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Abstract: The post-transcriptional regulation of gene expression plays an important role in heart
development and disease. Cardiac-specific alternative splicing, mediated by RNA-binding proteins,
orchestrates the isoform switching of proteins that are essential for cardiomyocyte organization and
contraction. Dysfunctions of RNA-binding proteins impair heart development and cause the main
types of cardiomyopathies, which represent a heterogenous group of abnormalities that severely
affect heart structure and function. In particular, mutations of RBM20 and RBFOX2 are associated
with dilated cardiomyopathy, hypertrophic cardiomyopathy, or hypoplastic left heart syndrome.
Functional analyses in different animal models also suggest possible roles for other RNA-binding
proteins in cardiomyopathies because of their involvement in organizing cardiac gene programming.
Recent studies have provided significant insights into the causal relationship between RNA-binding
proteins and cardiovascular diseases. They also show the potential of correcting pathogenic mutations
in RNA-binding proteins to rescue cardiomyopathy or promote cardiac regeneration. Therefore,
RNA-binding proteins have emerged as promising targets for therapeutic interventions for cardiovas-
cular dysfunction. The challenge remains to decipher how they coordinately regulate the temporal
and spatial expression of target genes to ensure heart function and homeostasis. This review discusses
recent advances in understanding the implications of several well-characterized RNA-binding pro-
teins in cardiomyopathies, with the aim of identifying research gaps to promote further investigation
in this field.

Keywords: cardiomyopathy; RNA-binding protein; post-transcriptional regulation; RBM20; RBM24;
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1. Introduction

Cardiomyopathies are structural and functional abnormalities of the myocardium and
represent a heterogenous group of cardiac disorders, including dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), and ar-
rhythmogenic cardiomyopathy (ACM) [1–3]. Although these cardiomyopathy phenotypes
are characterized by distinct morphological and functional traits [4], they are all closely
associated with heart failure, which represents the clinical syndrome of these cardiovascular
diseases, as well as the most frequent cause of hospitalization and death worldwide [5,6].
Mutations or the dysregulated expression of cardiac myofibrillar structural and functional
proteins are linked to the pathogenesis of cardiomyopathies [3]. In particular, truncated
variants of the giant sarcomeric protein TITIN, which has an important structural role
and signaling function in cardiac physiology and disease [7], have been identified as the
main genetic cause of DCM [8–12]. The switch from the fetal to adult TITIN isoform plays
an important role in cardiac stiffness and is mediated by splicing factors that belong to the
family of RNA-binding proteins (RBPs). It is well established that RNA-binding motif pro-
tein 20 (RBM20) regulates TITIN alternative splicing and that its mutations are responsible
for the DCM phenotype in humans [13]. Increasing evidence suggests that other RBPs also
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critically contribute to the alternative splicing of sarcomeric genes. Thus, their dysfunctions
are potentially involved in cardiomyopathies [14–16].

RBPs are major regulators of gene expression at the post-transcriptional level [17] and
contribute to generating protein abundance and diversity within a cell [18,19]. They not
only show dynamic expression between fetal and adult hearts under healthy conditions,
but also become reactivated or repressed in heart failure [20,21], suggesting their important
roles in promoting cardiac differentiation and maintaining cardiac homeostasis. Loss or the
dysregulated activity of several RBPs have been closely associated with cardiomyopathies
in humans or in animal models, as exemplified by RBM20 mutations in DCM patients [13].
With the expanded identification of the cardiac-specific RBPome, the contribution of RBP-
mediated post-transcriptional regulation of cardiac-specific gene expression networks has
gained considerable interest for better understanding the complexity of heart development
and function [22–26]. Importantly, correcting pathogenic mutations in RBPs or manipulat-
ing their activity has the strong potential to rescue cardiomyopathy or promote cardiac
regeneration after myocardial injury [27–29]. Therefore, RBPs have emerged as promising
targets for therapeutic interventions for cardiovascular dysfunction [26,30]. Recent studies
have not only further established the causal relationship between RBPs and cardiomy-
opathies but have also provided novel insights into the mechanism underlying disrupted
cardiomyocyte structural and functional gene expression due to RBP dysfunction. Our
knowledge on RBP-regulated heart development and cardiovascular disease is rapidly
evolving. An update of current advances in this field will help to identify research gaps
and promote future investigation.

