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Abstract

This article presents a concise mathematical formulation of Integrated
Information Theory (IIT), aimed at making the theory more accessible.
IIT is one of the most influential theories of consciousness, and from a
computational point of view, it can be difficult and time-consuming to
find a clear presentation of the technical details of IIT.

Our presentation builds upon the work by Kleiner and Tull [3] that
presents IIT in a clear and unified mathematical framework. We propose
in this paper a synthesis that highlights the core formalisms of IIT while
setting aside the more philosophical aspects, such as the interpretation
of IIT’s axioms and postulates. The focus is squarely on the mathemati-
cal structure of IIT, utilizing basic but central concepts from probability
theory, such as Markov kernels and conditional independence, to artic-
ulate how IIT formalizes consciousness. The article discusses the ‘cut-
ting’ of interactions within a system to isolate and evaluate its integrated
information, a procedure central to IIT’s procedure for quantifying con-
sciousness. By distilling IIT to its mathematical essence, the article aims
to foster broader understanding and stimulate further discussion about
the theory’s potential as a model for consciousness, inviting future explo-
rations into its relationships with other theories and its implications for
understanding conscious processes.
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1 Introduction

Integrated Information Theory (IIT) is a complex theoretical framework which
aim to offer an account of consciousness [7, 1, 5]. In particular, the formalizations
of IIT 3.0 and 4.0 may appear opaque and difficult to access for newcomers [1].

We propose a synthetic mathematical formulation of IIT in a brief and acces-
sible format in order to facilitate its assessment and interpretation as a contender
for a mathematical theory of consciousness. Our primary focus is on the formal
aspects of IIT rather than its motivation and rationale. The only prerequisites
are the notions of Markov kernel, conditional expectation, and independence of
two random variables.

We build upon the work of Johannes Kleiner and Sean Tull:“The mathemat-
ical structure of integrated information theory” (2021) [3] and [1]. Kleiner and
Tull have done an excellent job in clarifying its presentation by distinguishing
the general features of the theory and its specificities across versions. Their
contribution offers a general and unifying mathematical framework for under-
standing IIT, allowing for a quantitative formulation of the theory. It can still
be perceived as quite sophisticated and difficult to process for a less mathemat-
ically knowledgeable audience.

To make the theory more accessible and widely disseminated, we aim for a
formulation that is less abstract but sufficiently general to capture in a concise
way the formalism and concepts at the core of IIT, with the least possible num-
ber of concepts, and in a manner that remains valid irrespective of the specifica-
tions of IIT across its various versions. We focus on IIT from the standpoint of
classical information theory and probability, setting aside quantum frameworks
emerging in the literature.

We envision our presentation as an easy and low-cost entry point for access-
ing the underlying mathematical and computational aspects of IIT in order to
foster interest and heuristic discussion about the substance of the theory from
computationally driven researchers.

2 Prerequisite concepts from Probability theory

In this section we present the sufficient mathematical concepts needed to con-
struct IIT’s Φ. We will define what a probability distribution is, what a Markov
kernel (a stochastic map) is, and what conditional independence is.

Definition 1 (Probability measures). Let X be a finite set, denote by P(X) the
set of probability measures on X,

p ∈ P(X) ⇐⇒ ∀x ∈ X, p(x) ≥ 0 and
∑

x∈X

p(x) = 1 (1)

Remark In this document, all spaces X will be finite spaces, so considera-
tions about their σ-algebras will be omitted; any finite set will come with its
discrete σ−algebra (see [6] to learn about σ−algebras).
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Definition 2 (Markov kernels (stochastic maps)). A Markov kernel or stochas-
tic map T from X to Y , denoted as T : X → P(Y ), sends any point x ∈ X to
a probability measure Tx ∈ P(Y ). For x ∈ X and y ∈ Y , we will denote Tx(y)
as T (y|x).

Markov kernels are the probabilistic analogs of deterministic maps. They
send any point x to a collection of possible values, each of which can arise with
a certain probability.

Example: Sensors can introduce noise, as when one focuses one’s (possibly
fatigued) eyes on a specific location in the hope of finding an object. In such
cases, there is always some level of uncertainty introduced by the sensors; this
results in a “radius” of uncertainty, e.g. represented by the standard deviation
around the expected position of the object. Markov kernels allow us to model
not only this particular kind of uncertainty but also more general kinds of un-
certainty.

