
HAL Id: hal-04530705
https://hal.sorbonne-universite.fr/hal-04530705

Submitted on 3 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of dilution enthalpies within implicit-solvent
models for electrolytes

Jean-Pierre Simonin

To cite this version:
Jean-Pierre Simonin. Modeling of dilution enthalpies within implicit-solvent models for electrolytes.
Journal of Molecular Liquids, 2024, 394, pp.123801. �10.1016/j.molliq.2023.123801�. �hal-04530705�

https://hal.sorbonne-universite.fr/hal-04530705
https://hal.archives-ouvertes.fr
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Paris, France

Abstract

This work deals with the calculation of dilution enthalpies for strong aqueous electrolyte solu-
tions when their thermodynamic properties are described within implicit-solvent models. The
solution is modeled as a collection of charged hard spheres in a continuum solvent. A new general
expression is obtained that accounts for the variation of the solution permittivity, of the size of
the ions, and of the specific volume of the solution, with temperature and concentration. This
expression is used to compute the enthalpies of LiCl aqueous solutions at temperatures in the
range of 25◦C to 100◦C for concentrations up to 6 mol kg−1. The mean spherical approxima-
tion (MSA) model with implicit continuum solvent is employed to describe the thermodynamic
properties of these solutions.
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1. Introduction

The theoretical prediction of thermal effects in electrolytes is of interest in industrial pro-
cesses, such as absorption refrigeration [1] (mainly using LiBr solutions), CO2 capture [2], or
when mixing electrolyte solutions in chemical reactors. The dilution of an ionic solution is an
example of such a process. The thermal effect accompanying it is a versatile phenomenon [3]
because it can generate a release or an absorption of heat, depending on the initial and final salt
concentrations and the temperature at which the dilution is performed.

Dilution enthalpies have been extensively studied in the literature for more than a century [4,
5]. Many experiments have been carried out, mainly on aqueous solutions [6–14]. Experimental
results have been described mostly with models based on the Debye-Hückel (DH) theory [6–
8, 12, 14–18].

Another approach using a DH-type term is the Pitzer model [19] which offers a convenient
way of representing deviations from ideality in aqueous electrolyte solutions by combining a
DH contribution and a virial-type expansion in the Gibbs energy of the solution, that are both
expressed in terms of molalities. The latter peculiarity advantageously avoids accounting for
volume changes when the temperature is varied. Then it is easier to obtain expressions for first-
or second-order derivative properties like enthalpies and heat capacities with this model. Beside
these descriptions, the mean spherical approximation (MSA) model [20] has been employed in
a few works for an account of electrostatic effects on heats of dilution [21–24].
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The DH and MSA treatments are models with implicit solvent. As such, they are developed
at the McMillan-Mayer (MM) level of solutions [25] where the chemical potential of the solvent
is maintained constant by applying an additional pressure (the osmotic pressure) on the solution
[26]. The MM framework is a generalization to concentrated solutions of the theory of van’t Hoff
[27], who first highlighted the analogy between a dilute solution and a gas of solute. In contrast,
dilution enthalpies are measured at constant pressure, at the Lewis-Randall (LR) level of the
‘real world’ (laboratory). When experimental quantities are represented using an implicit-solvent
model, a conversion of the MM theoretical results to the LR framework must be performed in
order to compare them with experimental data [28–30].

The use of a MM model to describe dilution enthalpies thus requires a suitable treatment.
However, to the best knowledge of this author, it seems that, despite some preliminary work on
this topic [26, 28], such a complete treatment has not been presented so far. In the few publica-
tions using the MSA, the final expression for the enthalpy was at best obtained by differentiating
intermediate MSA quantities with respect to temperature, which resulted in cumbersome equa-
tions with limited physical meaning [22, 23]. An examination of the literature calls for two main
remarks: (i) The passage from MM level to LR has not been included in the models describing
dilution enthalpy data and, (ii) no simple and compact theoretical relation has been proposed
from which values can be predicted.

The purpose of this work is first to bridge this gap, and derive general and compact expres-
sions for the dilution enthalpies of strong electrolytes. This task was facilitated by using some
fundamental work by Friedman [28], which seems to have remained unnoticed in the subsequent
literature. These expressions were then used for a study of dilution enthalpies for a particular
system.

The present work is organized in the following way. The theoretical aspects of the problem
are developed in the next section. This includes a new general expression for the dilution
enthalpy of an electrolyte solution, and a workable relation in terms of quantities at the MM
level. Then, use of these relations is illustrated in the case of LiCl aqueous solutions between
25◦C and 100◦C for concentrations up to 6 mol kg−1. In a first step, the approach involves a
representation of the experimental activity and osmotic coefficients within the MSA framework,
by assuming that the solution permittivity and ion sizes vary with the salt concentration and
the temperature with dependence involving some adjustable parameters. In a second step, this
description is used for a computation of the dilution enthalpies, and these results are compared
with literature data for this quantity. Agreement between the two suggests that the procedure
is thermodynamically consistent and that the expression for the enthalpy is valid.