2. RBPs Associated with Cardiomyopathies

The identification of gene mutations in human patients, associated with functional
studies using reverse genetic approaches in animal models, such as mouse and zebrafish,
has uncovered conserved as well as species-specific functions of RBPs in cardiac develop-
ment. The following sections will discuss the recent understanding of well-characterized
RBPs, including RBM20, RBM24, RBPMS, RBPMS2, RBFOX1, RBFOX2, and several readers
of mRNA methylation, such as IGF2BP2 and YTHDC1, associated with cardiomyopathy in
humans and/or animal models.

2.1. RBM20 Mutations Disrupt Cardiac-Specific Alternative Splicing in Cardiomyopathies

RBM20 contains two putative zinc finger domains and a central RNA recognition
motif (RRM), followed by a highly conserved arginine/serine (RS)-rich region (Figure 1).
The RRM binds to RNAs with a UCUU sequence to regulate alternative splicing [31].
Since the first report on RBM20 as a DCM-related gene [32], a large number of heterozy-
gous missense mutations, mainly located at an arginine-serine-arginine-serine-proline
(RSRSP) stretch within the RS-rich region, have been identified in DCM patients [33–35],
and their pathogenic effects have been recently validated in animal models or by using
an induced pluripotent stem cell line [28,36–41]. These mutations perturb alternative
splicing of the TITIN gene and many other targets, including the DCM-related CAMK2D
(calcium/calmodulin-dependent protein kinase type II delta), leading to disrupted cardiac
stiffness and abnormal intracellular calcium handling [13,34,35,42]. It has been shown that
changes in the RSRSP stretch affect its phosphorylation, which may be important for the
nuclear localization of RBM20 and are causative in DCM [43,44]. Indeed, RBM20 proteins
with mutated RS-rich regions display sarcoplasmic localization and accumulate in cytoplas-
mic processing bodies, thus preventing their nuclear function [40,41,45]. Recent works have
proposed other mechanisms underlying the mis-localization of RBM20 RS-domain variants.
One study suggests that the RS domain represents a nuclear localization signal that medi-
ates RBM20 nuclear transport independently of phosphorylation [41]. Another study shows
that disruption in the RS region impairs the physical interaction of RBM20 with Transportin-
3, which functions as a nuclear importer of RBM20 [40]. Although multiple mechanisms
may account for the dysregulated post-transcriptional activity of mutant RBM20 proteins,
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it is particularly interesting that correcting these pathogenic variants through precise base
editing or promoting the interaction of RBM20 with its nuclear importer can redirect RBM20
nuclear localization and rescue DCM, at least in animal models [27,28,40].
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Figure 1. Schematic representation of human RBM20 protein structure. Functional domains are
indicated by colored boxes (P-rich, proline-rich region; L-rich, leucine-rich region; E-rich, glutamate-
rich region; ZnF, zinc finger domain) and the alignment of amino acids in the RS-rich region from three
vertebrate species (human, NP_001127835.2; mouse, NP_001164318.1; zebrafish, XP_021325295.1).
Several validated pathogenic mutations in the RSRSP stretch are shown under the schema (green
arrowhead). Conserved residues are shadowed in grey. The RS-rich region is indicated in green
and the putative nuclear localization signal in the RS-rich region is underlined [41]. Note that the
R634L variant (blue) co-segregates with left ventricular non-compaction cardiomyopathy [46] and
the R636H variant (orange) may be also associated with HCM [47].