In the remaining of the document, T will be viewed as a stochastic evolu-
tion, a stochastic dynamic, i.e., the evolution of a system for which there is some
degree of uncertainty.

Let S be a finite set, representing a collection of indices, with each index cor-
responding to a random variable; each i ∈ S is associated with a random variable
Xi that takes values in Xi. The collection of random variablesXS := (Xi, i ∈ a)
takes values in XS :=

∏
i∈S Xi. For any subset a ⊆ S, we will denote by

xa := (xi, i ∈ a) the joint configurations of variables Xi, i ∈ a and similarly by
Xa :=

∏
i∈S Xi the space of all their possible configurations. In this document,

random variables will be represented in bold font, while the sets they take their
values from will be written in regular (non-bold) font.

For any a ⊆ S, its complement in S will be denoted as a.

Definition 3 (Conditional expectation). Let Y =
∏
i∈S1

Yi be a finite set and
let p ∈ P(Y ). For any a ⊆ S1, and any function f : Y → R, one defines the
conditional expectation with respect to Ya as;

∀ya ∈ Ya, E[f |Ya](ya) =
∑

ya∈Ya

f(ya, ya)p(ya, ya)∑
ya∈Ya

p(ya, ya)
(2)

The conditional expectation captures the amount of randomness left in a
collection of variables Yi, i ∈ S1 when some of the variables, Yi, i ∈ a, are
known to take a certain value, e.g., Ya = ya.

Proposition 1. For any probability measures Q ∈ P(XS), and any Markov
kernel T : XS → P(XS), one can define a joint distribution over XS × XS as
follows,

∀x′S , xS ∈ XS , p(x′S , xS) := T (x′S |xS)Q(xS) (3)
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Proof. This proof is elementary but we state it for the sake of completeness.
We must show that summing over x′S and xS gives 1. One will note that

∑

x′

S
,xS

p(x′S , xS) =
∑

xS

Q(xS)
∑

x′

S

T (x′S |xS) (4)

Now,
∑

x′

S

T (x′S |xS) = 1 by definition of T ’s being a Markov kernel. Hence,

∑

x′

S
,xS

p(x′S , xS) =
∑

xS

Q(xS) = 1 (5)

Which ends the proof.

There are two canonical projections on X × Y : the first one X × Y → X
that sends (x, y) to x, and the second one X × Y → Y that sends (x, y) to y.

Let us denote the first projection of XS ×XS → XS as X
(1)
S and the second as

X
(2)
S .

Definition 4 (Building a Markov kernel Xa → P(Xb) from a prior Q). Let
T = XS → P(XS) be a Markov kernel. For any a ⊆ S and b ⊆ S, a choice of
Q ∈ P(X) allows us to derive from T the kernel denoted TQ,a,b : Xa → P(Xb),
which encodes the effect of the variables Xa on Xb. It is defined as,

∀x
(2)
b ∈ Xb, ∀x

(1)
a ∈ Xa TQ,a,b(x

(2)
b |x(1)a ) := E[X

(2)
b = x

(2)
b |X(1)

a = x(1)a ] (6)

Its explicit expression is,

TQ,a,b(x
(2)
b |x(1)a ) := 1/C

∑

y
(2)

b
∈X

b

y
(1)
a

∈Xa

T (x
(2)
b , y

(2)

b
|x(1)a , y

(1)
a )Q(x(1)a , y

(1)
a ) (7)

with the normalizing constant:

C =
∑

y
(2)

b
∈X

b

y
(1)
a

∈Xa

x
(2)
b

∈Xb

T (x
(2)
b , y

(2)

b
|x(1)a , y

(1)
a )Q(x(1)a , y

(1)
a ) (8)

In the previous Equation 8, the sums over y
(2)

b
, x

(2)
b give the value 1, and one

can show that C =
∑

y
(1)
a

∈Xa

Q(x
(1)
a , y

(1)
a )

The ‘cut’ cuts the dynamic of T into two pieces. A graphical representation
of such a cut operation is given in Figure 1.

