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Statistical physics is a framework that focuses on the probabilistic description of complex systems [1]

(statistical systems). It serves as a rich framework for probabilistic modeling [2–6]. Rigorous Statistical

Mechanics is centered on the mathematical study of statistical systems. Central concepts in this field

have a natural expression in terms of partially ordered set (poset) shaped diagrams in a category that

couples measurable maps and Markov kernels [7]. Such generalization is motivated by the desire to

‘compose’ in a controlled and computable manner nontrivial statistical systems, and their phases, from

simpler ones. Our work follows the line of works that propose new foundations, based on topology and

geometry, for probability theory, information theory, and deep learning [8–13], and applies composi-

tional reasoning to engineering [9, 12, 14]. Our contribution is a summary of various results related to

a compositional/categorical approach to rigorous Statistical Mechanics [7, 15–21], based on the content

of [22, 23].

We showed that statistical systems are particular representations of posets, which we call A -specifications,

and expressed their phases, i.e. Gibbs measures, as invariants of these representations. Let us denote Mes

as the category of measurable spaces with measurable maps as morphisms and Kern as the category of

measurable spaces with Markov kernels as morphisms. Recall that a Markov kernel F : E → E1 is a

measurable map from the measurable space E to P(E1), the measurable space of probability measures

over E1. For G a presheaf with source a poset, we will denote G(b ≤ a) as Ga
b.

Definition 1 (A -Specifications). Let A be a poset, an A -specification is a couple (G,F) of a presheaf

and a functor where G : A op → Mes and F : A → Kern are such that for any a,b ∈ A with b ≤ a,

Ga
b ◦Fb

a = id.

Definition 2 (Gibbs measures for A -specifications). Let γ = (G,F) be an A -specification, we call

the Gibbs measures of γ the sections of F: Gg(γ) := [∗,F ]K,A where [∗,F ]K,A := {(pa ∈ P(F(a)),a ∈
A )| ∀b ≤ a,Fb

a ◦ pb = pa}.

Two central results of rigorous Statistical Mechanics are, firstly, the characterization of extreme

Gibbs measure as it relates to the zero–one law for extreme Gibbs measures, and, secondly, their varia-

tional principle which states that for translation invariant Hamiltonians, Gibbs measures are the minima

of the Gibbs free energy. We showed in [21] how the characterization of extreme Gibbs measures ex-

tends to A -specifications. Recent results in categorical probability theory give a characterization of

the zero–one law for independent random variables and for Markov chains in a categorical formula-

tion [24,25]. The zero–one law for extreme Gibbs measures is known to extend the ones of independent

random variables and Markov chains [26], so it would be expected that the categorical formulation of

extreme Gibbs measures we proposed may also relate to the categorical formulation developed in the

cases of independent random variables and Markov chains.

We proposed in [27] an Entropy functional for A -specifications and gave a message-passing algo-

rithm which fix points are critical points of an associated free energy. This algorithm generalized the

belief propagation algorithm of graphical models.
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2 Compositional statistical mechanics

1 Characterization of extreme Gibbs measures of A -specifications

Consider an A -specification (G,F) and assume the measurable sets G(a),a ∈ A are finite. We will say

that F > 0 when for any a,b ∈A , such that b ≤ a, F(ωa|ωb)> 0 for any ωb ∈ G(b),ωa ∈ G(a) such that

Ga
b(ωa) = ωb; G◦F = id requires that F(ωa|ωb) = 0 when Ga

b(ωa) 6= ωb. We propose that one candidate

that plays the role of the tail σ -algebra for a given specification γ = (G,F) is limσ(G) defined as,

limσ(G) := {(Aa ∈ σ(G(a)),a ∈ A )|∀a,b ∈ A , Aa = Ga
b
−1(Ab)} (1)

Theorem 1 (Extreme measure characterisation). Let γ = (G,F) be a specification, let G(a) be finite sets

for any a ∈A , let F > 0. Gg(γ) is a convex set. Each µ ∈ Gg(γ) is uniquely determined by it’s restriction

to limσ(G). Furthermore µ is extreme in G (γ) if and only if for any A ∈ limσ(G), ∀a ∈ A , µa(Aa) = 0

or 1.

2 Entropy of A -specifications and variational free energy

Let A be a finite poset and γ = (G,F) be a specification with G(a) a finite set for any a∈A . We propose

the entropy of Q ∈ Gg(γ) to be SGB(Q) = ∑a∈A c(a)S(Qa) with c(a) that relates to the Möbius function

of the poset A which we will introduce just after; S(Qa) =−∑ωa
Qa(ωa) lnQa(ωa) is the entropy of Qa.

The variational free energy of a A -specification is defined as FBethe(Q) = ∑a∈A c(a)(EQa
[Ha]−S(Qa))

with Ha : G(a)→ R a measurable map. This expression of entropy and free energy is motivated by the

Bethe free energy of graphical models and factor graphs, which is an approximation of the Gibbs free

energy [28] and is used for (variational) inference on graphical models, factor graphs, etc.

Problem to solve: The optimization problem we want to solve is the following: infQ∈Gg(γ) FBethe(Q)

For A a finite poset, we call the ‘zeta-operator’ of A , denoted ζ , the operator from
⊕

a∈A R to
⊕

a∈A R defined as, for any λ ∈
⊕

a∈A R and any a ∈ A , ζ (λ )(a) = ∑
b≤a

λb. ζ is invertible [29], we

denote µ its inverse and its matrix expression (µ(a,b),b ≤ a) defines the Möbius function of A . For a

functor G from A to R-vector spaces, we define µG as, for any a ∈ A and v ∈
⊕

a∈A G(a),

µG(v)(a) = ∑
b≤a

µ(a,b)Gb
a(vb) (2)

Let G̃ be the presheaf from A to the category of finite vector spaces defined by for b ≤ a, G̃a
b :

P(G(a)) → P(G(b)) such that G̃a
b(pa) = Ga

b ◦ pa for p ∈ P(G(a)). We denote G∗ the functor obtained

by dualizing the morphisms G̃a
b. Let FE : ∏a∈A P(Ea) → ∏a∈A R be such that FE(Q) = (EQa

[Ha]−
S(Qa), a ∈ A ); FE sends a collection of probability measures over A to their Gibbs free energies. For

any Q ∈ ∏a∈A P(Ea), let us denote dQFE as the differential of FE at the point Q.

Theorem 2. Let A be a finite poset, let γ = (G,F) be a A -specification such that G(a) is a finite set

for any a ∈ A . Let Ha : G(a)→ R be a collection of (measurable) Hamiltonians. The critical points of

FBethe are the Q ∈ [∗,F ]K,A such that,

µG∗dQFE|[∗,F]K,A
= 0 (3)

We propose a message passing algorithm to find the critical points of FBethe for A -specifications; it

extends the (General) Belief Propagation in the case of A -specifications (see [22, 23, 27])
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