The human TITIN gene contains 364 exons with 363 coding ones. It produces various
protein isoforms with different functions through alternative splicing [48]. Cardiac muscle
expresses two main TITIN isoforms: a more compliant N2BA isoform with a longer ex-
tensible I-band region and a stiff N2B isoform, which serve as long and short molecular
springs, respectively [49]. Different proportions of these isoforms expressed in fetal and
adult hearts confer the passive stiffness of cardiac muscle [48,50]. However, changes in their
relative levels can affect cardiac function and lead to DCM. RBM20 functions as a splicing
repressor of TITIN pre-mRNA [51,52]. It prevents the inclusion of exons 51–218, which
encode I-band regions, and leads to the expression of the shorter and stiffer N2B isoform of
TITIN [10]. Thus, the dysfunction of RBM20 affects TITIN isoform switching during heart
development and disrupts cardiomyocyte stiffness. Nevertheless, mis-localized pathogenic
RBM20 variants in DCM not only retain their splicing activity [40], but also mediate distinct
mRNA interactions to alter other processes of post-transcriptional regulation that occur
in the cytoplasm, such as circular RNA production and alternative polyadenylation [45].
Therefore, RBM20 mutations can cause DCM through splicing-dependent and splicing-
independent mechanisms.

There is also evidence that RBM20 may be a candidate gene for HCM [47,53]. Exome
sequencing of HCM patients has identified deleterious variants of RBM20, but it seems
that these mutations affect structural and functional domains other than those identified in
DCM patients [53]. Thus, it is still unclear how they change RBM20 localization and post-
transcriptional regulatory activity. A more recent report shows that the R636H pathogenic
variant of RBM20 associated with DCM is also present in HCM [47]. These observations
suggest that, to some extent, RBM20 may contribute to HCM through a similar mechanism
as in DCM. Further studies are necessary to firmly establish the causal relationship between
RBM20 mutations and the pathogenesis of HCM.

2.2. RBM24 Is Associated with DCM

Rbm24 is highly conserved from C. elegans to mammals [54], harboring a single RRM at
the N-terminal region and a more divergent C-terminal half but with several characteristic
motifs (Figure 2). The RRM binds to AU/U-rich ligands that are present in a wide spectrum
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of target mRNAs [55]. In vertebrate embryos, the heart-specific expression of Rbm24 can be
detected as early as in the heart fields or the cardiac crescent [56–60], and this is activated
after the expression of Nkx2.5 [56], suggesting that Rbm24 may be induced by and function
downstream of cardiac-specific transcription factors. Zebrafish have two rbm24 paralogs,
rbm24a and rbm24b. Rbm24a protein exhibits a higher degree of overall identity and shows
an identical expression pattern to Rbm24 in other vertebrates [54,57].
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tion factor 4E (eIF4E)-binding motif is shown by red color box. Conserved residues are shadowed in
grey. The phosphorylable serine residue (S) in the eIF4E-binding motif is indicated in red [61].

The loss of Rbm24 in zebrafish and mice produces a strong phenotype of heart abnor-
malities, characterized by defective looping, the occurrence of cardiac edema, and impaired
valve development [58,61–63]. The knockout of Rbm24 in mice leads to the complete ex-
clusion or minor inclusion of muscle-specific exons in E11.5 embryos [63]. Importantly,
the affected genes are closely associated with cardiogenesis, sarcomere assembly, and the
pathogenesis of DCM, and include Naca, Fxr1, Abcc9, Usp25, and Usp28. This is further sup-
ported by the observation that the knockdown of rbm24a in zebrafish impairs myofibrillar
integrity by disrupting sarcomere organization [60]. Mechanistically, Rbm24 prevents the
repression of exon inclusion mediated by PTBP1 (polypyrimidine tract binding protein 1)
and hnRNP A1/A2 (heterogeneous nuclear ribonucleoprotein A1/A2) through binding
to an intronic splicing enhancer and functioning as an activator of cardiac muscle-specific
exon inclusion [63]. The heart-specific conditional knockout of Rbm24 in postnatal mice
disrupts the isoform transition of Titin protein, leading to progressive DCM [64]. Different
from RBM20, the loss of RBM24 in human embryonic stem cells or in mice prevents the
inclusion of exons coding for the N-terminal Z-repeat domain of TITIN, which binds to
the major Z-disc component α-ACTININ 2 [64,65]. In addition, at early stages of induced
cardiac differentiation from human embryonic stem cells, RBM24 is also involved in the
alternative splicing of α-ACTININ 2 transcripts. It promotes the inclusion of exon 6, which
codes for an actin-binding domain. This facilitates the TITIN-mediated interaction of
α-ACTININ 2 with cardiac-specific MYH6, which can subsequently substitute non-muscle
MYH10 [65]. Therefore, RBM24 plays a conserved role in cardiac myofibrillogenesis by
regulating sarcomere assembly and integrity.