Important remark: In IIT, the a priori distibution Q for defining the ker-

nels TQ,a,b : Xa → P(Xb) is the uniform distribution over XS ; in other words,
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∀xS ∈ XS , Q(x) =
1

|XS|
(9)

Example: Let S = {1, 2}, X = {0, 1} and a = {1} and b = {2}. In this case

XS = {0, 1}2. Let Q be the uniform distribution over XS, i.e.,

Q(0, 0) = Q(1, 0) = Q(0, 1) = Q(1, 1) =
1

4
(10)

Then,

TQ,a,b(x2|x1) :=

∑
y1,y2∈{0,1} T (y1, x2|x1, y2)

2
(11)

3 ‘Cutting’ interactions: the central operation

of IIT

In this section, we will use probability kernels between subsets of the variable set
S to isolate interactions among variables. This approach allows us to contrast
interactions induced by independent local subsets with those induced by the
whole set. For a graphical representation see Figure 1.

X1 . . . Xn1

a1

X1 . . . Xn2

b1

T a1,b1

Xn1+1 . . .XN

a2

Xn2+1 . . .XN

b2

T a2,b2

X1 . . . XN

a

X1 . . . XN

b

T

Figure 1: Left: Cutting the interactions. Right: Overall interaction.

Consider two partitions of S: S = a ∪ a and S = b ∪ b. The dynamic T
induces on a and b the dynamic T a,b : Xa → P(Xb) and on a and b the dynamic

T a,b) : Xa → P(Xb). We want to build from these two partial dynamics a

dynamic on S from XS → P(XS) that cuts the influence of a on b from the one

of b on a. In order to do so we need to create from (T a,b, T a,b) a probability
kernel from XS → P(XS); this is done in the next definition.
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Definition 5 (Product of local kernels). For any two probability kernels, T a,b :

Xa → P(Xb) and T
a,b : Xa → P(Xb) posit,

(T a,b ⊗ T a,b)(x′|x) := T a,b(x′b|xa).T
a,b(x′

b
|xa) (12)

Note that for x ∈ XS, T
a,b ⊗ T a,b(.|x) := T a,bxa

⊗ T a,bxa
, where in the right

hand ⊗ represents the product of two measures (independence).

By extension for any two kernels T1 : X → P(Y1) and T2 : X → P(Y2), we
define T1 ⊗ T2 : X → P(Y1 × Y2) as T1 ⊗ T2(y1, y2|x) := T1(y1|x)T2(y2|x).

To compare T and T a,b ⊗ T a,b we introduce a ‘divergence’ on P(XS) that
allows us to compare distributions. This is the point of the next definition.

Definition 6 (Informal definition of divergence). For a finite space Y , we define
a divergence D on P(Y ) as a function D : P(Y ) × P(Y ) → R≥0 such that, for
any two probability distributions P and P1 in P(Y ), D(P, P1) decreases as the
two distributions P and P1 get ‘closer’; and it reaches its minimum value of 0
when and only when P = P1.

Example: any distance on the space of probability measures would make a
good divergence (e.g., Wasserstein distance, see [8]). Another candidate for a
divergence is the Kullback-Leibler divergence (see [2]), also known as the rela-
tive entropy.

For any x ∈ XS we can compare Tx and T
a,b
xa

⊗T a,bxa
by computing,D(Tx|T

a,b
xa

⊗

T a,bxa
).

4 Presenting Φ, focusing on effects

4.1 Little ϕ
e

When considering a fixed state, denoted as x ∈ XS , the extent to which the

transformation T a,bx deviates from T a,bxa
⊗ T a,bxa

reveals the degree to which the
dynamics induced by T cannot be simply derived from the dynamics of its con-
stituent parts (a, b) and (a, b). This measure provides valuable insight into the
overall “wholeness” of the dynamic behavior of T with respect to its individual
components.

The cut operation has a similar definition for a Markov kernel T : X → Y
with X =

∏
i∈S Xi and Y =

∏
i∈S1

Yi that are not necessarily the same spaces;
let a ⊆ S and b ⊆ Y , and Q1 ∈ P(X) a prior, then for a given a prior S ∈ P(Y ),
one defines,

TQ1,a,b(xb|ya) := 1/C
∑

ya∈Ya

x
b
∈X

b

T (xb, xb|ya, ya)Q1(xa, ya) (13)
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with the normalizing constant:

C =
∑

ya∈Ya

x
b
∈X

b

xb∈Xb

T (xb, xb|ya, ya)Q1(xa, ya) (14)