2. Theory

2.1. Dilution enthalpies

The heat of dilution from an initial concentration to infinite dilution, which is equal to but
of opposite sign of the relative apparent molal heat content, Lϕ, is not a directly measurable
quantity [12]. The heat measured experimentally is a difference, ∆Lϕ, observed when going
from an initial to a final finite concentration. Values for Lϕ have been generally obtained by
extrapolation of low-concentration data to zero concentration by using the extended DH equation
[31].

The heat of dilution per mole of solute in the process going from a solution of molality m1

to one of molality m2 is [19]

∆Hd(m1 → m2) = Lϕ(m2)− Lϕ(m1) (1)
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in which Lϕ is the apparent relative molal enthalpy,

Lϕ =
1

n

∂(GLR/T )

∂(1/T )

∣∣∣∣
P,m

(2)

where n is the number of moles of solute, GLR is the excess Gibbs energy of solution per kilogram
of solvent, at LR level (that of the experiment) [32],

GLR = νnRT (1− ϕLR + ln γLR) (3)

and the differentiation is performed in the LR system, at constant pressure P and molality m.
In these relations, R is the gas constant, T is temperature, ν is the stoichiometric number of
the salt, and ϕLR and γLR are the LR osmotic and mean molal activity coefficients of the salt,
respectively.

One obtains from the latter two relations,

Lϕ = νNA
∂(1− ϕLR + ln γLR)

∂β

∣∣∣∣
P,m

(4)

where NA is Avogadro’s number, (ϕLR − 1) represents the excess LR osmotic coefficient, and
β = 1/kBT with kB is the Boltzmann constant (kB = R/NA).

It is shown now how this expression for Lϕ can be expressed in terms of quantities at the
McMillan-Mayer (MM) level, at which the continuum solvent model is developed. Hereafter, we
consider a binary solution of a strong salt in water.

First, the LR activity and osmotic coefficients are expressed as functions of their MM coun-
terparts according to Eqs. (5) and (6) below [29, 30],

ln γLR = ln γMM − CtV± ϕMM + ln

(
V 0
w

V

)
(5)

with γMM the mean salt activity coefficient on molar scale at MM level, Ct = νC the total
solute concentration (with C the salt concentration), V± the mean solute partial molal volume
of solution, ϕMM the MM osmotic coefficient, V 0

w the specific volume of pure water (= 1/d0,
with d0 its density), and V the specific volume of solution (volume per kg of water). In Eq. (5),
the last term on the r.h.s. corresponds to the conversion of γMM to the LR activity coefficient
on molar scale. The second term on the r.h.s. of this equation corresponds to the MM-to-LR
conversion [30].

The MM-to-LR conversion of the osmotic coefficient gives,

ϕLR = ϕMM (1− CtV±) (6)

By using Eqs. (5) and (6) in Eq. (4) one finds after simplification,

Lϕ = νNA
∂

∂β

[
1− ϕMM + ln γMM + ln

(
V 0
w

V

)] ∣∣∣∣
P,m

(7)

This expression may be further simplified by using the relation [33],

1− ϕMM + ln γMM = βAMM/ρt (8)
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in which AMM is the excess Helmholtz energy per unit volume at the MM level of the model,
and ρt is the total number density of solute,

ρt = NACt = NAνC (9)

with C expressed in SI units (mol m−3). One arrives at,

Lϕ = νNA
∂

∂β

[
βAMM

ρt
+ ln

(
V 0
w

V

)] ∣∣∣∣
P,m

(10)

Care must be exercised in this differentiation at constant P andm. Ref. 28 gives us an indication
of how to do this properly. Since the pressure is constant when T is varied, one may use Eqs.
(8) and (13) of this latter reference to write,

∂(βAMM/ρt)

∂β

∣∣∣∣
P,m

=
∂(βAMM/ρt)

∂β

∣∣∣∣
ρt

+
∂(βAMM/ρt)

∂(1/ρt)

∂(1/ρt)

∂β

∣∣∣∣
m

(11)

where the constant pressure has been omitted for convenience on the r.h.s. of this relation.
In the first term, one may use the fundamental thermodynamic relation: ∂(βAMM )/∂β =

UMM , where UMM is the excess internal energy per unit volume of the system at MM level. In
the second term, one may utilize Eq. (10) of Ref. 33 from which one gets,

∂(βAMM/ρt)

∂(1/ρt)
= ρt(1− ϕMM ) (12)

Moreover, by virtue of Eq. (9) and the relation C = m/V , one has

∂(1/ρt)

∂β

∣∣∣∣
m

=
1

νmNA

∂V

∂β

∣∣∣∣
m

(13)

By combining these relations, Eq. (11) thus becomes,

∂(βAMM/ρt)

∂β

∣∣∣∣
P,m

=
UMM

ρt
+ (1− ϕMM )

∂ lnV

∂β

∣∣∣∣
m

(14)

Finally, it stems from Eqs. (10) and (14), and after simplification, that,

Lϕ =
UMM

C
+ νRT 2

(
ϕMM ∂ lnV

∂T

∣∣∣∣
m

− ∂ lnV 0
w

∂T

)
(15)

with C expressed in mol m−3.
This relation could also have been obtained by using Eq. (15) of Ref. 28 and making

the approximation that the solution is incompressible (which is already assumed in Eqs. (5)
and (6) for the MM-to-LR conversion [29, 30]). This latter approximation then entails some
simplifications in the equations [30] that finally lead to Eq. (14).