It is of note that Rbm24 is also involved in regulating CAMK2D splicing. The deletion
of Rbm24 in mice causes aberrant expression of the CAMK2C isoform, leading to alterations
in calcium handling and prolongation of the QT interval [66]. Thus, Rbm24 deficiency may
cause electrophysiological abnormalities and disrupt cardiac rhythm.

In addition to the regulation of isoform switching for sarcomeric proteins, Rbm24 also
functions in other post-transcriptional processes to promote heart development. It has
been shown that Rbm24 represents a transcriptional target and a translational regulator
of p53 in the mouse embryonic heart. In Rbm24 homozygous mutant mice, the aberrant
activation of p53-dependent apoptosis partly contributes to endocardial cushion defects,
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growth retardation, and embryonic lethality at E12.5–13.5 [61]. Vertebrate Rbm24 proteins
display a highly conserved short amino acid stretch (residues 175–199 in human RBM24),
which interacts with eukaryotic initiation factor 4E (eIF4E) to prevent its association with
the 5′-cap of p53 mRNA and assembly of the translation initiation complex, thereby re-
pressing p53 mRNA translation [61]. However, phosphorylation of the serine residue in
the eIF4E-binding motif of Rbm24 releases its interaction with eIF4E, thus rendering it
as a translational activator [61]. This suggests that Rbm24 regulates heart development,
function, and homeostasis through interaction with its partners and that the eIF4E-binding
motif may represent a potential therapeutic target for modulating Rbm24 activity. The
regulation of mRNA translation is consistent with the dynamic subcellular localization of
Rbm24 during muscle differentiation. At least in skeletal muscle, Rbm24 is localized in the
cytoplasm of fate-committed myoblasts but is translocated in the nucleus of differentiated
myofibers [67]. Whether and how Rbm24 undergoes cytoplasm-to-nuclear translocation
during cardiomyocyte differentiation merits future investigation.

Although the involvement of RBM24 in human heart disease remains to be determined,
there is evidence showing the up-regulation of RBM24 in heart failure, which is associated
with fetal-specific gene expression and protein isoform switching [20]. Given the strikingly
conserved cardiac-specific expression of RBM24 during early development, it will be of
interest to decipher the origin and mechanism of cardiac defects due to RBM24 deficiency,
such as the impaired differentiation of progenitor cells, the disrupted morphogenesis of
heart chambers or endocardial cushions, or the direct dysregulation of cardiac structural and
functional genes. There is a possibility that Rbm24 displays dynamic functions dependent
on its subcellular localization and its interaction with protein partners.

2.3. Loss of RBPMS and RBPMS2 Causes DCM or HCM

RNA Binding Protein with Multiple Splicing (RBPMS) variants and RBPMS2 cluster
into two related families of RBPs with an RRM near the N-terminal region [22,68]. The
RRM binds tandem CAC motifs with a variable spacer in mRNA targets [69]. RBPMS and
RBPMS2 are expressed in the myocardium during development and in the adult of different
vertebrate species [68]. Recent studies in vertebrate models have demonstrated their
potential involvement in different types of cardiomyopathies. Rbpms plays an important
role in post-natal cardiac function. The constitutive knockout of Rbpms in mice leads to
excessive trabeculation associated with reduced thickness of the ventricles, reminiscent
of non-compaction cardiomyopathy [70]. The cardiac-specific deletion of Rbpms in mice
causes severe defects in cardiomyocyte contraction, resulting in DCM and early lethality
in the adult [71]. The loss of Rbpms in the heart also disrupts the alternative splicing of
sarcomeric genes, including Titin and Pdlim5, by preventing the inclusion of exons. In
conditional Rbpms knockout hearts, the skipping of exons 11 and 47 in the Titin transcript
leads to the expression of truncated N2BA and N2B isoforms, which may contribute to
impaired cardiomyocyte contractility. The same splicing defects are also present in RBPMS-
deficient cardiomyocytes derived from human induced pluripotent stem cells [71]. This
suggests the conserved function of RBPMS in cardiac function and raises the possibility
that mutations or the dysfunction of RBPMS may contribute to DCM in humans.