In what follows the ‘cut’ operations are applied to the Markov TQ,P,M with
M ⊆ S and P ⊆ S of S where Q is the uniform prior on the configurations of
XS . We give a specific notation to this Markov kernel:

∀xM ∈ XM TPM,xM
:= TP,MxM

(15)

Then one computes for a ⊆ M and b ⊆ P , and Q1 ∈ P(XM ) the uniform

distribution on P(XM ), the associated ‘cut’ kernel TPM
Q1,a,b : Xa → Xb. We

will denote TPM
Q1,a,b as T

P,(a,b)
M to recall that the ‘cut’ is made on the kernel

TPM , with a ⊆M , b ⊆ P .

For simplicity of the presentation, we focus our presentation on the ’effect’
component of IIT, the “ϕe” of IIT. We will denote it as ϕ. From there we
will compute the associated Φ. The ‘cause’ component of IIT follows similar
constructions.

We choose to first focus on “ϕe” in this section as it is sufficient to understand
the computation of Φ and the motivation for the expression of Φ without getting
lost in computational details that are not essential for understanding how Φ is
computed.

Definition 7. For any M,P ⊆ S and xM ∈ XM ,

ϕPM,xM
:= inf

a⊆M
b⊆P

D(TPM,xM
|T
P,(a,b)
M,xa

⊗ T
P,(a,b)
M,xa

) (16)

And
ϕ∗
M,xM

:= max
P⊆S

ϕPM,xM
(17)

Notation: Let us denote ψ(M,x) := argmaxϕPM

4.2 Big Φ
e
, focusing on effects

See any M ⊆ S as its collection of parts P(M) := {a ⊆M}. Consider x ∈ XS .
Assume that b ⊆ ψ(M,xM ); we will denote ba := b ∩ ψ(a, x) and b ∩ ψ(a, x) as
ba as. Then,

ΦM,x,b :=
∑

a⊆M

ϕ∗
a,xa

D(Tψ(a,xa)
a,xa

|T baa,xa
⊗ T baa,xa

) (18)
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It is important to remark that when φ∗a cancels it does not contribute to the
previous sum (see comments in Appendix A.4 [3] on that subject).

Then,

ΦM,x = argminb⊆ψ(M,xM )ΦM,x,b (19)

and then,
Φx := max

M
ΦM,x (20)

5 Discussion

We proposed a concise mathematical formulation of the core mathematical
structure of IIT as a tool to facilitate its analysis.

The quantities φ,Φ discussed in this article could in principle be computed
for any dynamical system, but the associated quantities could be equal to 0.

Although this is beyond the scope of this article, it would be worth for
future contributions to further situate, formally and systematically, IIT within
the constellation of other theoretical proposals directly or indirectly relevant
to consciousness. For instance, recent discussions and non-formal studies have
emerged regarding the relationships between IIT and active inference or the Free
Energy Principle [4]. Let us just envision here some preliminary considerations
in that direction.

For instance, one may wonder how agents that act according to active infer-
ence may be imbued with, and leverage an IIT structure.

Let us recall the basic formulation of active inference. There are two parts
to active inference: the first one is to compute the prior, and the second one is
to optimize preferences through action.

One possible way of fitting IIT’s algorithm into such a framework could be
to assume that the internal world model of the agent is cut into two pieces,
one for external-world dynamics and one for its own internal dynamics. X =
Xint×Xext, where Xint is a collection of variables that account for the internal
state of the agent and Xext for the external state. The actions of the agent
and the possible evolution of the external world then would induce a dynamics
Tθ,a : Xint × Xext → P(Xint × Xext) that depends on the model θ the agent
has of its environment, with a ∈ A a choice of action. Then we can consider
the effects of the dynamical system T on Xint → P(Xint) as discussed in the
previous sections, i.e., considering a = {Xint} ⊆ {Xint} ∪ {Xext} and b =
{Xint}; we denote the associated dynamics T int

θ,a. At each time t of the algorithm
of active inference, after updating the prior θ and choosing an action a, one could
then use IIT’s computations on T int

θ,a, which would account for the agent’s own
level of consciousness. The agent would thus use a level of consciousness as
defined by IIT as a quantitative feedback. The agent could then regulate its
own functioning based on internal quantities representing, at a meta-level, if
not its own consciousness, at least some measure of its own efficiency or flow.
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