The next section is devoted to an examination of the internal energy UMM that appears in
Eq. (14).
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2.2. Total internal energy in models with continuum solvent

2.2.1. A basic relation

As first pointed out by Rushbrooke [34] in 1940, the total internal energy of a system, in which
the energy levels of the accessible states explicitly depend upon the temperature, is not given by
the internal energy expressed classically in models in which the energy levels are temperature-
independent or assumed to be so. The fundamental reason for this is that the probability
of a state of energy E(T ) is not given by a Boltzmann factor of the form exp[−E(T )/kBT ].
Nonetheless, Rushbrooke indicated the way the two are connected [34].

This is illustrated now in the case of an ionic solution modeled as a collection of simple
spherical ions distributed in an implicit solvent mimicking the properties of water.

In continuum solvent models like the DH theory or the MSA, it is often assumed that the
electrostatic interaction potential between ions i and j carrying charges qi and qj at their center,
and separated by a distance r between their centers, is expressed as,

uelij(r) =
1

4πε0

1

ε(T )

qiqj
r

(16)

so having the same form as the direct Coulomb potential (in a vacuum), u
el(0)
ij (r) = (1/4πε0) qiqj/r.

In these equations, ε0 is the permittivity of a vacuum and ε(T ) is the relative permittivity of
the solution, which is a function of temperature.

Following Rushbrooke [34], the interaction potential of ions i and j to be taken in thermo-
dynamic studies of an electrolyte is,

wij(r) =
∂[βuij(r)]

∂β

= uij(r) + β
∂uij(r)

∂β

(17)

Generally, uij is the sum of the electrostatic term of Eq. (16) and a contribution correspond-
ing to hard core repulsion [see Eq. (20)]. It varies with temperature because, conceptually,
it can be viewed as resulting from an average of the potential of the system upon the states
(coordinates) of the solvent. Eq. (17) expresses that this property introduces an additional term
to uij(r).

As mentioned by Rasaiah and Friedman [35], the total electrostatic internal energy of an
electrolyte solution is then given by,

UMM =
1

2

∑
i,j

ρiρj

∫ ∞

0
gij(r)

∂[βuij(r)]

∂β
4πr2 dr (18)

where ρi is the number density of ions of type i, and gij is the radial distribution function (RDF)
for ions i and j. Eq. (18) replaces the relation that is commonly utilized in the literature, which
involves simply an integral of uij over r when uij does not depend explicitly on the temperature.

2.2.2. Internal energy

In analytic models with implicit continuum solvent like the MSA, ions are modeled as charged
hard spheres. Beside the variation of the permittivity with T , another parameter expected to
be temperature-dependent is the diameter of the ions. This dependence originates from the
variation of ion-water and water-water interactions with temperature, which in turn modify the
effective ion-ion interactions. Assuming a varying ion-ion least distance of approach, or of the
ion sizes, is a convenient way of modeling this modification.
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The full interaction potential is written as,

uij = uHS
ij + uelij (19)

in which the hard sphere (HS) potential uHS
ij is a function of the minimum distance of approach

between ions i and j. One has, {
uHS
ij (r) = +∞, for r < σij

uHS
ij (r) = 0, for r ≥ σij

(20)

where σij is the minimum approach distance of ions of type i and j. It will be assumed that

σij = (σi + σj)/2 (21)

with σk the diameter of an ion of type k.
The total excess internal energy of the system (ions plus solvent), UMM , is given by Eqs.

(18) and (19). Using Eq. (17) and the chain rule one can write that,

∂(βuij)

∂β
= uij +

∂(βuij)

∂ε−1

∂ε−1

∂β
+

∂(βuij)

∂σij

∂σij
∂β

(22)

from which one gets,
UMM = U0 + Uε + Uσ (23)

where

U0 = 2π
∑
i,j

ρiρj

∫ ∞

0
gij(r)uij(r) r

2 dr (24)

is the usual internal energy in models at MM level when the permittivity and the ion sizes are
constant versus T , and

Uε = 2π
∑
i,j

ρiρj
∂ε−1

∂β

∫ ∞

0
gij(r)

∂[βuij(r)]

∂ε−1
r2 dr (25)

Uσ = 2π
∑
i,j

ρiρj
∂σij
∂β

∫ ∞

0
gij(r)

∂[βuij(r)]

∂σij
r2 dr (26)

In the equation for Uε, it is clear from Eqs. (16) and (19) that

∂uij
∂ε−1

= ε uij (27)

which yields by virtue of Eqs. (24) and (25) the well-known additional Bjerrum contribution
[15] arising from the change of the dielectric properties of the solvent,

Uε = βε
∂ε−1

∂β
U0 (28)

A workable expression for Uσ is less straightforward to obtain. The first step is to write,

∂(βuij)

∂σij
= − exp(βuij)

∂[exp(−βuij)]

