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Summary 

Behavioral activities that require control over automatic routines typically feel effortful 

and result in cognitive fatigue. Beyond subjective report, cognitive fatigue has been 

conceived as an inflated cost of cognitive control, objectified by more impulsive 

decisions. However, the origins of such control cost inflation with cognitive work are 

heavily debated. Here, we suggest a neuro-metabolic account: the cost would relate 

to the necessity of recycling potentially toxic substances accumulated during 

cognitive control exertion. We validated this account using magnetic resonance 

spectroscopy (MRS) to monitor brain metabolites throughout an approximate 

workday, during which two groups of participants performed either high-demand or 
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low-demand cognitive control tasks, interleaved with economic decisions. Choice-

related fatigue markers were only present in the high-demand group, with a 

reduction of pupil dilation during decision-making and a preference shift towards 

short-delay and little-effort options (a low-cost bias captured using computational 

modeling). At the end of the day, high-demand cognitive work resulted in higher 

glutamate concentration and glutamate/glutamine diffusion in a cognitive control 

brain region (lateral prefrontal cortex, lPFC), relative to low-demand cognitive work 

and to a reference brain region (primary visual cortex, V1). Taken together with 

previous fMRI data, these results support a neuro-metabolic model in which 

glutamate accumulation triggers a regulation mechanism that makes lPFC activation 

more costly, explaining why cognitive control is harder to mobilize after a strenuous 

workday. 

 

Keywords 

Fatigue, cognitive control, decision-making, reward, delay, effort, prefrontal cortex, 

glutamate, spectroscopy, computational modeling  
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Introduction 

Even professional chess players start making mistakes, typically after 4-5 hours in 

the game, that they would not make when well-rested. A consensual explanation of 

why chess playing induces cognitive fatigue is that planning moves cannot rely on 

learned effortless routines (except at the beginning of the game), because the space 

of possibilities is way too large. Winning the game, therefore, requires the capacity to 

monitor new context-action mappings, a capacity that is known as cognitive or 

executive control1,2. In neuroscience, behavioral tasks have been developed to vary 

the demand in cognitive control, by imposing frequent remapping of stimulus-

response associations based on contextual information, as in working memory and 

task-switching paradigms. Using these paradigms, functional neuroimaging studies 

have identified a lateral prefrontal-parietal system recruited when more cognitive 

control must be engaged3,4. 

Yet the reason why exerting cognitive control is exhausting remains unclear5. 

Explanations have been proposed in the behavioral economics and social 

psychology literatures, which have investigated a related notion of self-control 

or self-regulation. This self-control capacity is notably involved when resisting 

an impulse (e.g., to eat tasty junk food or to scream with pain) for the sake of 

long-term goals (e.g., to stay in good health or to remain socially acceptable). 

Resource depletion theories6,7 have suggested that exerting such control may 

tap on global energetic supply (such as blood glucose). However, evidence in 

favor of these theories has been reconsidered, such that empirical ground is 

still lacking8,9. In any case, these theories fail to explain what is special with 

self-control and why other cognitive processes such as vision would not 

induce (and suffer from) global resource depletion. Moreover, a global 

resource depletion account would contradict the well-shared idea that energy 

consumption by the brain is constant and globally unaffected by cognitive 

processing10,11. 

Noting the absence of biological grounds for fatigue related to cognitive 

control, other authors have suggested functional explanations. The general 

idea is that cognitive fatigue would be a sensation generated by the brain, 

whose purpose is to stop performing the current demanding task for the 
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benefit of a more rewarding activity12–14. In that framework, fatigue would stem 

from a cost-benefit calculation that adjusts the behavior, to enjoy available 

pleasures or avoid opportunity costs. An argument in favor of cognitive 

fatigue as a functional adaptation is that increasing the payoff of the ongoing 

task tends to improve performance, even in a state of exhaustion15, suggesting 

that there is no true loss of capacity. However, a difficulty with a purely 

functional account is that fatigue appears unnecessary: if there is a good 

reason to stop working on a task and turn to a more gratifying activity, the 

brain could figure it out without generating an illusion of fatigue. Also, it 

becomes implausible to maintain that cognitive fatigue is just a functional 

adaptation when considering the numerous pathological conditions, such as 

burnout and depression, in which fatigue precisely prevents the patient from 

enjoying life opportunities16,17. 

To articulate the functional and biological accounts of cognitive fatigue, we 

propose 1) that such fatigue stems from an increase in the cost of exerting 

cognitive control, 2) which in turn stems from metabolic alterations in the 

brain system underpinning cognitive control. Rather than performance 

decrement with time-on-task, which can be confounded with boredom, 

counteracted by training, or compensated by motivation18, we reasoned that 

cognitive fatigue might be better captured by economic choices where 

monetary benefits are discounted by effort or delay costs. A choice bias for 

low-cost options would thus represent an objective marker of cognitive 

fatigue, even in the absence of a conscious fatigue sensation that could be 

reported on a psychometric scale. Indeed, subjective fatigue reports are 

notoriously unreliable, due to limitation of insight, social desirability bias, and 

variability in the mapping from sensations to rating scales19–23. 

In a previous study24, we developed a day-long protocol mixing cognitive 

control tasks meant to induce cognitive fatigue and intertemporal choices to 

reveal cognitive fatigue. To avoid confounding cognitive control exertion from 

boredom or simply time, we compared groups of participants performing easy 

and hard versions of the same tasks for the same duration. Only with hard 

versions did we observe an increase in the preference for immediate rewards 

over larger later rewards. This increased choice impulsivity after a day of hard 
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work was associated with decreased activity in a specific component of the 

cognitive control system: the left lateral prefrontal cortex (lPFC). The same 

behavioral and neural signatures of cognitive fatigue were also observed in 

endurance athletes suffering from a mild form of burnout due to training 

overload25. Previous results, therefore, support our hypothesis that cognitive 

fatigue arises from an increase in the cost of recruiting the cognitive control 

brain system. 

