Deciphering the improvement in (H2-)C3H6-SCR performance of Ag/Al2O3 catalysts prepared from warm-water-treated alumina: A NMR-assisted identification of the Ag anchoring sites of the alumina support

Yannick Millot, Guylène Costentin, Clémence Rodigue, Thomas Onfroy, Cyril Thomas

To cite this version:
Yannick Millot, Guylène Costentin, Clémence Rodigue, Thomas Onfroy, Cyril Thomas. Deciphering the improvement in (H2-)C3H6-SCR performance of Ag/Al2O3 catalysts prepared from warm-water-treated alumina: A NMR-assisted identification of the Ag anchoring sites of the alumina support. Applied Catalysis B: Environmental, 2024, 351, pp.123975. 10.1016/j.apcatb.2024.123975. hal-04529323

HAL Id: hal-04529323
https://hal.sorbonne-universite.fr/hal-04529323

Submitted on 2 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Deciphering the improvement in (H₂-)C₃H₆-SCR performance of Ag/Al₂O₃ catalysts prepared from warm-water-treated alumina: A NMR-assisted identification of the Ag anchoring sites of the alumina support

Yannick Millot a,b,1, Guylène Costentin a,2, Clémence Rodigue a,b, Thomas Onfroy a,3, Cyril Thomas a,b,4

a Sorbonne Université, CNRS, Laboratoire Réactivité de Surface, LRS, Paris 75005, France
b CESI, 93 boulevard de la Seine, Nanterre 92000, France

1. Introduction

Air pollution has become a growing health concern for human beings [1] since the industrial revolution in the nineteen’s century. Air quality is daily monitored worldwide [2] and the European Union acted on a reduction of certain atmospheric pollutants such as Sulfur dioxide (SO₂), Nitrogen oxides (NOx and NO), Non-Methane Volatil Organic Compounds (NMCOV), Ammonia (NH₃) and Particle Matter (PM) through the National Emission Ceilings Directive (NECD) [3]. While SO₂ emissions have been decreased by more than 80% from 1990 to 2011, mainly by using low sulfur content fuels [4], those of NOx have decreased by only about 60% on a much longer period of time (from 1990 to 2017–2021) [5,6]. The reasons for this lower decrease in these latter atmospheric pollutants lie both on the fact that NOx species are essentially formed by recombination of N₂ and O₂ in the flames of the combustion chambers, which can be hardly avoided unless by improving the combustion processes to a certain limit, and that transport is a significant contributor to NOx emissions [7]. The mitigation of the NOx emissions from light and heavy duty vehicles (LDVs and HDVs, respectively) has been achieved by the implementation of catalytic converters in Europe in 1977 for LDVs and 1988 for HDVs [7]. Whereas Three-Way Catalysts (TWC) have been shown to be very efficient in the concomitant remediation of CO, unburnt hydrocarbons and NOx from stoichiometric exhausts of gasoline engines [8], such catalytic devices have been found to be unsuccessful in the reduction of NOx from lean exhausts of gasoline and diesel engines [9]. As stated by Burch, promoting a reduction reaction, such as that of NOx reduction to N₂, in a strongly oxidizing environment, namely lean mixtures, appears to be extremely challenging from a chemistry viewpoint [9]. To overcome such a difficulty, the use of catalysts using ammonia as a reductant (NH₃-SCR) [10,11]...
and Lean NOx Trap (LNT) [12] have been developed to catalyze the reduction of NOx to N2 in lean exhausts. Yet the ammonia slip in NH3-SCR, an atmospheric regulated pollutant [3], and CO2 penalties, due to the short incursions in rich mixtures needed to proceed to the reduction of the NOx adsorbed species [12], are inherent drawbacks of these aftertreatment technologies [13] from air pollution and global warming viewpoints.

Many studies have been devoted to the selective catalytic reduction of NOx by Hydrocarbons (HC-SCR) [9,14,15], as an elegant potential alternative of the NH3-SCR and LNT technologies [9], since the pioneering remarkable discoveries of the Ag/Al2O3 catalyst for C8H18-SCR by Miyadera [16] and for low-temperature promoting effect Hx in H2-C4H9-SCR by Satokawa and co-workers [17,18]. Not only light hydrocarbons have been reported to be efficient reductants of NOx over Ag/Al2O3, either in the presence or in the absence of H2, but also long chain alkanes [9,14,19-22] and alcohols [9,14,23-26], or a mixture of both [27]. Overall, the studies performed to date have essentially concluded to the elevated dispersion of Ag on Al2O3 and that oxidized Ag species, such as electron-deficient clusters (Agδ+) [28,29], would be the active catalytic species [9,15,30]. In HC-SCR, the formation of N2 would result from the interaction of NOx, either in an adsorbed state [30] or not, with the hydrocarbons to form various intermediates [15,31], for which isocyanates have been claimed to be among the most important intermediates leading ultimately to nitrogen [32-35]. It has also been reported that the best catalytic performance in HC-SCR was obtained with an optimum loading of 2 wt% Ag on alumina [16,30,36-39] and that such an optimum Ag loading would also stand for H2-promoted HC-SCR [21,28]. Based upon a disruptive approach, namely the challenging characterization of the alumina support of the Ag/Al2O3 catalysts by adsorption-desorption of NOx (NOx-TPD method) developed initially for tungstated-zirconia materials [40,41], NOx-TPD-(H2+C8H18)-SCR structure-activity relationships led some of us to conclude that (i) the optimum Ag loading of 2 wt% could be attributed to the maximum content of Ag for which this metal remained in a highly-dispersed state on Al2O3 [42] and (ii) that this optimum loading did not stand for H2-C8H18-SCR as the reduction of NOx to N2 was found to be favored as the Ag loading decreased [43]. Earlier literature reports attributed the Agx promoting effect to (i) changes in the speciation of the Ag species [21,28,34,44], (ii) enhancement of hydrocarbon activation to surface oxygenated compounds [22,28,34,45], (iii) the formation of reactive oxygen species such as peroxides [28,34,46], (iv) changes in the surface concentration of NOx adsorbed species [34,44,45,47,48], and/or (v) the modification of chemical reactions [9,49,50]. In addition, Burch and co-workers have claimed that the formation of organo-NOx intermediates, resulting from the interaction of NOx and activated hydrocarbons species, would be rate determining for both HC-SCR [15] and H2-HC-SCR [51]. In the case of HC-SCR, Thomas and co-workers reported that the temperature at which NOx adsorbed species interacted with hydrocarbons may be valuably monitored by exposing preadsorbed NOx species to hydrocarbon-containing feeds under temperature-transient conditions [52,53]. By using a similar approach with C8H18-containing feeds of increasing complexity, Thomas suggested that H2 could also promote the formation-decomposition-reaction of organo-NOx species at the lowest temperatures based on the temperature-transient reactivity of preadsorbed nitrates [54].

Despite the tremendous number of investigations performed in this particular field to date, the limited activity of the Ag/Al2O3 catalysts over the temperature of interest of the catalytic converters prevented their implementation [55], as exhausts temperatures as low as 150 °C are commonly met in these devices [56]. Hence many works have been devoted to the modification of the silver alumina system by promoters. For instance, the addition of limited amounts of chlorides has been claimed recently to promote H2-C8H18-SCR mainly at high Ag loadings because of the stabilization of electron-deficient Ag clusters (Agδ+) in greater proportion compared to that in the Cl-free catalyst [57]. Likewise, the introduction of tungstates on Al2O3 has been reported to promote C2H5OH-SCR [58]. Such a promotional effect of tungstates for the Ag/Al2O3 system contrasts with the detrimental effect of tungstates that one of us observed on n-C10-HSCR [59], however, which led us to confirm the importance of the close proximity between the silver species and the alumina carrier. The importance of Al2O3 as a supporting oxide of Ag for H2-HC-SCR, - as deduced from the lack of reactivity of Ag/SlO2, Ag/TiO2 and Ag/ZrO2 for H2-C8H18-SCR [18] and also indicated by the positive reaction order with respect NO up to a silver loading of about 2 wt% on Al2O3 in H2-C8H18-SCR [43] -, therefore makes the promotion of Ag/Al2O3 extremely risky as the introduced promoters may also compete with the alumina sites involved in H2-SCR. Several studies have aimed at investigating the influence of the nature of Al2O3 via the use of its precursors [60,61] or its morphology [62-64]. The claim of Yang et al. regarding the higher catalytic C8H18-SCR performance of a silver alumina sample prepared from Al2O3 with a flake morphology compared to that prepared with a sphere morphology must be taken with caution, however, as the synthesis of the latter supported included sulfates, whereas such anions were not used in the synthesis of Al2O3-flake [64]. Not only the presence of sulphates on Al2O3 has been shown to be detrimental to the NOx adsorption capacity [64,65] but also to C8H18-SCR performance [65]. Several studies have also reported on the use of newly developed synthesis methods to improve the efficiency of the silver alumina catalysts in (H2-)HC-SCR. Petito and Delahaye reported that the heating of a mechanical mixture made of Ag2O and Al2O3 in a wet atmosphere above 600 °C led to more active catalysts in n-C10-HSCR compared to those prepared conventionally by impregnation of alumina by a silver nitrate aqueous solution [66]. This peculiarity may be linked to the agglomeration/oxidative dispersion of Ag nanoparticles in the presence of a wet oxidizing atmosphere at high temperature [67] and the importance of the surface hydroxyls of γ-Al2O3 for such processes [68]. The use of silver alumina catalysts prepared by ball milling have also showed promising n-C8-SCR at temperature much lower than those usually reported in the field over samples prepared conventionally [69], whereas such a beneficial effect of ball milling could not be observed in C8H18OH-SCR [70]. Yet it must be highlighted that the speed with which the ball-milled samples were prepared has been reported to be critical in making efficient Ag/Al2O3 catalysts, as the use of high-speed ball milling appeared to be detrimental to SCR reactions [71]. The greater effectiveness of ball-milled-prepared silver alumina catalysts compared to conventionally prepared samples has also been illustrated in H2-n-C8-SCR and assigned to modifications in the affinity of water and hydrocarbons with the Al2O3 surface [51] and the concentration/rate of formation of isocyanate intermediates [51,71]. Hence these latter studies have prompted on the importance of the Al2O3 supporting oxide for the SCR reactions. Recently, it has been elegantly shown that Ag dispersion capacity, i.e. the amount of Ag anchored onto Al2O3 in a highly dispersed state, was strongly correlated to the surface OH content of such a supporting oxide [68]. In an earlier study, Thomas and co-workers have reported that H2-C8H18-SCR could be increased drastically over an alumina support that was pretreated in warm water prior to deposition of Ag by conventional impregnation [72]. Such a peculiarity was inferred to the preferential anchoring of Ag on OH groups that were not present in the pristine Al2O3 support, but created during its treatment in warm water, and hence the preservation of a higher NOx coverage [43] in the warm-water-treated-Al2O3-supported Ag sample compared to the conventionally prepared Ag/Al2O3 catalyst [72]. To our knowledge, enhanced hydroxylation of Al2O3 to favor metal anchoring [52] has been reported scarcely in the case of supported Pt catalysts [73,74] only.