In zebrafish, both rbpms2a and rbpms2b are enriched in the nkx2.5-positive cell pop-
ulation. The simultaneous loss of rbpms2a and rbpms2b does not seem to impact cardiac
morphogenesis but causes cardiac edema and early cardiac dysfunction with reduced ejec-
tion fraction [72]. RNA-seq analysis indicates that Rbpms2 regulates the alternative splicing
of several genes involved in cardiac function, such as mybpc3 and myom2a, which encode
sarcomeric proteins. Consistently, rbpms2 mutant zebrafish display disorganized myofibril-
lar arrays and defective calcium handling [72]. Importantly, MYBPC3 mutations are most
frequently detected in patients with HCM [73], and MYOM2 mutations are also identified
in patients with HCM, as well as Tetralogy of Fallot [74]. It is of note that RBPMS2-deficient
human cardiomyocytes also display the same defective myofibril structure and calcium
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handling as zebrafish rbpms2 mutants [72], suggesting the conserved molecular and cellular
function of this RBP in heart development and disease.

2.4. Rbfox1 and Rbfox2 Are Involved in the Pathogenesis of Heart Disease

The RNA binding forkhead box homolog (RBFOX) family proteins have three mem-
bers in vertebrates (Rbfox1, Rbfox2, and Rbfox3). They display an evolutionarily conserved
RRM flanked by diversified N- and C-terminal regions (Figure 3). The RRM from all three
Rbfox proteins binds to the UGCAUG motif in target mRNAs [75]. Functional studies
indicate that Rbfox1 and Rbfox2 are involved in the regulation of heart development and
homeostasis. RBFOX1 expression is markedly decreased in human DCM hearts and its de-
ficiency causes pressure overload-induced heart failure in a mouse model. Transcriptomic
profiling reveals that Rbfox1 functions as a prominent regulator of cardiac-specific alterna-
tive splicing and is required for isoform switching of the transcription factor MEF2 [76].
Consistently, recent studies further show that Rbfox1 mediates mRNA splicing to promote
cardiomyocyte maturation [77].

Similarly, RBFOX2 regulates a large program of cardiac-specific alternative splicing
events that are important for heart function. In diabetic patients, the disruption of RBFOX2
homeostasis in the heart leads to autoregulation of its exon 6 exclusion [78]. This exon
codes for the second half of the RRM, and its in-frame deletion leads to the expression
of a truncated protein isoform that acts as a dominant negative mutant to repress Rbfox-
regulated alternative splicing [79]. The dysregulation of RBFOX2 activity affects the gene
function associated with cytoskeleton and calcium handling, leading to cardiac compli-
cations before the onset of diabetic cardiomyopathy [78]. Importantly, the heterozygous
loss of RBFOX2 function results from de novo frameshift, nonsense, or splice site muta-
tions, and the reduced expression of RBFOX2 due to copy number loss is significantly
enriched in patients with hypoplastic left heart syndrome (HLHS) displaying the left ven-
tricle obstruction phenotype [80–83]. The frameshift mutation of RBFOX2 is predicted to
introduce a premature stop codon, whereas the splice site mutation is expected to include
intron 10 in the mRNA. Nonsense mutation truncates a portion of the C-terminal region
that includes a sequence coded by an alternative exon 11 (Figure 3). This domain con-
tains several tyrosine residues involved in RBFOX2 subcellular localization [82] and the
assembly of a higher-order complex of proteins to enhance RBFOX2 splicing activity [84].
Consistent with the requirement for heart function in humans, the knockout of Rbfox2 in
mice causes DCM, followed by heart failure [85]. Recently, it has been shown that Rbfox2
is involved in regulating the alternative splicing events that influence the communication
between cardiomyocytes and the extracellular matrix. The loss of Rbfox2 in mice produces
cardiovascular development defects similar to those observed in HLHS [86].