∂σij
(29)
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Now, using Eqs. (19) and (20), one readily finds that,

exp[−βuij(r)] = exp[−βuelij(r)]H(r − σij) (30)

in which H is the Heaviside step function (distribution): H(x) = 0 for x < 0 and H(x) = 1 for
x > 0. One therefore obtains,

∂[exp(−βuij(r))]

∂σij
= − exp[−βuelij(r)] δ(r − σij) (31)

with δ the Dirac delta function (distribution): δ(0) = +∞ and δ(x) = 0 for x ̸= 0.
By employing Eqs. (29) and (31), one gets,∫ ∞

0
gij(r)

∂[βuij(r)]

∂σij
r2 dr =

∫ ∞

0
{gij(r) exp[βuij(r)]} exp[−βuelij(r)] δ(r − σij) r

2 dr

=

∫ ∞

0
yij(r) exp[−βuelij(r)] δ(r − σij) r

2 dr

= σij
2 gcij

(32)

in which yij = gij exp(βuij) is the cavity distribution function, and gcij = gij(σij) is the RDF
at contact of ions i and j. The function yij has been introduced because it has the remarkable
property of being a continuous function of r [36]. Then the last equality in this equation is
obtained by using this property at r = σ+

ij where uij = uelij .
Insertion of this result in Eq. (26) gives the following relation,

Uσ = 2π
∑
i,j

ρiρj σij
2 gcij

∂σij
∂β

(33)

This expression can be simplified by using Eq. (21), which yields,

Uσ = 2π
∑
i

ρi ωi
∂σi
∂β

(34)

with
ωi =

∑
k

ρk σik
2 gcik (35)

We note in passing that, because UMM = ∂(βAMM )/∂β, relation (34) also means that (∂βAMM/∂σi) =
2πρi ωi, which entails that the following relation must be fulfilled,

ρi
∂ωi

∂σj
= ρj

∂ωj

∂σi
(36)

This equation seems to be a new relation, imposing a condition on the contact RDF’s of the
ions when the latter are modeled as hard spheres. It was found that the result from the scaled-
particle theory for a fluid of hard spheres [37] satisfies this relation. This is not so for the RDF
derived from the work by Carnahan and Starling [37] or the Percus-Yevick equation [38] for hard
spheres, or the MSA RDF for ions [39].

If we now specialize to the case of a binary solution of a strong 1:1 salt (salts in which one
ion is multivalent generally exhibit ion pairing in water), then one has ν = 2 and ρ+ = ρ− = ρ,
in which + and − designate the cation and anion, respectively.
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In the restricted case where the cation and anion have the same diameter, σ+ = σ− = σ,
one gets from Eq. (34),

Uσ = 4πρ2σ2 (gc++ + gc+−)
∂σ

∂β
(37)

because gc−− = gc++ in that case.
In the unrestricted case where the cation and anion have arbitrary diameters, and only the

cation size σ+ varies with temperature [40, 41] (and σ− remains equal to its crystallographic
diameter), one obtains using Eq. (21),

Uσ = 2πρ2
(
σ+

2 gc++ + σ+−
2 gc+−

) ∂σ+
∂β

(38)

Finally, to summarize, the dilution enthalpy resulting from Eqs. (15) and (23) may be
expressed as,

Lϕ =
U0

C
+

Uε

C
+

Uσ

C
+ νRT 2

(
ϕMM ∂ lnV

∂T

∣∣∣∣
m

− ∂ lnV 0
w

∂T

)
(39)

in which U0, Uε, and Uσ, are given by Eqs. (A.1) (U0 = UMSA when the MSA is used), (28)
and (34), respectively.

3. Results and discussion

The above analysis is now applied to the modeling of dilution enthalpy data within the MSA,
for aqueous solutions of lithium chloride at temperatures ranging from 25◦C to 100◦C, and 0 to
6 mol kg−1.

This salt was chosen for the following reasons. It is a strong salt at 25◦C [42] and the lithium
ion is the most hydrated monovalent metal cation [43]. In this work, it was assumed that LiCl
is a strong salt in water up to 100◦C, with the lithium ion keeping a firmly bound hydration
sheath in this temperature range.

The dilution enthalpy data were taken from works by Wu and Young [13] (at 25◦C only) and
Gibbard and Scatchard [44]. The data of Wu and Young resulted from calorimetric measure-
ments. Those of Gibbard and Scatchard were obtained from calorimetric measurements at 25◦C
[5] and from vapor-liquid equilibrium experiments (yielding γLR and ϕLR values from which
dilution enthalpy data were obtained by employing the same methodology as in this work). In
passing, it is noted that data at 0◦C were also given in Ref. [44] (but not mentioned in the
title of the publication); they were not considered in the present study because, surprisingly,
the origin of these data was not specified and remains unknown; moreover, it was observed that
these data were not well described by the treatment developed hereafter.

The method used in the present investigation was, first, to optimize a description of data for
activity and osmotic coefficients within the MSA (a model with continuum implicit solvent at
MM level), and then, by using the values of the adjusted parameters, to check that the values
for the dilution enthalpies obtained from Eq. (15) are in agreement with published data.