Whereas NMR [61,63,64,70,75,76] and FTIR [63,75-77] spectroscopies are known to be powerful techniques to monitor protons from the OH groups and/or the Al species of Al2O3, very few investigations have been reported on their use to monitor the changes brought about by the introduction of Ag on Al2O3. 1D 1H [63,70] and 27Al [61,63,64,75,76] NMR have been essentially used to characterize Ag/γ-Al2O3 samples, whereas in-depth characterization of γ-alumina has been provided
rather recently with 2D 1H–1H DQ [78–81] and 1H–27Al D-HMQC [78–82] sequences.

Firstly, the present work aims at providing further insights into the influence of a modification of γ-Al₂O₃ in warm water prior to deposition of Ag, following a procedure similar to that reported earlier [72] but over a series of Ag/γ-Al₂O₃ catalysts with Ag loadings varying from about 1 to 9 wt%, on the catalytic performance in C₇H₈-SO₂ reaction. The catalyst preparation used in the present work, a series of Ag/γ-Al₂O₃ supported on hydrated alumina (H-Al₂O₃), was carried out using a procedure described earlier [42,43]. In the present work, a series of Ag/γ-Al₂O₃ catalysts was prepared by incipient wetness impregnation after the Ag/γ-Al₂O₃ support. Imaging was performed without any metallization at 1 kV and a working distance of 15 mm, hence by an “in lens” secondary electron detector (SE-Upper).

2. Experimental

2.1. Catalyst preparation

As indicated in earlier literature reports, Ag/Al₂O₃ catalysts are most often prepared by incipient wetness impregnation of the alumina support by an aqueous solution of AgNO₃ [42,43]. In the present work, a series of Ag/Al₂O₃-H₂O samples was prepared by incipient wetness impregnation after the Ag/γ-Al₂O₃ support (Procatalse, 125–200 µm, 40 g) had been treated in 400 mL of warm water (80 °C) for 66 h without any stirring. After filtering and drying under vacuum for 16 h at RT, such a warm-water-treated alumina support was calcined at 600 °C (3 °C/min heating rate from RT to 600 °C for 4 h). The ash-modified support, denoted as Al₂O₃-H₂O, was used to prepare the Ag(x)/Al₂O₃-H₂O series of samples, where x denotes the Ag content (wt%), determined by ICP-OES, that was deposited on Al₂O₃-H₂O by incipient wetness impregnation of aqueous solutions of AgNO₃. After ageing under vacuum at RT for 4 h, the samples were dried at 100 °C for 18 h in a laboratory oven. Finally, the Ag(x)/Al₂O₃-H₂O samples were calcined at 600 °C (3 °C/min heating rate from RT to 600 °C) for 4 h. This procedure appears to differ substantially from that reported in our earlier study in which the γ-Al₂O₃ support was vigorously stirred in warm water (80 °C) for 24 h, which resulted in the loss of most of the 125–200 µm fraction due to severe attrition of the grains, and for which Ag was deposited on a vacuum-dried (not calcined) Al₂O₃-OH support [72]. For comparison, where necessary, Ag(x)/Al₂O₃ samples were also prepared following the procedure described earlier [42,43], namely incipient wetness impregnation of pristine γ-Al₂O₃ by aqueous AgNO₃ solutions. Figure S1 provides a schematic summary of the synthesis conditions used for both series of silver alumina samples.

2.2. Catalyst characterisation

Ag loadings were determined by ICP-OES (CREALINS, Lyon). XRD patterns of Al₂O₃-H₂O (vacuum-dried for 16 h and calcined at 600 °C for 4 h) were recorded in the 2θ range of 10–90° with 0.01° steps and 0.5 s/step with a Bruker D8 ADVANCE diffractometer equipped with a copper source (λCu-Kα = 1.54056 Å and λCu-Kβ = 1.54439 Å) and a LynxEye detector.

N₂-sorption measurements were carried out on a Belsorp MAX Instrument (Bel Japan) at 77 K after evacuation of the samples at 300 °C for 3 h. The specific surface area of the samples was determined by using the BET method in the 0.05 < p / p₀ < 0.30 domain.

SEM-FEG imaging of the supporting oxides was done with a Hitachi SU-70 field emission gun scanning electron microscope at magnifications varying from ×300 to ×10,000. The 125–200 µm powder samples were deposited as is onto carbon adhesives taped on an aluminum SEM support. Imaging was performed without any metallization at 1 kV and a working distance of about 15 mm, hence by an “in lens” secondary electron detector (SE-Upper).

NOₓ-TPD experiments were carried out in a U-type quartz reactor (12 mm i.d.). The samples (about 0.200 g) were placed on a quartz wool and the temperature was set by a Eurotherm 2408 temperature controller using a K-type thermocouple. Reactant gases (Air Liquide) were used as received and fed from independent gas cylinders by means of mass flow controllers (Brooks 5850TR) with a total flow rate of 230 mL/min. Prior to the NOₓ-TPD experiments, the samples were calcined at 500 °C (3 °C/min) for 2 h under a flow rate of 100 mL/min of 20% O₂/He. The reactor outlet was continuously monitored by a chemiluminescence NOₓ analyzer (Thermo Environmental Instruments 42C-HL) that allowed the simultaneous detection of both NO and NO₂. The samples were exposed to the adsorption mixture (Typically 385 ppm NOₓ and 8% O₂ in He with a total flow rate of 230 mL/min/FTIR) for 4 h at RT. This last parameter was set to ensure that saturation coverage was reached for all of the samples investigated under the present experimental conditions, as the time after which no change was observed in the gas phase NOₓ concentrations was found to be dependent on the Ag loadings of the silver loaded samples. Before NOₓ-TPD, the samples were flushed under a flow of 230 mL/min of O₂/8% He at RT for about 1 h to remove weakly chemisorbed species until the NO and NO₂ concentrations detected at the outlet of the reactor were found to be negligible. NOₓ-TPD experiments were carried out from RT to 500 °C at a heating rate of 3 °C/min under a flow of 230 mL/min of O₂/8% He. FTIR spectra of the Ag/γ-Al₂O₃ samples were collected in transmission mode on a Bruker Vertex 70 FTIR spectrometer equipped with a liquid N₂-cooled MCT detector and a data acquisition station. 64 scans were averaged with a spectral resolution of 4 cm⁻¹. The samples were pressed into self-supporting wafers of 6–8 mg/cm² (12–16 mg for wafers of 1.6 cm diameter). The wafers were loaded into a moveable glass sample holder, equipped on top with an iron magnet, and inserted in a conventional quartz glass cell (CaF₂ windows) connected to a vacuum system. The iron magnet allowed for the transfer of the catalyst sample from the oven-heated region to the infrared light beam. Before spectrum recording, the catalysts were submitted to a dynamic (20 mL/min) oxidizing pretreatment (O₂, Air Liquide, 99.999%) at 500 °C for 2 h at atmospheric pressure. The samples were then evacuated (5 × 10⁻⁶ mbar) at 400 °C for 1 h. Finally, the temperature was decreased to RT under dynamic vacuum.