Zebrafish have five rbfox genes (rbfox1, rbfox1l, rbfox2, rbfox3a, and rbfox3b). The
knockdown of rbfox1 alters the cardiac-specific isoform expression of several key proteins
regulating cardiomyocyte structure and function [87]. Further confirming the causal re-
lationship of RBFOX2 loss of function with HLHS, zebrafish mutants lacking rbfox1l and
rbfox2 develop cardiovascular defects similar to those observed in HLHS patients, including
the reduced size and disorganized architecture of ventricular cardiomyocytes, an obstructed
aorta, and the absence of endocardial cushions [88]. Mechanistically, the loss of rbfox1l
and rbfox2 affects the expression and alternative splicing of genes involved in sarcomere
assembly and mitochondrial respiration. It is of note that cardiac defects in rbfox1l and
rbfox2 mutants can be rescued by human RBFOX2 but not by HLHS-related RBFOX2 mutant
variants [88]. Thus, these observations demonstrate the conserved functions of RBFOX
proteins in heart development and cardiovascular disease.
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2.5. RNA-Binding Proteins Associated with RNA Methylation in Heart Disease

N6-methyladenosine (m6A) is thought to be the most abundant modification in eukary-
otic mRNAs, and this modification plays a central role in the post-transcriptional regulation
of gene expression [89,90]. It is a dynamic and reversible process coordinated by methyl-
transferases, such as METTL3/14/16, and demethylases, including FTO and ALKBH5. Sev-
eral RBP readers, including IGF2BP1/2/3, YTHDC1/2, YTHDF1/2/3, and hnRNPA2B1/C,
function to recognize m6A-modified target transcripts and contribute to their alternative
splicing, translocation, stability, and translation [90]. Evidence is accumulating that the
regulation of mRNA modification is closely associated with cardiovascular disease [91].

IGF2BP2 (insulin-like growth factor 2 mRNA-binding protein 2) shows higher expres-
sion in the hearts of DCM patients [92]. The transgenic expression of human IGF2BP2 in
mouse hearts causes DCM by inhibiting the expression of sarcomeric and mitochondrial
proteins, leading to disorganized sarcomeres and fragmented mitochondria [92]. Neverthe-
less, the overexpression of IGF2BP2 has no effect on the expression of Titin and Mybpc3,
suggesting that it regulates distinct sets of sarcomeric genes. There is a possibility that
IGF2BP2-induced cardiac remodeling represents an adaptive response to cardiac stress. Yet,
it is still unclear whether this is mediated by interactions with the methylation machinery.
Thus, the post-transcriptional mechanism underlying IGF2BP2 function in heart disease
requires further investigation, and it will be interesting to examine whether modulating
the expression or activity of IGF2BP2 could rescue cardiac dysfunction in DCM.

The cardiac-specific conditional knockout of YTHDC1 in mice causes DCM by inducing
left ventricular chamber enlargement and disorganized sarcomere arrangement, leading to
decreased cardiomyocyte contractility and severe systolic dysfunction [93]. Mechanistically,
YTHDC1 binds to m6A-modified Titin mRNA, and the loss of YTHDC1 increases the
expression ratio of N2BA to N2B Titin isoforms [93]. This suggests that YTHDC1 may be
involved in regulating cardiac stiffness by facilitating the inclusion of exons that code for
the more compliant N2BA isoform. Although it remains to be determined whether other
m6A readers of the methylation machinery are involved in cardiomyopathy, several lines
of recent evidence indicate that YTHDF1, YTHDF2, and YTHDF3, which either promote
mRNA translation or reduce mRNA stability [89], are required for heart development and
function. YTHDF1 and YTHDF3 coordinate the differentiation of cardiomyocytes from
mouse embryonic stem cells [94], and YTHDF1 can suppress cardiac hypertrophy in an
m6A-dependent manner [95]. The loss of YTHDF2 in the cardiomyocytes of adult mice
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leads to abnormal cardiac remodeling and cardiac function by disrupting the stability
and translation of its m6A-modified target transcripts, suggesting that it plays a role in
cardiac homeostasis [96,97]. There is also evidence showing that hnRNPC is up-regulated
in the sarcomeric Z-disc and likely plays a role in the pathological remodeling of the
extracellular matrix [98]. Altogether, these data suggest that the interactions between m6A
readers and their mRNA targets contribute to maintain cardiomyocyte integrity and cardiac
contractile function.

