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Inference on diagrams in the category of Markov kernels

(Extended abstract)

Grégoire Sergeant-Perthuis* Nils Ruet †

Graphical models are widely used families of probability distributions that capture conditional inde-

pendence relations between a collection of variables Xi, i ∈ I; celebrated examples are Hidden Markov

models and Bayesian Networks [1]. Graphical models are built from directed and undirected graphs

G = (I,A) where nodes i ∈ I are uniquely identified with the variables Xi. Inference in graphical mod-

els ultimately boils down to inference for an undirected graphical model, achieved through the Belief

Propagation algorithm [2]. Such Inference constitutes a specific instance of variational inference as it

revolves around a free energy termed the Bethe free energy [2]. Adopting a variational inference perspec-

tive for graphical models has facilitated the extension of the Belief Propagation algorithm to encompass

broader classes of probability distributions, enabling the accommodation of interactions among more

than 2 variables in contrast to traditional graphical models (factor graphs [3]); this is achieved through

the introduction of the Kikuchi free energies [4]. Let us denote Mes f
,Kern f , the categories with objects

finite measurable spaces and respectively with morphisms measurable maps and the second Markov Ker-

nels (stochastic matrices). Mes f can be seen as a subcategory of Kern f . As exhibited in [5–7], what

underlies variational inference for those classes of probability distributions are presheaves from a finite

poset to Mes f , which morphisms are epimorphisms. We will call them the ‘graphical’ presheaves. Our

contribution is to extend the Generalized Belief Propagation [5] to any presheaf from a finite poset to

Kern f . This work is contained in Chapter 9 of [8] and Appendix 1 of unpublished [9], where we consider

the more general problem of optimizing a collection of cost functions over a presheaf of signals.

1. Motivation and related work

Consider a collection of agents represented by vertices i ∈ I that can communicate their beliefs to

neighboring vertices ∂ i through undirected edges e ∈ A. Each agent has its own representation of its

environment, denoted by Ei. They can share their beliefs with neighboring nodes j ∈ ∂ i through a mea-

surable map f i
e : Ei → Ee. Graphical models and their extensions do not allow us to account for such

heterogeneity in the way each agent models their environment. Such setting is better captured by cellular

sheaves [10] and applications [11], important examples of which are Sheaf Neural Networks [12], are

limited to functors from the poset associated to a graph (i≤ e ⇐⇒ i ∈ e) to the category of finite vector

spaces Vect f . We are interested in the more general case where beliefs transfer through a hierarchy, i.e.

a poset, and we provide an algorithm for inference in such case where Sheaf Neural Networks can’t be

used; by convention, we consider presheaves instead of functors: ‘orders’ are given top-down. More

generally, cellular sheaves are restricted to the face poset of a cell complex and hence don’t apply to all

hierarchies and therefore not to our case.

2. Free energy for poset shaped diagrams in Kern f and message passing algorithm

Definition 1 (Graphical presheaves). Let I be a finite set and A ⊆P(I) be a sub-poset of the powerset

of I. Let Ei, i ∈ I are finite sets. For a ∈A Ea := ∏i∈a Ei, let F(a) := Ea, and for b⊆ a, let Fa
b : Ea→ Eb
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be the projection map from ∏i∈a Ei to ∏i∈b Ei. F is called a graphical presheaf from A to Mes f .

For A a finite poset, the ‘zeta-operator’ of A , denoted ζ , from
⊕

a∈A R to
⊕

a∈A R is defined as, for

any λ ∈
⊕

a∈A R and any a∈A , ζ (λ )(a) = ∑
b≤a

λb. ζ is invertible [13], we denote µ its inverse; its matrix

expression (µ(a,b),b≤ a) defines the Möbius function of A . Let F be a presheaf from A to Kern f ; Fa
b :

F(a)→ F(b) is denoted element-wise as Fa
b (ωb|ωa), with ωb ∈ F(b),ωa ∈ F(a). It induces a presheaf

F̃ from A to Vect f , where F̃a
b : P(F(a))→ P(F(b)) is the linear map that sends probability distributions

p∈ P(F(a)) to Fa
b ◦ p. Following [5], we introduce a free energy F (Q) = ∑a∈A c(a)(EQa

[Ha]−S(Qa));
c(a) = ∑b≥a µ(b,a) is the generalization of the inclusion-exclusion formula associated to A . S(Qa) =
−∑ωa∈F(a) Qa(ωa) lnQa(ωa) is the entropy of Qa. We propose to solve infQ∈lim F̃ F (Q). F̃∗ is the functor

obtained by dualizing the morphisms F̃a
b , i.e. F̃

∗,b
a : F̃(b)∗→ F̃(a)∗ sends linear maps lb : F̃(b)→ R to

lb ◦ F̃a
b : F̃(a)→ R.

For a functor G from A to R-vector spaces, we define µG as, for any a ∈ A and v ∈
⊕

a∈A G(a),
µG(v)(a) = ∑b≤a µ(a,b)Gb

a(vb). Let us define the function FE : ∏a∈A P(Ea)→ ∏a∈A R as FE(Q) =
(EQa

[Ha]−Sa(Qa), a ∈A ), which sends a collection of probability measures over A to their Gibbs free

energies. For any Q ∈∏a∈A P(Ea), let us denote dQFE as the differential of FE at the point Q.

Theorem 1. Let A be a finite poset, let F be a presheaf from A to Kern
f . Let Ha : F(a)→ R be a

collection of (measurable) functions. The critical points of F are the Q ∈ lim F̃ such that,

µF̃∗dQFE|lim F̃ = 0 (1)

The message-passing algorithm we consider is Algorithm 1; it specializes to the General Belief

Propagation for graphical presheaves. For two elements a,b ∈A , such that b≤ a, two types of messages

are considered: top-down messages ma→b ∈ RF(b) and bottom-up messages nb→a ∈RF(a).

Algorithm 1: Message passage algorithm for presheaves from A to Kern f

Data: Initialization: (m0
a→b ∈R

F(b)
,b,a ∈A s.t. b≤ a), a poset A , a presheaf F : A →Kern f ;

1 for t ≤ T do

2 for a ∈A ,b ∈A such that b≤ a do

3 ∀ωa ∈ F(a), nb→a(ωa)←∏c:b≤c
c�a

∑ω
′
b∈F(b) mc→b(ω

′

b) ·F
a
b (ω

′

b|ωa)

4 end

5 for a ∈A ,b ∈A such that b≤ a do

6 ba = e−Ha ∏b∈A :
b≤a

nb→a

7 pa =
ba

∑ωa ba(ωa)

8 ma→b← ma→b ·
F̃a

b (pa)
pb

9 end

10 end

A criterion to stop the algorithm is when the beliefs do not change, i.e., when pt+1
a ≈ pt

a. The

fixed points of the previous message-passing algorithm correspond to critical points of F over limF

(Corollary of Theorem 2.2 [9]v2). Theorem 1 differs from a similar characterization of critical points of

a free energy for specifications in [14] by the fact that the µF̃∗ and lim F̃ are applied to the same presheaf

F̃ and not two different presheaves/functors (G,F).
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