3.1. Activity and osmotic coefficients

Thus, in the first place, deviations from ideality for LiCl aqueous solutions were described
at temperatures going from 25◦C to 100◦C. The data for γLR and ϕLR were retrieved from the
same source as for dilution enthalpies [44], and fitted using the mean spherical approximation
(MSA) [20, 33, 39, 40, 45]. The MSA expressions for γMM and ϕMM , together with that for the
internal energy, are given in Appendix A.
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The MM-to-LR conversion has a strong effect on activity and osmotic coefficients at high
ionic strength [30]. In the case of LiCl at 5 molar (∼6 molal), it is found that it produces a
∼33% decrease in γ and a ∼10% decrease in ϕ. These changes are nearly constant in the range
of 25◦C to 100◦C.

Two types of MSA models were employed, namely the restricted case in which the sizes of
cation and anion are equal and vary with C and T ; and the unrestricted case in which the two
ions have different diameters and only the diameter of the cation varies with C and T [33, 40]. In
the latter case, the anion size was assumed to be constant vs. temperature, equal to its Pauling
crystallographic diameter. In the two versions, the relative solution permittivity was assumed
to vary with C and T .

Following previous work [33, 40, 41], it was supposed that the ion size and the inverse of the
permittivity vary linearly with the salt concentration as,

σ = σ(0)(T ) + σ(1)(T )C and ε−1 = εw(T )
−1 [1 + α(T )C] (40)

where σ stands for the diameter of cation and anion in the restricted case, or for σ+ in the
unrestricted case, and εw is the dielectric constant of water. The parameter σ(0) is the diameter
of the ion at infinite dilution, and σ(1) and α stand for the rates of variation of σ and ε−1

with concentration. The rationale behind Eq. (40) is that σ does not vary too much with C,
this equation being then a first-order Taylor expansion of σ vs. C, and ε has the same type
of variation as the experimental permittivity [46]. Because the degree of ion hydration and the
amount of free water are expected to drop with salt concentration, one should have σ(1) < 0
and α > 0, so that σ and ε decrease with C.

These two relations were introduced originally on the assumption that the ion size varies
relatively little on the interval of concentration, and on the observation that the inverse of
the experimental relative permittivity of solution, ε−1

sol, varies approximately linearly with con-
centration [46]. Let us notice however that εsol is likely to differ from the static ε needed in
thermodynamic models [47–50].

In Eq. (40), σ(0)(T ), σ(1)(T ), and α(T ) were (empirically) taken as polynomial functions of
the relative temperature difference, (T − T0)/T0, where T0 = 298.15 K (= 25◦C),

f(T ) = f0 + f1
T − T0

T0
+ f2

(
T − T0

T0

)2

+ . . . (41)

in which f0 = f(T0), and f = σ(0) (or σ
(0)
+ ), σ(1) (or σ

(1)
+ ), or α. In this work, polynomials of

the second degree were used for a fit of the data for LiCl solutions. Using polynomials of the
third degree did not improve appreciably the results for the dilution enthalpies.

The present description therefore involves 9 parameters. The model employed in the original
work of Gibbard and Scatchard involved 25 parameters [44]. It is well known that, in general,
a rather large number of parameters is required in any model to describe first-order derivative
thermodynamic properties as a function of concentration and temperature.

In Eq. (40), the dielectric constant of water, εw, is known with accuracy from experiment as
a function of temperature between 0◦C and 100◦C [51]. A formula was proposed in the latter
work as,

log10 εw = 1.94315− 0.0019720 t (42)

where t is the temperature in degrees Celsius.
The specific volume V was obtained from the general relation,

V = (1 +mM)/d (43)
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Figure 1: Fit of mean salt activity coefficient of LiCl in aqueous solutions up to 6 mol kg−1 at temperatures
of, from top to bottom: 25◦C, 50◦C, 75◦C, 100◦C. Solid lines: results of fit. The curves for the restricted and
unrestricted case cannot be distinguished from each other.

Table 1: Parameter values obtained from fit of γLR and ϕLR in the restricted case (σ+ = σ−)

σ
(0)
0 σ

(0)
1 σ

(0)
2 102σ

(1)
0 102σ

(1)
1 102σ

(1)
2 102α0 102α1 102α2

(Å) (Å) (Å) (Å mol−1 L) (Å mol−1 L) (Å mol−1 L) (mol−1 L) (mol−1 L) (mol−1 L)

4.301 -0.2640 -0.9161 -3.444 -0.7586 5.045 7.923 -2.053 -13.01

in which M is the salt molar mass and d is the solution density. The latter was computed using
a formula of the form d = dw + d1C + d2C

3/2, where dw, d1, and d2 are quadratic polynomials
of the temperature given in Ref. 52. The derivative of ln V w.r.t. T at constant m in Eq. (15)
was computed using Eq. (43), which yields the relation,

∂ lnV

∂T

∣∣∣∣
m

= −
(∂d/∂T )

∣∣
C

d− C ∂d/∂C
(44)

The derivative ∂ lnV 0
w/∂T is obtained by taking C = 0 in the latter equation.