3. Discussion

Accumulating evidence has shed light on the RBP-mediated post-transcriptional regu-
lation of gene expression in heart development and disease. Notably, RBPs contribute to
establish an RNA regulatory network that is essential for cardiomyocyte formation and
integrity, cardiac contraction, and the maintenance of cardiac homeostasis. Several RBPs,
including RBM20 and RBFOX2, are associated with human cardiomyopathies. Functional
studies in different vertebrate models have also demonstrated the importance of several
well-characterized RBPs, including Rbm24, Rbpms, Rbpms2, Rbfox1, Igf2bp2, and Ythdc1,
in regulating the intrinsic post-transcriptional circuit governing sarcomere assembly, mito-
chondrial respiration, cardiomyocyte organization, and extracellular matrix remodeling
(Table 1). Therefore, they are potential candidate genes for cardiovascular diseases. Further
studies are necessary to explore how their dysfunctions may be associated with different
types of human cardiomyopathies.

Table 1. Brief summary of the RBPs associated with cardiomyopathies in humans and/or
animal models.

RBPs Mutations or Knockout Cardiovascular
Phenotypes Dysregulated Target Genes References

RBM20
Heterozygous missense

mutations in
human patients

DCM and likely HCM
in humans

Defective splicing of Titin, Camk2d,
and many other sarcomeric genes [13,32,42,47,53]

RBM24
Knockout in mice,

zebrafish, and human
embryonic stem cells

DCM and prolongation
of the QT interval in mice

Defective splicing of Titin, Camk2d,
α-actinin 2, and other

muscle-specific genes; increased
p53 mRNA translation

[61,64–66]

RBPMS Knockout in mice and
human cardiomyocytes

Non-compaction
cardiomyopathy and

DCM in mice

Defective splicing of Titin, Pdlim5,
and cardiac

myofibrillogenesis genes
[70,71]

RBPMS2 Knockout in zebrafish and
human cardiomyocytes

Cardiac defects in
zebrafish reminiscent

of HCM

Defective splicing of Rbfox2,
Mybpc3, Slc8a1, and Myom2a [72]

RBFOX1 Knockout in mice and
knockdown in zebrafish

Cardiac hypertrophy,
cardiomyoapthy, and

heart failure

Defective splicing of Mef2 in mice,
and huG, actn3a, ptpla, camk2g1, and

ktn1 in zebrafish
[76,87]

RBFOX2

De novo frameshift,
nonsense, or splice site

mutations in HLHS human
patients; knockout in mice

and zebrafish

HLHS in humans and
zebrafish (rbfox1/2

mutants); DCM in mice

Defective splicing of sarcomere
components (tpm1, tpm3, and

tnnt3b), MICOS complex
components (mic19a and mic19b),

and cytoskeletal components
(pdlim5b, alcama, and fmnl3)

[80–83,85,88]

IGF2BP2 Overexpression in mice DCM in mice
Reduced expression of sarcomeric
and mitochondrial proteins (Titin

and Mybpc3 unaffected)
[92]

YTHDC1 Knockout in mice DCM in mice Defective splicing of Titin [93]