Magnetic Resonance (MAS NMR) spectra were recorded at room temperature using a Bruker Advance spectrometer operating in a static field of 11.7 T. The resonance frequency of 3H and 27Al were 500.2 and 130.3 MHz, respectively. A Bruker 4 mm MAS probe was used to perform the experiments at a spinning speed of 14 kHz for one-dimensional (1D) spectra and 12.5 kHz for two-dimensional (2D) spectra. The 3H and 27Al chemical shifts were referenced to external standards of tetra-methylsilane (TMS) and Al(NO₃)₃ aqueous solutions, respectively. For all experiments, the powdered samples were first calcined at 500 °C (3 °C/min) for 2 h under 100 mL/min of O₂(20%)/He using a quartz reactor equipped with stop valves. The samples were then flushed with 100 mL/min of He for 15 min at RT before closing of the valves of the reactor to prevent the samples from exposure to ambient atmosphere and potential rehydration. Selected samples (Al₂O₃-H₂O and Ag(1)/Al₂O₃-H₂O), were also contacted with NOₓ (96% NO + 4% NO₂) by flowing a NOₓ(385 ppm)-O₂(8%)-He mixture at RT and 230 mL/min/FTIR for 4 h before being flushed by He (100 mL/min/FTIR) for 1 h. Samples were then transferred from the reactor to the NMR rotor using a glovebox where the NMR rotors were finally closed. 1H MAS NMR 1D spectra were recorded with a 90° pulse duration of 2.75 µs, a recycle delay of 10 s, and a scan number of 64. The MAS equipment for rotation was carefully cleaned with ethanol before being dried to avoid spurious proton signals. From two successive experiments performed with the same recording conditions and using the same empty or filled rotor, the signals of the probe and the rotor were subtracted from the total FID. The 1H DQ-SQ 2D spectrum was recorded with the POST-C7 sequence for excitation and conversion block, and a RF field strength...
was used during the dipolar recoupling sequence of 87.5 kHz and 60 τ increments of 80 μs for F1 dimension acquisition. The 27Al-1H D-HMQC (heteronuclear multiple quantum coherence) experiments were performed with RF nutation frequencies of 9 and 92 kHz for 27Al and 1H, respectively. A SR2 method was used as the recoupling sequence to reintroduce 27Al-1H dipolar interaction with a RF field strength of 25 kHz (=2*νrot) during 960 μs. The recorded spectra result from averaging 4096 transients and a recycle delay of 0.5 s.

2.3. (H$_2$)-C$_6$H$_6$-SCR catalytic experiments

Steady state catalytic (H$_2$)-C$_6$H$_6$-SCR experiments were carried out in a U-type quartz reactor (12 mm i.d.). In contrast to most studies reported to date, the amount of silver introduced in the catalyst beds remained essentially constant when the silver loading of the Ag(x)/Al$_2$O$_3$-H$_2$O samples varied. To be compared to the catalytic data recorded earlier on silver alumina samples prepared with a non-treated Al$_2$O$_3$ support [42, 43], the samples were held on plugs of quartz wool and consisted in a chemiluminescence NO analyzer (Thermo Environ) for 3 h backflush time), was used to separate H$_2$ from 150 to 550 °C. For each step, 37 s injection time, 37 s backflush time), was used to separate CO and N$_2$. A chemiluminescence NO analyzer (Thermo Environmental Instruments 42C-HL) allowed the simultaneous detection of both NO and NO. NO$_2$ conversions to N$_2$ and N$_2$O were calculated as follows:

\[
X_{\text{NO}_2 \rightarrow N_2} = \frac{(X \times [N_2]_o) - (NO)_{i} - (NO)_{f}}{(NO)_{i}} \times 100, \tag{1}
\]

\[
X_{\text{NO} \rightarrow N_2O} = \frac{(X \times [N_2]_o) - (NO)_{i} - (NO)_{f}}{(NO)_{i}} \times 100, \tag{2}
\]

where [NO]$_{i}$ and [N$_2$]$_{i}$ were the concentrations in NO$_x$ measured at the inlet of the reactor and in N$_2$ and N$_2$O at the outlet of the reactor, respectively. C$_6$H$_6$ conversions were calculated on the basis of the CO$_2$ (CO + CO$_2$) products formed:

\[
X_{\text{C}_6\text{H}_6} = \frac{([CO] + [CO_2])/([CH_6]_{inlet} \times 3)}{100}, \tag{3}
\]

where [CO], [CO$_2$] and [CH$_6$]$_{inlet}$ were the concentrations of CO and CO$_2$ measured at the outlet of the reactor and that of CH$_6$, measured at the inlet of the reactor, respectively. The comparison of the catalytic performances of the materials investigated in the present study was also made on the basis of an efficiency criterion (%) in the reduction of NO$_x$ to N$_2$ in the 150–550 °C range of temperatures. This criterion compares the catalytic performance of the investigated samples to those of a catalyst that would allow for the full reduction of NO$_x$ to N$_2$ from 150 to 550 °C (100% efficiency).

3. Results

3.1. Influence of a pretreatment of Al$_2$O$_3$ in warm water on the structural and textural properties of the Ag/Al$_2$O$_3$ materials

The Ag contents and the surface areas of the samples prepared in the present work are listed in Table 1. It can be first seen that exposure of the pristine Al$_2$O$_3$ support to water at 80 °C for 66 h with subsequent drying and calcination at 600 °C for 4 h led to a slight increase in its surface area (Al$_2$O$_3$-H$_2$O ~ 195 m2/g) compared to the starting material (Al$_2$O$_3$ ~ 180 m2/g). It must be noted that a similar surface area (195 m2/g) was also measured on dried Al$_2$O$_3$-H$_2$O, which indicates that the increase in surface area of this sample cannot be attributed to the calcination step. In an earlier study in which the same pristine Al$_2$O$_3$ support was exposed to water at 80 °C for a much shorter duration, i.e. 24 h [72] compared to 66 h in the present work, the limited increase in specific area of Al$_2$O$_3$-OH (185 m2/g) compared to untreated Al$_2$O$_3$ (180 m2/g) [72] did not appear to be significant at first sight. From the present surface area data, it can be concluded that the increase in surface area was indeed significant in the earlier work [72], albeit very limited (+ 5 m2/g), however, as the increase in surface area measured in the present work (+ 15 m2/g) appears to be roughly proportional to the duration of the exposure of Al$_2$O$_3$ to water at 80 °C (from 24 h [72] to 66 h in the present work), as also reported previously by Lefèvre et al. [83]. It can be observed that the measured Ag contents are in good agreement with those targeted. Overall, the specific surface area per g of sample decreases as the Ag content increases and the associated surface area per g of Al$_2$O$_3$ remains essentially constant (Table 1).

As reported earlier [72,84], the treatment of γ-Al$_2$O$_3$ in warm water led to the formation of bayerite crystallites in the Al$_2$O$_3$-H$_2$O sample dried at RT under vacuum for 16 h [72], as indicated by the reflections at 18.8, 20.3, 27.9, 40.6, 53.2, 63.8, 70.8 and 78.9° (Figure S2).

Table 1:
Ag contents determined by ICP-OES and surface areas of the newly prepared silver alumina samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Targeted Ag content (wt%)</th>
<th>Measured Ag content (wt%)</th>
<th>Surface area (m2/g)</th>
<th>Surface area (m2/Ag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$-H$_2$O</td>
<td>-</td>
<td>-</td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td>Ag(1)/Al$_2$O$_3$-H$_2$O</td>
<td>1.00</td>
<td>1.11</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Ag(2)/Al$_2$O$_3$-H$_2$O</td>
<td>2.00</td>
<td>2.18</td>
<td>184</td>
<td>189</td>
</tr>
<tr>
<td>Ag(3)/Al$_2$O$_3$-H$_2$O</td>
<td>3.00</td>
<td>3.23</td>
<td>187</td>
<td>193</td>
</tr>
<tr>
<td>Ag(5)/Al$_2$O$_3$-H$_2$O</td>
<td>5.00</td>
<td>5.11</td>
<td>181</td>
<td>191</td>
</tr>
<tr>
<td>Ag(7)/Al$_2$O$_3$-H$_2$O</td>
<td>7.00</td>
<td>7.13</td>
<td>179</td>
<td>193</td>
</tr>
<tr>
<td>Ag(9)/Al$_2$O$_3$-H$_2$O</td>
<td>9.00</td>
<td>9.21</td>
<td>172</td>
<td>189</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>-</td>
<td>-</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Ag(1)/Al$_2$O$_3$</td>
<td>1.00</td>
<td>1.05</td>
<td>178</td>
<td>180</td>
</tr>
<tr>
<td>Ag(2)/Al$_2$O$_3$</td>
<td>2.00</td>
<td>2.12</td>
<td>176</td>
<td>180</td>
</tr>
<tr>
<td>Ag(3)/Al$_2$O$_3$</td>
<td>3.00</td>
<td>3.15</td>
<td>173</td>
<td>179</td>
</tr>
<tr>
<td>Ag(4)/Al$_2$O$_3$</td>
<td>4.00</td>
<td>4.19</td>
<td>171</td>
<td>178</td>
</tr>
<tr>
<td>Ag(7)/Al$_2$O$_3$</td>
<td>7.00</td>
<td>7.05</td>
<td>167</td>
<td>180</td>
</tr>
</tbody>
</table>

* Surface area estimated on the basis of a theoretical Ag loading of 7 wt%.
The longer exposure of the pristine Al₂O₃ support in water at 80 °C in the present work (66 h) compared to that in our earlier work (24 h [72]) did not seem to have a significant influence on the formed bayerite crystallities, as the (201) bayerite to (400) Al₂O₃ intensity ratio of the peaks at 40.6 and 46.0° appears to be similar in both XRD patterns (1.29 in Figure S2 compared to 1.26 in Fig. 3 of ref. [72]). Yet, the longer exposure to the pristine Al₂O₃ support to water at 80 °C induced the formation of gibbsite, as indicated by a diffraction peak of low intensity at 18.3° (Figure S2), which could hardly be observed earlier in the tail of the bayerite peak at 18.8° [72]. As both bayerite and gibbsite can transform subsequently to boehmite and γ-Al₂O₃ upon heating and/or η- and δ-Al₂O₃, respectively (85), which can be hardly distinguished from γ-Al₂O₃ by XRD, the XRD pattern after calcination of Al₂O₃ pretreated in warm water (Figure S2, blue trace) therefore closely resembles that of the pristine γ-Al₂O₃ support [72]. If any surface modifications of the pristine Al₂O₃ support had been achieved by its exposure to water at 80 °C, these changes can hardly be monitored by XRD, in agreement with the inherent bulk sensitivity of such a technique.