In Eqs. (5) and (6), the mean solute partial molal volume of solution, V±, was computed
using the equation [30],

V± =
1

2

M − ∂d/∂C

d− C ∂d/∂C
(45)

The experimental LR mean salt activity and osmotic coefficients were fitted at the same
time. The objective function was the sum of the absolute relative deviations of the calculated
γLR and ϕLR as compared to the experimental. All the data up to 6 mol kg−1 were included in
the fit, except for the γLR values from 0.1 to 0.8 mol kg−1 at 75◦C, which are erroneously equal
to those for ϕLR in Ref. 44 (the data for ϕLR were not included either in the fit).

The results for the fit of γLR and ϕLR are shown in Figures 1 and 2, respectively. The
adjusted parameter values are collected in Table 1 in the restricted case (equisized cation and
anion). The average absolute relative deviations (AARD’s) of fit were of 0.06% for γLR and
0.05% for ϕLR. The results in the unrestricted case are shown in Table 2. The AARD’s of fit
were of 0.05% for γLR and 0.04% for ϕLR, which is a little better than in the restricted case.

The variation of σ(0), σ(1), and α in the restricted and unrestricted cases is plotted in Figures

3-5. It is seen in Fig. 3 that the diameter at infinite dilution, σ(0) or σ
(0)
+ , decreases with T
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Figure 2: Fit of osmotic coefficient for LiCl aqueous solutions up to 6 mol kg−1 at temperatures of, from top to
bottom: 25◦C, 50◦C, 75◦C, 100◦C. Solid lines: results of fit. The curves for the restricted and unrestricted case
cannot be distinguished from each other.

Table 2: Same as Table 1 in the unrestricted case (varying σ+, and σ− = 3.62 Å)

σ
(0)
+,0 σ

(0)
+,1 σ

(0)
+,2 102σ

(1)
+,0 102σ

(1)
+,1 102σ

(1)
+,2 102α0 102α1 102α2

(Å) (Å) (Å) (Å mol−1 L) (Å mol−1 L) (Å mol−1 L) (mol−1 L) (mol−1 L) (mol−1 L)

5.000 -0.6365 -1.483 -6.920 -0.4819 8.042 9.170 -5.305 -9.280

in the two cases. This behavior was expected considering that thermal agitation may favor a
loosening of the water molecules around a hydrated ion, and consequently a shrinking of the

hydration shell. The drop of σ(0) or σ
(0)
+ with temperature might also be a consequence of the

breaking down of the tetrahedral structure of water when temperature is increased [53]. This
disintegration of the H-bond network is expected to modify the cation-anion potential of mean
force, leading to a drop of the minimum distance of approach of these ions. By virtue of Eq.

(21) for σ+−, this will produce a reduction of the value of σ(0) or σ
(0)
+ in the model.

Figure 4 shows that the rate of decrease of the ion diameter, expressed by −σ(1), first
increases slightly with T and then decreases in the two cases. This initial increase is very
small in the unrestricted case which is the more realistic one, with a hydrated cation and an
essentially unhydrated anion (the restricted case has less physical meaning). The slight initial
rise of −σ(1) is difficult to interpret. It is likely due to a small artifact of the model. Nonetheless,
the predominantly decreasing profile of −σ(1) with T in that case is in keeping with an expected
propensity of an ion to lose water molecules less easily when the ion becomes progressively less
hydrated. Likewise, as expected, it is observed that the rate of decrease of the permittivity, α,
drops with T together with the dielectric constant of water, εw.

3.2. Results for the dilution enthalpies of LiCl solutions

The expression for the apparent relative molal enthalpy, Lϕ, is given by Eq. (15) together
with the relation for UMM provided by Eq. (23).

The contribution, Uσ, expressed in Eq. (34), involves the RDF at contact, gcij . The MSA
value of this RDF [39] is known to be quite inaccurate [54], even at low salt concentration where
the like RDF can be negative [20]. In some cases, the MSA contact RDF for unlike ions is too
small by a factor of the order of 2. Moreover, it does not fulfill Eq. (36). The MSA RDF
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Figure 3: Ion diameters at infinite dilution as a function of temperature [see Eq. (40)]. Solid line: σ(0) (restricted

case); dashed line: σ
(0)
+ (unrestricted case).
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Figure 5: Parameter α for the variation of permittivity with concentration, as a function of temperature [see Eq.
(40)]. Solid line: restricted case; dashed line: unrestricted case.

therefore cannot be used for the prediction of dilution enthalpies.

3.2.1. Restricted case: σ+ = σ− = σ

Nevertheless, a theoretical result is available in the literature in the restricted case (equisized
cation and anion) for a symmetric electrolyte (ρ+ = ρ−) [54]. The equations for the RDF are
outlined in Appendix B. They were utilized in Eq. (37).

The result for the dilution enthalpies of LiCl aqueous solutions is plotted in Figure 6 in the
restricted case of the MSA. The agreement with the data of Refs. 13 and 44 is very good for the
latter and fair for the former. The overall average absolute relative deviation (AARD) for these
data is ∼2.6%; it is of ∼1.6% for the data of Gibbard and Scatchard [44], and of ∼6% for those
of Wu and Young [13]. The reason for this difference is that the Lϕ values of the first reference
were computed from a fit of the activity and osmotic coefficients data, as in the present work,
while the Lϕ values of the second one were measured experimentally, and are not fully consistent
with the data of Gibbard and Scatchard.

