conclusions, this study suggests that JuSpace is a helpful tool to 
indirectly assess neurotransmitter deficits in neurodegenerative de-
mentias and may provide novel insight into disease mechanisms and 
intervention pharmacological targets. 
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behaviour and language domains from the National 
Alzheimer’s Coordinating Center and Frontotemporal 
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Table 2 
Results of spatial correlation analyses for included participants according to 
mutation subtype and disease stage.   

CDR = 0.5 CDR ≥ 1 

Mutation r p-value r p-value 

C9orf72     
5HT1a − 0.08 0.38 ¡0.30 0.01 
5HT1b 0.01 0.98 − 0.01 0.91 
5HT2a − 0.01 0.98 − 0.09 0.26 
SERT − 0.09 0.08 − 0.08 0.91 
D1 − 0.01 0.09 ¡0.28 0.01 
D2 − 0.08 0.26 0.02 0.91 
DAT ¡0.13 0.02 ¡0.22 0.01 
FDOPA − 0.05 0.64 ¡0.13 0.02 
GABAa 0.07 0.98 − 0.07 0.91 
NAT − 0.08 0.16 0.04 0.55 
VAchT ¡0.12 0.02 ¡0.20 0.01 
mGluR5 − 0.07 0.45 ¡0.20 0.01  

GRN     
5HT1a − 0.05 0.94 ¡0.25 0.01 
5HT1b − 0.03 0.94 − 0.02 0.73 
5HT2a − 0.04 0.94 − 0.08 0.14 
SERT 0.02 0.94 − 0.02 0.73 
D1 − 0.06 0.94 ¡0.24 0.01 
D2 0.02 0.94 0.01 0.73 
DAT − 0.03 0.94 ¡0.14 0.01 
FDOPA − 0.02 0.94 ¡0.11 0.02 
GABAa − 0.01 0.94 − 0.01 0.73 
NAT 0.01 0.94 0.06 0.22 
VAchT − 0.08 0.44 ¡0.16 0.01 
mGluR5 − 0.09 0.36 ¡0.23 0.01  

MAPT     
5HT1a ¡0.34 0.01 ¡0.50 0.01 
5HT1b 0.09 0.30 0.14 0.02 
5HT2a − 0.01 0.97 0.02 0.73 
SERT ¡0.16 0.01 ¡0.26 0.01 
D1 ¡0.20 0.01 ¡0.37 0.01 
D2 0.04 0.97 0.13 0.07 
DAT ¡0.30 0.01 ¡0.45 0.01 
FDOPA ¡0.16 0.01 ¡0.36 0.01 
GABAa − 0.01 0.97 0.06 0.73 
NAT 0.01 0.97 0.11 0.08 
VAchT − 0.12 0.14 ¡0.18 0.02 
mGluR5 − 0.05 0.97 − 0.05 0.73 

Fisher’s z-transformed correlation coefficients (r) for each neurotransmitter map 
are reported, with corresponding p-values. The negative correlation coefficients 
indicate GMV reduction in patients as compared to HC in areas with high neu-
rotransmitters density. 
Significant results in boldface; p-values corrected for multiple comparison (FWE 
correction). 
CDR = Clinical Dementia Rating Dementia Staging Instrument plus behaviour 
and language domains from the National Alzheimer’s Coordinating Center and 
Frontotemporal lobar degeneration; 5HT = 5-hydroxytryptamine; SERT = se-
rotonin transporter; D = dopamine; DAT = dopamine transporter; FDOPA =
Fluorodopa; GABAa = γ-Aminobutyric acid type A; NAT = noradrenaline; 
VAChT = Vesicular acetylcholine transporter; mGLUR5 = metabotropic gluta-
mate receptor type 5. 
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