Representative SEM images of the pristine Al₂O₃ support, and the dried and calcined warm-water-pretreated Al₂O₃ samples are displayed in Figure S3. Figure S3 shows that the surface of the grains of the pristine Al₂O₃ support are rather smooth (a,b) and the presence of small entities of ill-defined shape at elevated magnification (c). The pretreatment of Al₂O₃ support in water at 80 °C for 66 h, as opposed to 1 and 3 ppm, showed a pronounced decrease of the bands at 3770 and 3680 cm⁻¹ (1.29 in Figure S2 compared to 1.26 in Fig. 3 of ref. [72]). Yet, the longer exposure to water at 80 °C induces the formation of gibbsite, as indicated by a diffraction peak of low intensity at 18.3° (Figure S2), which could hardly be observed earlier in the tail of the bayerite peak at 18.8° [72]. As both bayerite and gibbsite can transform subsequently to boehmite and γ-Al₂O₃ upon heating and/or η- and δ-Al₂O₃, respectively (85), which can be hardly distinguished from γ-Al₂O₃ by XRD, the XRD pattern after calcination of Al₂O₃ pretreated in warm water (Figure S2, blue trace) therefore closely resembles that of the pristine γ-Al₂O₃ support [72]. If any surface modifications of the pristine Al₂O₃ support had been achieved by its exposure to water at 80 °C, these changes can hardly be monitored by XRD, in agreement with the inherent bulk sensitivity of such a technique.

3.2. Influence of a pretreatment of Al₂O₃ in warm water and the deposition of Ag on surface hydroxyl groups

Characterization of the surface OH groups of Al₂O₃ was performed by FTIR. Figure S4a shows that pretreatment of Al₂O₃ in water at 80 °C led to changes in the absorption spectrum in the region of the hydroxyl groups. Overall, the envelope of the hydroxyl groups (3800–3400 cm⁻¹) increased by about 10% in Al₂O₃·H₂O compared to Al₂O₃ and the intensity of the contributions at 3790 and 3754 cm⁻¹ decreased, whereas those at 3770, 3680 3633 and 3602 cm⁻¹ increased and that at 3730 cm⁻¹ remained essentially constant in Al₂O₃·H₂O compared to Al₂O₃. The introduction of increasing amount of Ag on Al₂O₃·H₂O led to a vanishing of the bands at 3790 and 3754 cm⁻¹ at the lowest content of Ag, a pronounced decrease of the bands at 3770 and 3680 cm⁻¹ for Ag(1)/Al₂O₃·H₂O followed by a more moderate decrease at higher Ag loadings and an increase in that at 3730 cm⁻¹ up to Ag(5)/Al₂O₃·H₂O before decreasing at a higher Ag loading (Figure S4a). Such trends are in agreement with those reported earlier on Ag(x)/Al₂O₃ samples [63,75,77,80]. The nature of the corresponding OH groups of Al₂O₃ has been debated comprehensively [63,75,77,80,86–88] and will be discussed in relation with other findings in Section 4.2.

Before describing the NMR data, it must be recalled that the various hydroxyl groups (OH) of γ-alumina are commonly denoted as μ^n-OH, which denotes that the hydroxyl group is bounded to n aluminum atoms [78]. The ¹H spectrum of γ-Al₂O₃ (Fig. 1, spectrum a) can be decomposed into three regions between (i) –1 and 1 ppm and (ii) 1 and 3 ppm, and (iii) for a chemical shift greater than 3 ppm. In earlier literature reports, the first region has been attributed to terminal hydroxyl groups (μ¹-OH), the second one to doubly-bridging hydroxyl groups (μ²-OH) and the last one to triply-bridging hydroxyl groups (μ³-OH) and residual water [78]. More recently, thanks to DFT calculations, a new assignment of the ¹H chemical shifts has been proposed [81]. The first region corresponds to μ¹-OH species located on the edges of the γ-Al₂O₃ crystallites, while the second region corresponds to μ²-OH and μ³-OH species located essentially on the Al₂O₃ facets. Finally, the ¹H contributions with a chemical shift greater than 3 ppm were assigned to μ¹-OH, μ²-OH and μ³-OH species with H-bond donors. The effect of the pretreatment of Al₂O₃ in warm water on its hydroxylation can be seen in Fig. 1 (spectra a and b). The integral of the Al₂O₃·H₂O spectrum (Fig. 1, spectrum b) is about 1.6 times greater than that of the Al₂O₃ spectrum (Fig. 1, spectrum b).
a), hence showing a significant increase in the amount of protons present on the alumina surface after pretreatment in warm water.

2D double quantum-single quantum (DQSQ) correlation experiment provides useful information on the proximities (\(< \sim 5 \text{ Å}\)) between dipolar-coupled protons, as the observed DQ coherences depend strongly on the internuclear distance. The diagonal peaks (δA, 2δA) are autocorrelation peaks resulting from the dipolar interaction of spins with identical chemical shift, while the pairs of off-diagonal peaks at (δA, δA+δB) and (δB, δA+δB) correspond to correlations between two spins with different chemical shifts. Usually, the intensity of these correlation peaks reflects the strength of the dipolar interaction between the spin pairs and therefore the distance between the different proton species. In agreement with the A-G OH terminology defined by Merle et al. [80] (Fig. 2), the 1H–1H DQSQ MAS NMR spectrum of γ-Al$_2$O$_3$-H$_2$O (Fig. 3a) exhibits two autocorrelation peaks at –0.10 and 2.25 ppm attributed to μ^1-OH (F) and μ^2-OH (G) species, respectively. Two off-diagonal correlations between μ^1-OH and μ^2-OH species are also observed, which show proximity of two μ^1-OH sites (–0.15 ppm (C) and –0.20 ppm (A)) with two μ^2-OH species (1.90 ppm (D) and 2.50 ppm (B)), respectively. In addition, an off diagonal correlation between two μ^1-OH species (1.90 ppm (D) and 1.55 ppm (E)) is visible. This experiment shows that the signal at about –0.10 ppm (Fig. 1) assigned to μ^1-OH groups is composed of at least three different species with proton shifts at –0.20 ppm (A), –0.15 ppm (C) and –0.1 ppm (F). The 1H–1H DQSQ MAS NMR spectrum and associated proximity information (Fig. 3a) are found to be identical to those reported by Merle et al. [80] and fairly close to those reported by Batista et al. [81] and Völker et al. [82]. The differences in the 1H–1H DQSQ MAS NMR spectrum and associated proximity information (Fig. 3a) with those of the latter studies may be due to differences in the morphology of the studied alumina and/or sample pre-treatments. Finally, it should be also noted that the 1H–1H DQSQ MAS NMR spectrum seems to show a proximity between OH species with and without H-bond donors at about 3.50 ppm.

The presence of 1 wt% Ag on γ-Al$_2$O$_3$-H$_2$O leads to an overall decrease in μ^2-OH species (1–3 ppm), an increase in the overall amount of μ^1-OH species (–0.1 to +1 ppm) and the shift of some of the μ^1-OH species (from about –0.1 ppm to about 0.4 ppm) (Fig. 1, spectra b and c). Not only such trends have already been reported by Wang et al. [63] for Ag/γ-Al$_2$O$_3$ but also, more surprisingly, by Barrow et al. for SrO/γ-Al$_2$O$_3$ [89]. The 1H–1H DQSQ spectrum of Ag(1)/γ-Al$_2$O$_3$-H$_2$O (Fig. 3b), which has not been reported to date to the best of our knowledge, provides additional information about the newly formed μ^1-OH species at about 0.4 ppm disturbed by the addition of Ag on Al$_2$O$_3$-H$_2$O. The comparison of Fig. 3b and Fig. 3a indicates that part of the –0.20 ppm μ^1-OH (A) and most of the –0.10 ppm μ^1-OH (F) species are shifted to 0.35 ppm (A′) and 0.40 ppm (F′) μ^1-OH species, respectively, on the addition of 1 wt% Ag on Al$_2$O$_3$-H$_2$O. The μ^1-OH (F′) species are coupled with themselves as being located on the diagonal of the spectrum shown in Fig. 3b, whereas the μ^1-OH (A′) species are coupled with μ^2-OH (B′) species, which corresponds to μ^2-OH (B) species shifted to lower chemical shift (2.10 ppm instead of 2.50 ppm). In contrast, –0.15 ppm μ^1-OH (C), 1.90 ppm μ^2-OH (D), 1.55 ppm μ^2-OH (E) and 2.25 ppm μ^2-OH (G) species do not appear to be affected by the presence of silver atoms (same chemical shift and same correlation in Fig. 3b compared to Fig. 3a). The sample containing 2 wt% silver shows hardly any change in chemical shifts of most of the protons, but only a slight decrease in the intensity of μ^2-OH (1–3 ppm and particularly at higher chemical shifts) and –0.15 ppm
μOH (C) species, as well as an increase in intensity and a narrowing of the signals corresponding to μOH (A') and (F') species around 0.4 ppm (Fig. 1, spectrum d and Figure S5). For samples with 3 and 5 wt% silver on alumina (Fig. 1, spectra e and f), a disappearance of the μ2OH (1–3 ppm) and ~0.15 ppm μ2OH (C) species, and an increase in the μ1OH species around 0.4 ppm still occur but to a much more limited extent than those observed for Ag/Al2O3-H2O samples with lower Ag loadings (Fig. 1, spectra c and d). Interestingly, disappearance of the 1H signal at about ~0.10 ppm on the addition of increasing quantities of Ag appears to be completed for Ag(3)/Al2O3-H2O, as detailed in Figure S6 that shows a zoom from 1 to +1 ppm of the 1H spectra shown in Fig. 1. Finally, it must be highlighted that the amount of protons was found to remain essentially constant on the addition of increasing quantities of Ag on Al2O3-H2O (Fig. 1, spectra b-f).