It may be seen in Fig. 6 that the data exhibit an inflection point as a function of m. A calcu-
lation of the derivatives of Lϕ shows that the location of this point increases with temperature,
from m ≃ 2 mol kg−1 at 25◦C to m ≃ 3.4 mol kg−1 at 100◦C. The four contributions to Lϕ in Eq.
(39) at 25◦C are plotted in Figure 7. It is seen in the left panel that the dominant contributions,
U0/C and Uε/C, corresponding to electrostatic interactions and to the temperature variation of
the dielectric properties of the solvent, respectively, are of opposite sign. Being of comparable
orders of magnitude, they partly compensate each other. The right panel shows that their sum
is positive, and larger than Uσ/C below 4.6 mol kg−1, and smaller above. It reaches a value of
∼1660 J mol−1 at 6 mol kg−1 where Uσ/C ∼ 2200 J mol−1 (curve 3 in Figure 7). The latter
increases rapidly with C. In this breakdown, Uσ/C and, to a lesser extent, the contribution
to Lϕ arising from the variation of the solution density with concentration [the last term in
brackets in Eq. (39)], are responsible for the inflection point observed in Lϕ as a function of m
(their second derivative w.r.t. C or m is positive). Thus, Uσ/C constitutes a contribution of
significant magnitude to Lϕ.
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Figure 6: Dilution enthalpies for LiCl aqueous solutions up to 6 mol kg−1 within the restricted MSA. For each
curve, the temperatures are, from bottom to top : 25◦C, 50◦C, 75◦C, 100◦C. Symbols: (⊙) Data of Gibbard and
Scatchard [44]; (�) data of Wu and Young at 25◦C [13]. Solid lines: calculated Lϕ values.
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Figure 8: Same as for Figure 6 within the unrestricted MSA.

3.2.2. Unrestricted case: σ+ ̸= σ−
No equation for the RDF’s at contact is available for ions of different sizes. Only an approx-

imate formula may be employed in this case.
In this work, this was done by looking for a mean ion diameter to be used in the equations

of Appendix B for gc++ and gc+−, and then in Eq. (38) for Uσ. A first glance at this equation
indicates that a candidate could be the mean of σ+ and σ+− that are involved in the expression
of Uσ, that is,

σ =
3

4
σ+ +

1

4
σ− (46)

It was found numerically that the optimum diameter for the description of Lϕ for LiCl solutions
at all temperatures between 25◦C and 100◦C is indeed close to this σ, namely σopt ≃ (1 −
0.244)σ+ + 0.244σ−. The mean diameter σ was employed in Eq. (38) for Uσ, by assuming that
gc++ and gc+− are given by Eqs. (B.8) and (B.10) in which σ is used for σ.

The result for the dilution enthalpies of LiCl aqueous solutions is plotted in Figure 8 in the
unrestricted case of the MSA. It is just slightly less good than in the preceding section within
the restricted MSA. The overall AARD is now ∼3.6% as compared to ∼2.6% before.

It was found that the result for Lϕ below 2 mol kg−1 is weakly sensitive to the precise value
taken for σ in gc++ and gc+− of Eqs. (B.8) and (B.10). It becomes more and more sensitive as C
is increased.

4. Conclusion

In this work, it has been shown how to calculate dilution enthalpies of aqueous solutions of
strong salts from a description with implicit solvent. A compact expression has been obtained
for this quantity, that involves the internal energy of the solution at MM level.

The MSA has been used here for an application because it is a consistent and accurate model
for aqueous solutions of monovalent salts, in particular as compared to the DH theory [55]. The
expression for the dilution enthalpy has been validated in the case of LiCl aqueous solutions up
to 6 mol kg−1 in the 25◦C-100◦C temperature range. The restricted and unrestricted versions
of the MSA have been utilized.

The most convenient and apparently accurate one is the restricted MSA because an analytic
expression for the RDF at contact is available in the literature, not when the cation and anion
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have different sizes. However, an approximate way of computing the corresponding contribution
to the dilution enthalpy (Uσ) has been proposed to circumvent this issue, but its general validity
will have to be confirmed subsequently.

In future work, the case of aqueous solutions of other monovalent salts will be studied. The
case of higher valence salts would also deserve due attention. However, when the tempera-
ture becomes sufficiently high, the two types of salts will require introducing ion pairing in the
model, which will make the description more challenging to develop. It will also be attempted
to obtain an expression for the heat capacity in the framework of implicit-solvent models. Com-
putation of this second-order derivative property will require a very accurate description of the
thermodynamic properties of the solutions.
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Appendix A. Basic MSA equations

The excess electrostatic energy per unit volume, U0, of Eqs. (23) and (24) was calculated
within the MSA: U0 = UMSA. Its expression is given by [33],

βUMSA = −λ
∑
k

ρkzkNk (A.1)

where
λ = βe2/(4πε0εw) (A.2)

e is the elementary charge, and zk is the valence of ions of type k,

Nk = −Γzk + ησk
1 + Γσk

(A.3)