It is of note that cardiomyopathy-associated RBPs display both redundant and specific
regulatory functions in cardiac alternative splicing, which is important for the expression
and switching of cardiac-specific protein isoforms. Therefore, the interplay between differ-
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ent RBPs coordinates the alternative splicing events of common and specific target genes,
whereas variation in the expression levels of individual RBPs may cause aberrant splicing
and may contribute to cardiac disease [99]. It has been shown that Rbm20 and Rbm24
physically interact to regulate alternative splicing of the Enigma homolog (Enh) gene, also
known as Pdlim5. Although Rbm20 or Rbm24 individually display weak or no activity
on Enh splicing, they cooperate to promote expression of the Enh3 and Enh4 isoforms of
Enh, which lack the LIM domain and function to repress cardiac hypertrophy [100]. It
is also worth mentioning that many other RBPs, which are not discussed in this review,
are involved in regulating the alternative splicing of cardiac genes, although no cardiomy-
opathy phenotypes were firmly associated with loss of their function. For example, the
cardiomyocyte-specific deletion of Mbnl1 and Mbnl2 in mice causes heart spliceopathy [101],
and the conditional knockout of QKI in the cardiomyocytes of adult mice leads to heart
failure by disrupting the alternative splicing of cardiac genes with functions in the sarcom-
ere and cytoskeleton [102]. Thus, we may expect that their combined actions coordinate
alternative splicing events in heart development, function, and homeostasis. Indeed, it
is suggested that, similar to the loss of Rbm24, aberrant splicing due to the dysregulated
expression of MBNL and QKI could contribute to the disease mechanism underlying the
pathogenesis of heart failure [99]. Since many RBPs are dysregulated in cardiac hypertro-
phy or heart failure, modulating their expression or activity may represent a potential to
rescue cardiovascular dysfunction [103].

Although RBPs act as prominent regulators of cardiac-specific alternative splicing,
other mechanisms of post-transcriptional regulation may be also defective following the
loss of their function. In this regard, it has been shown that loss of Rbm24 leads to cardiac
malformations by promoting p53 mRNA translation and the aberrant activation of p53-
dependent apoptosis [61]. Indeed, Rbm24 can regulate the expression of target transcripts
in murine and rat cardiomyocytes through multiple mechanisms, including alternative
3-UTR length, alternative start site, and mRNA destabilization [104]. Similarly, in human
embryonic stem cells and cardioids, Rbpms controls a specialized mRNA translation
circuit to specify cardiac mesoderm and promote cardiac morphogenesis [105]. In H9c2 rat
myoblasts, the deletion of Rbfox2 affects the expression of contractile and mitochondrial
genes via alternative polyadenylation [106]. Igf2bp2 generally functions as an m6A reader
and regulates mRNA stability [89]. Although the post-transcriptional mechanism by
which its up-regulation induces cardiac remodeling remains unclear, there is a possibility
that this induces DCM by disrupting the translation of target mRNAs [92]. Thus, RBPs
function in a manner that is dependent on developmental stages, subcellular localization,
and physiological or pathological conditions. Further studies are necessary to identify
the protein partners and mRNA targets of RBPs for better understanding of the post-
transcriptional mechanisms underlying their context-dependent regulatory activity in heart
development and cardiomyopathy.

It is worth mentioning that the identification of gene mutations in human patients,
combined with mechanistic analyses in animal models, has greatly contributed to our
understanding of the RBP-regulated post-transcriptional mechanisms in heart disease.
In addition to different mammalian models, zebrafish have become particularly attrac-
tive for the live imaging of heart morphogenesis and cardiac dysfunction. Though with
a two-chambered heart, zebrafish display largely conserved core regulatory circuits and
the cellular lineages essential for cardiac development [107,108]. Therefore, they are widely
used for modeling human cardiac disease, with advantages and limitations [109,110]. By
employing appropriate and effective experimental strategies, zebrafish represent one of the
ideal models for investigating the origin of cardiac defects [111].

4. Conclusions

RBPs are clearly involved in the pathogenesis of cardiomyopathies, but the challenge
remains to decipher the molecular mechanisms underlying their dysfunctions associated
with dysregulated target gene expression. Recent studies have not only identified new can-
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didate RBPs for cardiomyopathies but have also provided further mechanistic insights into
the causal relationship between mutations or dysfunctions in RBPs and cardiac disease. Im-
portantly, the possibility of correcting pathogenic mutations in RBPs or manipulating their
activity presents a strong potential to rescue cardiomyopathies or promote cardiac regener-
ation. Therefore, RBPs have emerged as promising targets for therapeutic interventions for
cardiovascular dysfunction.
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