Figure S7 shows that exposure of Al2O3-H2O, calcined at 500 °C for 2 h, to NOx species at RT for 4 h results in a shift of the protons' signals to higher chemical shifts and the vanishing of the μ1OH signal at about ~0.10 ppm suggesting the preferential chemisorption of NOx species in close proximity with such OH groups. A similar trend is observed for Ag(1)/Al2O3-H2O for which not only the signal at about ~0.10 ppm vanishes but also that at about 0.4 ppm, resulting from the introduction of Ag (Fig. 1, spectra b and c), decreases to a significant extent with the exposure of this sample to NOx (Figure S7).

Information about the environment of the Al atoms close to the hydroxyl groups can be deduced from the 1H–27Al D-HMQC MAS NMR spectrum (Fig. 4). Such an experiment is based on heteronuclear dipolar interaction across space and therefore does not indicate direct bonding of Al atoms to hydroxyl groups, which makes interpretation more delicate as underlined by Völker et al. [82]. Fig. 4 shows that the μ2OH groups (A, C and F) at about ~0.1 ppm correlate with aluminum atoms with a very broad signal covering the chemical shifts of tetra (AlIV, ~60 ppm), penta (AlV, ~30 ppm) and hexa-coordinated (AlVI, ~10 ppm) aluminum atoms. As already observed in earlier studies [80, 82], this signal is composed of two contributions, the first corresponding to AlIV with a large quadrupolar coupling constant (very broad line with low intensity at 60–20 ppm in the dashed blue rectangle), which are bonded to all types of μ2OH hydroxyl groups (μ2OH-μOH species). The second contribution is due to AlVI species (~7 ppm) not directly bonded to μ2OH hydroxyl groups but in their proximity. μ2OH groups are bonded to two aluminum atoms and the four types of μ2OH groups (B, D, E and G) are found to correlate with Al species exhibiting chemical shifts around 7 ppm. This suggests that, for all μ2OH groups, one of these two Al atoms corresponds to AlV species. For the second Al atoms, the μ2OH groups (E), higher in chemical shift (1.55 ppm), could be bonded to AlV species at about 30 ppm, while the other μ2OH groups (D, G and B) appear closer to AlIV species. From these observations, the following aluminum atom environments can be proposed for the μ2OH species: (AlIV AlIV)-μ2OH (B), (AlIV AlV)-μ2OH (D), (AlV AlIV)-μ2OH (E), (AlV AlV)-μ2OH (G). The 1H–27Al heteronuclear correlation experiment for Ag(1)/Al2O3-H2O (Figure S8) mainly shows changes in the environment of aluminum atoms bonded to μ1OH species. For Ag(1)/Al2O3-H2O, the contribution of AlIV species correlating with μ1OH species (A' and F') (Figures S8 and S9), appears to be more intense and narrower than that of Al2O3-H2O (Fig. 4). This suggests a decrease in quadrupolar interaction and thus a more charge-symmetric environment of the Al atoms, probably due to the presence of the silver atoms in close proximity. For Ag(3)/Al2O3-H2O samples containing 2, 3 and 5 wt% of silver (Figures S9-S12), the contribution of AlIV species bonded to μ1OH increases steadily, while the contribution of AlIV species near μ1OH species remains essentially constant (Figure S9a).

The spectra of the Ag/Al2O3-H2O samples containing 2–5 wt% Ag (Figure S9a) show the presence of a new signal at about 70 ppm. The environment of aluminum atoms, close to μ2OH species, does not seem to change much with the addition of Ag, which contributes to a decrease in the overall intensity of the signals related to AlIV, AlV and AlVI species due to the decrease in the number of μ1OH sites as the amount of silver increases (Figures S9b, S10-12).

It must be highlighted that changes in 1H (Figure S13) and 27Al D-HMQC MAS NMR spectra (Figures S14 and S15) on the addition of Ag on Al2O3 appear to be similar to those described in the previous sections for the addition of Ag on the warm-water-pretreated Al2O3 support (Al2O3-H2O). Yet one may notice that the vanishing of the μ1OH species at about ~0.10 ppm occurs at a lower Ag loading on Al2O3 (2 wt%, Figure S13) than on Al2O3-H2O (3 wt%, Fig. 1 and Figure S6).

3.3. Adsorption-desorption of NOx and (H2)C3H6-SCR catalytic reactions

As reported in earlier studies [42,43,59,72], the adsorption-desorption of NOx from Ag/Al2O3 materials have shown unique insights into the comprehensive understanding of the HC-SCR processes by providing unprecedented structure-activity correlations in this field. The characterization of the Ag(x)/Al2O3-H2O series and Ag(4)/Al2O3, the latter material acting as a reference sample of the Ag(x)/Al2O3 series, by NOx-TPD is compared to the data acquired previously on Ag(x)/Al2O3 [42,43]. In agreement with the profiles already described in our previous studies [42,53], the Ag(x)/Al2O3-H2O series and Ag(4)/Al2O3 showed a two-peak desorption profile with a first desorption peak at about 115–200 °C, made of NO mainly and NO2 and a second peak at about 440 °C essentially due to the release of NO2 with small amounts of NO (Figure S16a-c) likely due to the thermodynamically favored backward reaction of the 2 NO + O2 = 2 NO2 equilibrium at the highest temperatures [54]. The introduction of Ag onto Al2O3-H2O led to progressive shift of the temperature of maximum release of NO2 of the low-temperature desorption peak to higher temperatures and a decrease in the intensity of both peaks as the content of Ag increases (Figure S16b), as also observed on the Ag(x)/Al2O3 series [42]. The NOx uptake of Ag(4)/Al2O3 (Fig. 5a) estimated from Figure S16c was found to be in good agreement with that expected from the earlier measurements on an Ag(x)/Al2O3 series (Fig. 5a) thus attesting for the good reproducibility of the synthesis procedure and the reliability of the analytical set-up, as also illustrated in ref. [43]. The NOx uptake of the Ag(x)/Al2O3-H2O series appeared to be estimated with a good reproducibility (data in Fig. 5a) and were found to be significantly greater than those of the Ag(x)/Al2O3 series (data in Fig. 5a) by about 15–25%. As observed for the Ag(x)/Al2O3 series (data in Fig. 5a), the NOx uptake of Ag(x)/Al2O3-H2O series (data in Fig. 5a) decreased linearly as the Ag loading increased before levelling off. Whereas the levelling off in the NOx uptake occurred at an Ag loading close to 2 wt% for the Ag(x)/Al2O3 series (data in Fig. 5a)
Y. Millot et al.

remains essentially constant above 3 wt% Ag on Al₂O₃-H₂O (Fig. 5a), and very likely contribute to a growth of the Ag clusters [43].

C₃H₆-SCR and H₂-C₃H₆-SCR catalytic data recorded on the Ag(x)/Al₂O₃-H₂O series and on Ag(7)/Al₂O₃ are shown in Fig. 6. The addition of increasing amount of silver for the Ag(x)/Al₂O₃-H₂O series leads to an increase in the conversion of NOₓ to N₂ in C₃H₆-SCR up to an Ag loading of about 3 wt%, instead of about 2 wt% in most earlier studies [16, 30, 36-38, 42], before decreasing at higher Ag loadings. Such a trend is much better illustrated in Fig. 5b, which shows the NOₓ reduction efficiency to N₂ of the various Ag(x)/Al₂O₃-H₂O samples, in other words the integration of the NOₓ to N₂ trace from 150 to 550 °C normalized to 100% conversion of NOₓ to N₂ over the same temperature range as exemplified by the dotted square region in Fig. 6g for C₃H₆-SCR on Ag(3)/Al₂O₃-H₂O. Fig. 5b also shows that pretreatment of Al₂O₃ in warm water prior to Ag deposition leads to catalysts of higher C₃H₆-SCR efficiency compared to those prepared with a non-treated alumina support for Ag loadings lower than 5 wt%. The addition of minute amounts of H₂ in C₃H₆-SCR was found to promote drastically C₃H₆-SCR with a shift to much lower temperatures of the reduction of NOₓ to N₂ by about 125-175 °C compared to C₃H₆-SCR from Ag(1)/Al₂O₃-H₂O (Fig. 6a), to Ag(3)/Al₂O₃-H₂O (Fig. 6c), respectively, in agreement with the pioneering finding of Satokawa [17] for H₂-C₃H₆-SCR and the work of Zhang et al. [90] for H₂-C₃H₆-SCR. Whereas the H₂ promoting effect is still observable at the highest silver loadings (Fig. 6f), it remains much less pronounced compared to that observed at the lower Ag loadings and therefore less easily quantifiable on a temperature shift basis. Fig. 5c shows that the NOₓ to N₂ reduction efficiency improved to a significant extent for the series of samples for which the alumina support had been treated in warm water prior to Ag deposition (Ag(x)/Al₂O₃-H₂O) compared to the series of samples prepared on non-pretreated alumina (Ag(x)/Al₂O₃) for Ag loadings lower than 7 wt%. As reported for Ag(x)/Al₂O₃ samples [43], and in contrast with earlier reports in this field [21, 28], the Ag(x)/Al₂O₃-H₂O newly prepared series did not show any optimum Ag content and H₂-C₃H₆-SCR decreased as the Ag loading increased (Fig. 5c). Under the present experimental conditions, Ag(1)/Al₂O₃ appeared to be extremely active for NOₓ reduction and reached 100% from 375 to 450 °C so that its efficiency in NOₓ reduction to N₂ could not be ascertained reliably and reported in Fig. 5c. The catalytic performance of Ag(2)/Al₂O₃ [42, 43] and Ag(2)/Al₂O₃-H₂O, which display similar Ag loadings close to 2.2 wt%, is compared for C₃H₆-SCR (Figure S17a) and H₂-C₃H₆-SCR (Figure S17b). This figure shows that the pretreatment of Al₂O₃ in warm water prior to Ag deposition has little influence on C₃H₆ conversion in C₃H₆-SCR (Figure S17a), while such a pretreatment promotes C₃H₆ conversion in H₂-C₃H₆-SCR at temperatures higher than 250 °C (Figure S17b). It can also be seen from this figure that the better NOₓ to N₂ conversion of Ag(2)/Al₂O₃-H₂O occurs at temperatures higher than 400 and 225 °C in C₃H₆-SCR (Figure S17a) and H₂-C₃H₆-SCR (Figure S17b), respectively.