η =
1

Ω

π

2∆

∑
k

ρkσkzk
1 + Γσk

Ω = 1 +
π

2∆

∑
k

ρkσ
3
k

1 + Γσk
(A.4)

where ∆ is the volume fraction of free space (not occupied by solute particles), ∆ = 1 −
(π/6)

∑
k ρkσk

3, and Γ is the MSA screening parameter which satisfies the equation,

Γ2 = π λ
∑
k

ρk
[
(zk − ησ2

k)/(1 + Γσk)
]2

(A.5)

Its value can be easily determined numerically by rewriting Eq. (A.5) as Γ = f(Γ) and using
the iterative procedure Γn+1 = f(Γn) with, e.g., Γ0 = κ/2 (where κ is the Debye screening
parameter), which converges in a few steps.

The mean salt activity and osmotic coefficients at MM level are expressed as [33],

ln γMM = ln γHS + ln γMSA and ϕMM = 1 + ϕHS + ϕMSA (A.6)

One has,

ln γMSA =
βUMSA

ρt
− λ

2

π

η2

ρt
+

1

ρt

∑
k

ρkqkD(σk) +
βUMSA

ρt
εD(ε−1) (A.7)
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and

ϕMSA = − Γ3

3πρt
− λ

2

π

η2

ρt
+

1

ρt

∑
k

ρkqkD(σk) +
βUMSA

ρt
εD(ε−1) (A.8)

in which,

qk = λ

[
Γ2z2k

(1 + Γσk)2
+ η

ησ2
k(2− Γ2σ2

k)− 2zk
(1 + Γσk)2

]
(A.9)

and D represents the operator, D =
∑

k ρk∂/∂ρk = ρS∂/∂ρS .
When the ion size and the permittivity are given by Eq. (40), then one has,

D(σ) = σ − σ(0) and εD(ε−1) = 1− ε/εw (A.10)

In the restricted case where all ions have the same diameter σ, then η = 0 and one gets an
explicit result for Γ,

Γ =
[
(1 + 2κσ)1/2 − 1

]
/(2σ) (A.11)

and

ln γMSA = −λ
Γ

1 + Γσ

1

ρt

∑
k

ρkz
2
k ϕMSA = − Γ3

3πρt
(A.12)

It should be noted that no Born-like contribution is included in the expressions for γ and
ϕ within the MSA. Indeed such a term, accounting for changes in ion-solvent interactions with
concentration, is irrelevant at MM level where only (effective) ion-ion interactions should be
considered [46].

For the hard sphere contributions one has [33],

ln γHS =

(
X3

2

X0X2
3

− 1

)
ln∆+

X3

∆
+

3X1X2(2−X3)

X0∆2
+

X3
2 (1 + 2X3 −X2

3 )

X0X3∆3
+

1

ρt

∑
k

ρkQkD(σk)

(A.13)
with Xn = (π/6)

∑
ρkσk

3, and after correction of a power of 3 for ∆ in the penultimate term,
and

ϕHS =
X3

∆
+ 3

X1X2

X0∆2
+X3

2

3−X3

X0∆3
+

1

ρt

∑
k

ρkQkD(σk) (A.14)

with Qk = F1 + 2F2σk + 3F3σk
2, where F1, F2, and F3 are functions of the Xn’s and are given

in Ref. 33.

Appendix B. Radial distribution functions at contact

Most of the notations of Ref. 54 are adopted in this section.
The cation and the anion have the same diameter σ. One defines

β∗ = λ/σ, ρ∗ = ρtσ
3, η =

π

6
ρ∗, Γ∗ = Γσ (B.1)

where Γ is given by Eq. (A.11) and

Z = 1 +
4η − 2η2

(1− η)3
+ ρ∗

∂(βAex/N)

∂ρ∗
(B.2)

βAex/N = −β∗ Γ∗

1 + Γ∗ +
(Γ∗)3

3πρ∗
−B (B.3)
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B =
1

128
[B1 −B2 exp(−2Γ∗)] (B.4)

B1 = 40
(Γ∗)3

3
− 12(Γ∗)2 + 6Γ∗ + 4 (B.5)

B2 = 4(4Γ∗ + 1) + (4Γ∗ + 1) sin(2Γ∗)− 4Γ∗ cos(2Γ∗) (B.6)

βU ex/N = −β∗ Γ∗

1 + Γ∗ − β∗ ∂B

∂β∗ (B.7)

The derivatives in Eqs. (B.2) and (B.7) were calculated using Maple.
With these definitions, the like and unlike RDF’s at contact are expressed as,

gc++ = gc−− =
1 + η/2

(1− η)2
exp(gMSA

D ) (B.8)

with

gMSA
D = − β∗

(1 + Γ∗)2
(B.9)

and
gc+− = 2 gS − gc++ (B.10)

with
gS = 3 [Z − 1− (βU ex/N)/3] /(2πρ∗) (B.11)

It was checked within Maple that the numerical results of Ref. 54 for gc++ and gc+− were recovered
by using these relations.
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