4. Discussion

4.1. Exceeding the 2 wt% Ag optimum loading on Al₂O₃ by pretreating this oxide support in warm water prior to Ag deposition: towards structure-activity correlations

FTIR (Figure S4) and ¹H NMR (Fig. 1) clearly indicated that the pretreatment of alumina in warm water increased the OH content of Al₂O₃. Whereas FTIR estimates the increase in OH by about 10% after pretreatment of Al₂O₃ in warm water, this increase appears to be much higher by ¹H NMR (about 60%). This discrepancy may be attributed to (i) the fact that the extinction coefficients of the various OH species may be different, while the NMR proton response is known to be independent of the nature of the OH groups, and/or (ii) that the pretreatment of the samples used for both characterization techniques, i.e. evacuation at 400 °C in FTIR compared to calcination at 500 °C for ¹H NMR (experimental
Fig. 6. Influence of the addition of 0.21% H\textsubscript{2} on the conversions of NO\textsubscript{x} to N\textsubscript{2} (full symbols) and C\textsubscript{3}H\textsubscript{6} to CO\textsubscript{x} (open symbols) (C\textsubscript{3}H\textsubscript{6}-SCR (▴, △) and H\textsubscript{2}-C\textsubscript{3}H\textsubscript{6}-SCR (●, ○) reactions) on (a) Ag(1)/Al\textsubscript{2}O\textsubscript{3}-H\textsubscript{2}O, (b) Ag(2)/Al\textsubscript{2}O\textsubscript{3}-H\textsubscript{2}O, (c) Ag(3)/Al\textsubscript{2}O\textsubscript{3}-H\textsubscript{2}O, (d) Ag(5)/Al\textsubscript{2}O\textsubscript{3}-H\textsubscript{2}O, (e) Ag(7)/Al\textsubscript{2}O\textsubscript{3}-H\textsubscript{2}O and (f) Ag(7)/Al\textsubscript{2}O\textsubscript{3} for mechanical mixtures of Ag(x)/Al\textsubscript{2}O\textsubscript{3}(-H\textsubscript{2}O) catalysts and Al\textsubscript{2}O\textsubscript{3} for which the amount of Ag was kept essentially constant to 30.9 ± 0.1 µmol. Illustration of the NO\textsubscript{x} to N\textsubscript{2} efficiency criterion for C\textsubscript{3}H\textsubscript{6}-SCR (g) and H\textsubscript{2}-C\textsubscript{3}H\textsubscript{6}-SCR (h) on Ag(3)/Al\textsubscript{2}O\textsubscript{3}. Feed compositions: 0 or 0.21% H\textsubscript{2}, 385 ppm NO\textsubscript{x}, 400 ppm C\textsubscript{3}H\textsubscript{6}, 8% O\textsubscript{2} and He balance with a 230 mL\textsubscript{NTP}/min flowrate. The concentration of H\textsubscript{2} in the course of the H\textsubscript{2}-C\textsubscript{3}H\textsubscript{6}-SCR reaction is also shown (•-•).
section), would lead to more dehydroxylated AlO$_3$ surfaces in the samples investigated by FTIR compared to those investigated by 1H NMR. As the pretreatment used prior to recording 1H NMR spectra appeared to be closer to that used of the samples prior to Ag deposition, it can be concluded that the pretreatment of AlO$_3$ in warm water followed by a calcination at 600 °C led to an increase in the OH groups of about 60% in AlO$_3$-H$_2$O compared to AlO$_3$. It is to be noted that such an increase in the amount of OH groups in AlO$_3$-H$_2$O cannot be correlated straightforwardly to an increase in its surface area, as the surface area of AlO$_3$-H$_2$O ($\sim 195 \text{ m}^2/\text{g}$) was found to increase by about 8% only compared to that of AlO$_3$ ($\sim 180 \text{ m}^2/\text{g}$, Table 1). It must also be mentioned that the envelope of the 1H NMR spectrum of AlO$_3$-H$_2$O closely resembled that of AlO$_3$ (Fig. 1), which indicates that all types of OH species were increased evenly by the pretreatment of AlO$_3$ in warm water. The changes in AlO$_3$-H$_2$O may be reasonably attributed to the chemical weathering of alumina [84] and the associated extraction of Al$^{3+}$ cations followed by their precipitation as aluminum hydroxides and their transformation to transition aluminas, hardly differentiable by XRD, after a calcination step (Figure S2). The occurrence of dissolution-precipitation phenomena during the pretreatment of AlO$_3$ in warm water is supported by the changes in surface morphology of the AlO$_3$ grains observed by SEM. Figure S3 indeed shows the appearance of micrometric bayerite and AlO$_3$ platelets on the surface of the AlO$_3$ grains after pretreatment of the pristine support in warm water and further calcination, respectively.

More interestingly, it was found that the pretreatment of AlO$_3$ in warm water prior to Ag deposition led to significantly more active silver alumina catalysts (Fig. 5b,c, $\text{Ag}(\chi)/$AlO$_3$H$_2$O) compared to those prepared with the pristine AlO$_3$ support (Fig. 5b,c, $\text{Ag}(\chi)/$AlO$_3$) for Ag loadings lower than 5 and 7 wt% for C$_6$H$_5$-SCR (Fig. 5b) and H$_2$C$_5$H$_{3}$-SCR (Fig. 5c), respectively. In addition, the optimum loading of Ag for C$_6$H$_5$-SCR (Fig. 5b, $\text{Ag}(\chi)/$AlO$_3$), and widely accepted in the field as 2 wt% on AlO$_3$ [16,30,36-38,42], was found to be shifted to about 3 wt% for the catalysts prepared from the AlO$_3$ support pretreated in warm water prior to Ag deposition (Fig. 5b, $\text{Ag}(\chi)/$AlO$_3$H$_2$O). To our knowledge, such a shift in the optimum Ag loading in C$_6$H$_5$-SCR due to the pretreatment of AlO$_3$ has never been reported to date. This shift in optimum Ag loading for C$_6$H$_5$-SCR can be remarkably correlated to the characterization of the AlO$_3$ support of the Ag(\chi)/AlO$_3$H$_2$O samples by NO$_x$-TPD (Fig. 5a,b, $\text{Ag}(\chi)/$AlO$_3$H$_2$O, blue dotted arrow) for which optimum C$_6$H$_5$-SCR catalytic activity is found to perfectly match the Ag loading at which the NO$_x$ uptake starts to remain essentially constant, as also reported earlier [42] in the case of a Ag(\chi)/AlO$_3$ (Fig. 5a,b, $\text{Ag}(\chi)/$AlO$_3$, red dotted arrow). Such a unique NO$_x$-TPD-C$_6$H$_5$-SCR structure-activity correlation provides further support for the usefulness of the characterization of the AlO$_3$ supporting oxide of Ag/AlO$_3$ catalysts by NO$_x$-TPD and can be used as a reliable descriptor of the efficiency of the silver alumina catalysts in the field of C$_6$H$_5$-SCR. One may argue that our preliminary work on the influence of the pretreatment of AlO$_3$ in warm water prior to Ag deposition would refute such a statement, as in this previous work an improvement in H$_2$C$_5$H$_{3}$-SCR performance only was observed on Ag(1.8)/AlO$_3$OH [72]. Despite the difference in the duration of the pretreatment AlO$_3$ in warm water, it must be highlighted that Ag was deposited on a dried pretreated sample in this earlier work [72], whereas the samples studied in the present work were prepared on a warm-water-treated support that was subsequently dried and calcined prior to Ag deposition. Hence this difference in pretreatment prior to Ag deposition may be at the origin of such apparently conflicting results. It is also important to note that the shift in optimum Ag loading from about 2 (Ag(\chi)/AlO$_3$) to about 3 wt% (Ag(\chi)/AlO$_3$H$_2$O), i.e. about 50% increase, in C$_6$H$_5$-SCR performance (Fig. 5b) and NO$_x$ uptake stabilization (Fig. 5a) remarkably agrees with the increase in OH species quantified by 1H NMR (Fig. 1), i.e. about 60%.

In addition, the present NMR data unprecedently show that Ag (Fig. 1 and Figure S13) and NO$_x$ (Figure S7) perturbs the same μ-OH species of AlO$_3$, pretreated or not in warm water, which is fully consistent with the decrease in NO$_x$ uptake observed as the loading of Ag increases at low Ag loadings in both silver alumina series (Fig. 5a). Identification of the adsorption sites of NO$_x$ on AlO$_3$ remains challenging. In addition to the potential interaction of NO$_x$ species with Al$^{3+}$ and O$^{2-}$ surface sites [91-93], earlier FTIR studies have highlighted on the disappearance of part of the OH groups of AlO$_3$ after exposure to various NO$_x$ atmospheres [91,93]. Szanyi et al. also concluded that most of the consumed OH groups were not restored during TPD following the NO$_x$ uptake experiments [93]. These observations are consistent with the OH-assisted formation of nitrates (3 NO$_2$ + 2 OH = 2 NO$_3$ + NO + H$_2$O) proposed earlier by Hadjiivanov and co-workers over TiO$_2$ [94]. Considering all of the above, the greater NO$_x$ uptake of AlO$_3$-H$_2$O compared to AlO$_3$ (Fig. 5a) can be reasonably attributed, at least partly, to an increase in the OH content of AlO$_3$-H$_2$O compared to AlO$_3$ (Fig. 1). Finally, a remarkable correlation can also be established between the vanishing of the μ-OH species at about −0.10 ppm that occurred at about 2 and 3 wt% Ag for 1H NMR spectra of the Ag (x)/AlO$_3$ (Figure S13) and Ag(\chi)/AlO$_3$H$_2$O (Fig. 1) series, respectively, and the corresponding NO$_x$ uptakes (Fig. 5a) and C$_6$H$_5$-SCR performance (Fig. 5b). All of the above could indicate that a key parameter in the synthesis of silver alumina catalyst to preserve Ag in a highly dispersed state [42] would lie in the amount of OH species available on the AlO$_3$ supporting oxide. Such a conclusion would be consistent with the earlier statement of Zhang and Kaliaguine [60] and Wang et al. [63] on the potential exchange process between Ag$^+$ ions and some protons of AlO$_3$ during the conventional impregnation step to lead to Ag-O-Al species. This justifies the works done by several groups on the use of various AlO$_3$ precursors [60,61], on the morphology of AlO$_3$ [62-64] and on ball-milled AlO$_3$ supports [69,71] to improve HC-SCR performance. This OH key parameter could also help reconcile earlier literature data for which optimum Ag loading was unexpectedly determined to be 4 wt% [95], rather than the commonly accepted loading of 2 wt% [16,30,36-38,42], for which the used AlO$_3$ may have exhibited a much greater proportion of OH groups of interest as anchoring sites of Ag.

The present series of Ag(\chi)/AlO$_3$H$_2$O was therefore subjected to in-depth NMR investigations to help unravel the AlO$_3$ sites of importance in the anchoring of Ag.

4.2. Unravelling of the alumina sites of importance for anchoring Ag: A NMR-assisted study

As indicated in the NMR result section, the 1H-1H DQSQ MAS spectrum of AlO$_3$-H$_2$O (Fig. 3a) was found to be identical to that reported by Merle et al. [80] and therefore used for the asignation of the protons of the present study. While various combinations of protons have been proposed in the work Merle et al. [80], their preferential location on the AlO$_3$ crystallites has not been attempted. By combining NMR measurements and DFT modelling, based on revisited models for the (100), (111), basal (110h) and lateral (110j) facets of γ-AlO$_3$, Batista et al. recently provided further insights into the location of the various protons on the AlO$_3$ crystallites [81]. In their study, Batista et al. showed the proximity of μ-OH species (located on the edge defined by the intercept of the basal (110h) and (100) facets, and noted as (110h)/(100) edge) and μ-OH species (located on the basal (110h) facet near the (110h)/(100) edge), which are themselves close to μ^2-OH species (located on basal (110h) facets) [81]. Given that the NMR fingerprints of the OH species identified in the present work are fairly consistent with those reported earlier by Merle et al. [80] for a comparable alumina carrier, and that Batista et al. investigated the surface location of the OH species on model alumina crystallites [81], we tentatively assigned the location of the various (A-G) hydroxyl groups (Fig. 7). We propose that μ-OH (110h)/(100) edge, μ^2-OH on the basal (110h) facet near the (110h)/(100) edge and μ^3-OH (110j) facets species could be attributed to μ-OH (C), μ^2-OH (D) and μ^3-OH (E) species,
respectively. In addition, Batista et al. predicted the presence of two μ^1-OH species located on the (100)/(110) edge. The first ones are in close proximity with identical μ^1-OH species and could be attributed to μ^1-OH (F) species. The second ones are close to μ^2-OH species located on the (100) facet near the (100)/(110) edge and could be assigned to μ^1-OH (A) and μ^2-OH (B), respectively. Finally, μ^2-OH species on basal (110) and lateral (110) facets of γ-Al$_2$O$_3$ close to each other could be assigned to μ^2-OH (G) species.

As already stated in the preceding section, Ag anchoring has been proposed to occur on the alumina surface via substitution of a proton from an OH group and eventually leading to the formation of Al-O-Ag species [60,63,75]. From the comparison of the NMR data of Al$_2$O$_3$-H$_2$O and Ag(1)/Al$_2$O$_3$-H$_2$O (Fig. 1, Fig. 3a, Fig. 3b), the increase in the signal of the μ^1-OH species at about 0.4 ppm, and the decrease in those of μ^1-OH at about –0.10 ppm and μ^2-OH at about 2.5 ppm may be accounted for by the grafting of Ag on a μ^1-OH group, issued from the rehydroxylation of the μ^2-OH species during the Ag impregnation step of Al$_2$O$_3$-H$_2$O, and located near the (100)/(110) edge (Fig. 8c). Such a grafting leads to the shift of μ^1-OH (A) at about 0.2 ppm and (F) at about 0.1 ppm of Al$_2$O$_3$-H$_2$O (Fig. 8a) to μ^1-OH (A') and (F') at about 0.4 ppm due to Ag perturbation on Ag(1)/Al$_2$O$_3$-H$_2$O (Fig. 8c), and the creation of new μ^1-OH (N) species on the (100) facets at the expense of those of μ^2-OH (B) at 2.5 ppm. The chemical shift of this newly formed μ^1-OH (N) species on Ag(1)/Al$_2$O$_3$-H$_2$O should also be of about 0.4 ppm, as the intensity of this signal increases to a much greater extent than the decrease in the μ^1-OH (A) and (F), and μ^2-OH (B) signals (Fig. 1). Such an Ag grafting would also account for the increase and the narrowing of the signal corresponding to (AlIV)-μ^1-OH species (Figure S9), whereas the interference caused by the presence of silver disturb the environment of AlVI species, leading to a narrowing of the signal at about 7 ppm in the 27Al dimension of D-HMQC experiment (Figure S9). For Ag (2)/Al$_2$O$_3$-H$_2$O, similar Ag grafting should also applies and the essentially constant μ^2-OH (B) may be attributed to an overlapping of this signal with the signal at 0.4 ppm, which increases drastically when the Ag loading increases from about 1 to about 2 wt% (Fig. 1, spectra e,f). The fact, on the one hand, that the signal at 0.4 ppm remains essentially constant and that the signal at –0.15 ppm disappears at Ag loadings greater than 2 wt% and on the other hand, that the signal at about 2 ppm decreases at Ag loadings greater than or equal to 3 wt% (Fig. 1, spectra e,f) suggests an additional anchoring of Ag onto μ^2-OH (D) species located on the (110)h.

Fig. 7. Proposed location of the A-G hydroxyl species on the model Al$_2$O$_3$ crystallite reported by Batista et al. [81].

Fig. 8. Description of the various proton environments on γ-Al$_2$O$_3$ and schematic representation of the influence of the addition of Ag on the OH groups of γ-Al$_2$O$_3$. The dotted double arrows show nuclei that could be probed by 1H-1H DQSQ MAS and 1H-27Al D-HMQC MAS NMR, while simple arrows show how silver influences the signals of the neighboring protons. The colors of the dotted boxes correspond to those used for the edges and planes of the Al$_2$O$_3$ crystallite shown in Fig. 7.
facets and close the (110)h/(100) edge (Fig. 8d) and a shift of the μ_1-OH (C) species at -0.15 ppm to 0.4 ppm (μ_2-OH (C)). The presence of Ag atoms in the proximity of $\Delta(\text{Ag})$-μ_1-OH (A, C, F and N) species may account for by the appearance of the new Al$^3+$ signal at about 70 ppm (Figure S9).

In summary, the present in depth NMR study allowed us to conclude to the grafting of Ag (i) preferentially on μ_1-OH groups of Al$_2$O$_3$-H$_2$O, in agreement with the earlier studies [63,75], up to a loading of about 3 wt % Ag that would be located near the (100)/(110) edge and then near the (110)h/(100) edge of Al$_2$O$_3$ crystallites and (ii) on μ_2-OH groups of Al$_2$O$_3$-H$_2$O at higher Ag loadings (Fig. 8).

The FTIR band at 3730 cm$^{-1}$ has been commonly assigned in earlier literature reports to the vibration of μ_2-OH groups [63,80], and reference therein. The observed increase in intensity of this band on the addition of Ag on Al$_2$O$_3$-H$_2$O (Figure S4b), together with the fact that the μ_2 signal at 0.4 ppm, -unambiguously assigned to μ_1-OH species-, was found to be the only one to increase in H spectra (Fig. 1) therefore confirm the original FTIR assignation of the band at 3730 cm$^{-1}$ as μ_2-OH vibrators.

The finite number of μ_1-OH Ag anchoring species on the edges of Al$_2$O$_3$ may therefore be at the origin of the limited amount of Ag able to be accommodated on Al$_2$O$_3$ in a highly dispersed state to form the catalytic Ag species and/or to act their precursor in the (H$_2$)$_2$C$_3$H$_6$-SCR reactions. This finite number of μ_1-OH Ag anchoring species on the edges of Al$_2$O$_3$ would be at the origin of the well-known existence of an optimum loading of Ag on Al$_2$O$_3$ for C$_3$H$_6$-SCR [42]. Li et al. recently took advantage of such a peculiarity to lower the amount of Ag introduced on Al$_2$O$_3$ by poisoning its Ag anchoring sites by copper prior to introduction of Ag [96]. This original approach was reported to provide Ag-low-loaded Ag-CuO/Al$_2$O$_3$ catalysts with enhanced activity and selectivity for the catalytic oxidation of ammonia compared to their Ag/Al$_2$O$_3$ counterparts.

5. Conclusion

The present work shows that pretreatment of pristine Al$_2$O$_3$ in warm water prior to Ag deposition allows to prepare catalysts of significantly higher performance in (H$_2$)$_2$C$_3$H$_6$-SCR compared to conventional Ag/Al$_2$O$_3$ catalysts. In addition, remarkable NO$_x$-TPD-C$_3$H$_6$-SCR structure-activity correlations indicate that optimum composition of the Ag/Al$_2$O$_3$ catalysts can be improved by about 50% in terms of Ag content for the first time, leading to an optimum composition of about 3 wt% Ag on Al$_2$O$_3$-H$_2$O compared to about 2 wt% on pristine Al$_2$O$_3$. Combining H$_2$-H DQSQ MAS and H$_2$-STAl D-HMQC MAS NMR in-depth unprecedented NMR investigations on Ag-Al$_2$O$_3$ samples and a thorough literature survey of most recent investigations performed on Al$_2$O$_3$ in this field, allowed us to identify the alumina sites of importance in the anchoring of Ag. These sites are proposed to be μ_1-OH groups located near the (100)/(110) edge and then near the (110)h/(100) edge of Al$_2$O$_3$ crystallites and bonded to octahedrally coordinated Al species. This study, the first of its kind, paves the way to further improvements in the fundamental understanding of Al$_2$O$_3$ and in particular the deposition of Ag on Al$_2$O$_3$, which may be broaden to the deposition of other transition metals on such a widely used supporting oxide.

CRediT authorship contribution statement

Yannick Millot: Writing – review & editing, Writing – original draft, Visualization, Investigation, Data curation, Conceptualization. Guylène Costentin: Writing – review & editing. Clémence Rodigue: Investigation, Data curation. Thomas Onfroy: Writing – review & editing, Investigation, Data curation. Cyril Thomas: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Resources, Project administration, Investigation, Data curation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgments

The authors thank Sorbonne Université and CNRS for providing funding (Crédits reçus) and access to the analytical equipment used in the present work. The authors also acknowledge S. Koné-Guira, Dr. J. Schnee and S. Casale for recording the N$_2$ sorption isotherms on about half of the samples listed in Table 1, the XRD patterns of the vacuum-dried and calcined Al$_2$O$_3$-H$_2$O samples (Figure S2), and the SEM images (Figure S3), respectively. The SEM microscope and NMR spectrometer used in the present work belonging to the Fédération de Chimie et Matériaux de Paris-Centre (FCMat, Fédération de Recherche 2482) were funded by UPMC, CNRS and Région Ile de France.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.123975.

References

[6] Total emissions of nitrogen oxide (NOx) in the European Union (EU-27) from 1990 to 2021, (2023) (https://www.statista.com/statistics/1171343/nitrogen-oxide-emissions-european-union-eu/1171328/#:~:text=Nitrogen%20%5E2%0Ae%3D%0A1171320%28NO%29%2C%3D%0A%26%0A1171320%2Epert%0A%26%0A1171321%26%0A1171320%26%0A1171322%0Apercent)

Y. Millot et al.

13

[54] Y. Millot et al.

Supplementary Information

Deciphering the Improvement in C₃H₆-SCR Performance Promoted by H₂ or not of Ag/Al₂O₃ Catalysts prepared from Warm-Water-Treated Alumina: a NMR-Assisted Identification of the Ag Anchoring Sites of the Alumina Support

Yannick Millotᵃ⁻*, Guylène Costentinᵃ, Clémence Rodigueᵃᵇ, Thomas Onfroyᵃ and Cyril Thomasᵃ⁻*

ᵃSorbonne Université, CNRS, Laboratoire Réactivité de Surface, LRS, F-75005 Paris, France.
ᵇCESI, 93 boulevard de la Seine, 92000 Nanterre, France.

* To whom correspondence should be addressed:
Drs. Cyril Thomas and Yannick Millot
Sorbonne Université, CNRS, Laboratoire Réactivité de Surface, LRS, UMR CNRS 7197, 4 Place Jussieu, Tour 43-53, 3ᵉʳ étage, Case 178, F-75252, Paris, France
e-mails: cyril.thomas@sorbonne-universite.fr, yannick.millot@sorbonne-universite.fr
Tel: + 33 1 44 27 36 30/Fax: + 33 1 44 27 60 33
Figure S1. Schematic description of the synthesis of the Ag(x)/Al₂O₃ and Ag(x)/Al₂O₃-H₂O series. The green arrow in the synthesis route using warm-water-pretreated Al₂O₃ (Al₂O₃-H₂O) refers to as the same procedure as that used for Ag deposition on the pristine Al₂O₃ support (γ-Al₂O₃).
Figure S2. XRD patterns of Al$_2$O$_3$-H$_2$O (treated in water at 80 °C for 66 h) after vacuum drying at RT (green) and calcination at 600 °C for 4 h (blue). γ-Al$_2$O$_3$ (JCPDS 79-1558), Bayerite (● JCPDS 20-11) and Gibbsite (▲ JCPDS 33-18).
Figure S3. SEM-FEG images at various magnifications of (a-c) the pristine Al$_2$O$_3$ support (Al$_2$O$_3$), (d-f) the dried warm-water-pretreated Al$_2$O$_3$ support and (g-i) the calcined warm-water-pretreated Al$_2$O$_3$ support (Al$_2$O$_3$-H$_2$O).
Figure S4. Absorbance FTIR spectra normalized on a 10 mg/cm2 basis of (a) Al$_2$O$_3$ and Al$_2$O$_3$-H$_2$O and (b) Ag(x)/Al$_2$O$_3$-H$_2$O samples.
Figure S5. 1H-1H DQSQ MAS NMR spectrum of Ag(2)/Al$_2$O$_3$-H$_2$O.
Figure S6. Stacking of the 1H MAS NMR spectra of the Ag(x)/Al$_2$O$_3$-H$_2$O series of samples shown in Figure 1 in the –1.0 - +1.0 ppm region.
Figure S7. Influence of the exposure of Al$_2$O$_3$-H$_2$O and Ag(1)/Al$_2$O$_3$-H$_2$O to NO$_x$ at RT for 4 h on the 1H MAS NMR signals.
Figure S8. 1H-27Al D-HMQC MAS NMR spectrum for Ag(1)/Al$_2$O$_3$-H$_2$O.
Figure S9. Sum of the spectra of the 27Al dimension of the 2D D-HMQC spectrum between (a) – 0.5 and 0.5 ppm and (b) 1 and 3 ppm.
Figure S10. 1H-27Al D-HMQC MAS NMR spectrum of Ag(2)/Al$_2$O$_3$-H$_2$O.
Figure S11. 1H-27Al D-HMQC MAS NMR spectrum of Ag(3)/Al$_2$O$_3$-H$_2$O.
Figure S12. 1H-27Al D-HMQC MAS NMR spectrum of Ag(5)/Al$_2$O$_3$-H$_2$O.
Figure S13. 1H MAS NMR spectra of Al$_2$O$_3$, Ag(1)/Al$_2$O$_3$, Ag(2)/Al$_2$O$_3$ and Ag(3)/Al$_2$O$_3$.
Figure S14. 1H-27Al D-HMQC MAS NMR spectrum of Al$_2$O$_3$.
Figure S15. 1H-27Al D-HMQC MAS NMR spectrum of Ag(1)/Al$_2$O$_3$.
Figure S16. (a) NO-(gray), NO$_2$-(orange) and NO$_x$-TPD (blue) profiles recorded on Al$_2$O$_3$·H$_2$O, (b) NO$_x$-TPD profiles recorded on Al$_2$O$_3$·H$_2$O (blue), Ag(1)/Al$_2$O$_3$·H$_2$O (orange), Ag(2)/Al$_2$O$_3$·H$_2$O (gray), Ag(3)/Al$_2$O$_3$·H$_2$O (yellow), Ag(5)/Al$_2$O$_3$·H$_2$O (red), Ag(7)/Al$_2$O$_3$·H$_2$O (green) and Ag(9)/Al$_2$O$_3$·H$_2$O (purple), and (c) NO-(dark gray), NO$_2$-(light gray) and NO$_x$-TPD (black) profiles recorded on Ag(4)/Al$_2$O$_3$, after calcination at 500 °C for 2 h under 20% O$_2$/He (100 mL$_{NTP}$/min), flushing at RT for 1 h at RT under 8 % O$_2$/He (230 mL$_{NTP}$/min) and temperature-programmed desorption with a heating rate of 3 °C/min under 8 % O$_2$/He (230 mL$_{NTP}$/min).
Figure S17. Comparison of C$_3$H$_6$-SCR (a) and H$_2$-C$_3$H$_6$-SCR (b) catalytic performance of Ag(2)/Al$_2$O$_3$ (red traces) and Ag(2)/Al$_2$O$_3$-H$_2$O (blue traces). Feed compositions: 0 or 0.21% H$_2$, 385 ppm NO$_x$, 400 ppm C$_3$H$_6$, 8% O$_2$ and He balance with a 230 mL NTP/min flowrate.