Yet these previous studies using functional MRI could not address the 

question of why the cost of cognitive control increases when used for a 

prolonged duration. The present study aimed to fill this gap, using in vivo 1H 

MR spectroscopy to quantify metabolites in neural tissues, while participants 

followed a similar day-long protocol. It has been suggested before that the 

cost could arise from the need to clear waste products that would accumulate 

during cognitive control exertion and would potentially be toxic for neural 

functions26. Another possibility would be that the cost arises from the need to 

restore some energetic resource or metabolic precursor which, unlike blood 

glucose, would be specifically consumed in cognitive control brain regions. 

The case of glutamate is particularly interesting, as when released in high 

quantity it may be both missing inside the cell (for the neuron to maintain its 

activity) and disturbing synaptic transmission (to other neurons) outside the 

cell. Thus, glutamate may be considered a substance that could be either 

depleted or accumulated with neural activity. To monitor metabolites of the 

glutamate family, we used an optimized 1H MR spectroscopy sequence27,28. We 

then looked for a three-way interaction between groups (easy versus hard 

cognitive work), brain regions (lPFC vs. visual cortex), and time on task 

(session number). 

In addition, we used diffusion-weighted 1H MR spectroscopy29 to monitor the 

diffusion of glutamate-related substances30, because we anticipated that their 

concentration might remain constant, even if the metabolic account for 

cognitive fatigue is correct. The reason is that spectroscopic measures of 

metabolic concentrations cannot distinguish between cell types, nor between 

cell compartments. A depletion inside the cell could therefore be compensated 

by an accumulation outside the cell. Diffusion measures are useful to detect 
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this sort of phenomenon, because they are differentially sensitive to 

compartments, as diffusion is more limited inside cells or vesicles than 

outside cells31,32. The same three-way interaction between group, region, and 

session was therefore tested on diffusion MRS data. 

Finally, compared to our previous protocol, we added behavioral tests and 

measures to better specify the link between cognitive fatigue and the cost of 

cognitive control. In particular, we included other domains of economic choice 

with options that trade monetary rewards against costs that were either related 

to cognitive control (effort discounting) or not (probability discounting). 

Relatedly, we extended our computational model of economic choice with 

additional bias parameters favoring low-cost options in all domains. In 

addition, we measured pupil dilation during decision-making as an index of 

cognitive effort invested in deliberation, as we had no fMRI measurement to 

document the reduction in cognitive control exertion. Last, to better dissociate 

these choice-related markers of cognitive fatigue from experienced fatigue 

sensation, we collected subjective self-reports on a visual rating scale. 
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Results 

Behavioral measures of cognitive fatigue 

To induce cognitive fatigue, participants followed a previously validated experimental 

protocol24 (see Figure 1). For 6.25h, participants performed cognitive tasks (N-

switch and N-back) that require cognitive control. In both tasks, letters were 

displayed on a computer screen every 1.6 seconds. In the N-switch task, participants 

had to perform either a vowel vs. consonant or an upper vs. lower case 

discrimination task, depending on the color of the letter. The difficulty in this task 

depends on the rate of switches (i.e., color changes), which was 1 vs. 12 in 24 trials 

for the easy vs. hard versions. In the N-back task, participants had to state whether 

the letter on-screen was identical or different from the letter presented in N trials 

before. The difficulty in this task depends on the distance between trials (i.e., the 

load of information to keep in working memory), which was 1 vs. 3 for the easy vs. 

hard versions. Participants were split into two groups: the test group (n=24) 

performed the hard version (12-switch and 3-back), while the control group (n=16) 

performed the easy version of cognitive tasks. 

In our search for behavioral signatures of mental fatigue, we started with 

traditional measures: performance decrement and self-report. Both groups 

were trained on the day before and maintained a high level of performance 

throughout the test day (correct response rate >80%, see Figure 2A). A three-

factor (group x session x task) linear mixed model fit on performance showed 

a significant difference between groups (beta = 0.06, p <0.01) and a significant 

decrease with session number (beta = -0.01, p = 0.001), but no significant 

difference between tasks (beta = -0.009, p = 0.68) and no significant group by 

session interaction (beta = -0.002, p = 0.61). In log-transformed response times 

(RT), the same model showed a significant difference between groups (beta = -

0.11, p <0.001), a significant difference between tasks (beta = -0.14, p <0.001), 

but no significant effect of session (beta = 0.001, p = 0.63) and no significant 

group by session interaction (beta = -0.004, p = 0.20). Thus, performance 

measures confirmed that low-demand tasks were easier (with higher accuracy 

and shorter RT) than high-demand tasks, but provided no evidence for a 

fatigue effect (across sessions) that would differ between groups. 
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In addition to objective performance, participants were also asked to rate their 

subjective level of fatigue on a rating scale. A two-factor (group x session) 

linear mixed model analysis showed a significant increase with session 

number (beta = 9.3, p <0.001), but no significant difference between groups 

(beta = -8.14, p = 0.19), and no significant interaction (beta = -0.32, p = 0.85). 

Thus, the subjective report could not capture fatigue that would specifically 

relate to task difficulty, hence to the load on cognitive control. To assess other 

potential psychological states that may have affected choices, we also asked 

participants to rate their level of hunger and stress. Hunger ratings increased 

before lunch (sandwich and fruit eaten during the 10-min break) but trivially 

decreased afterward, while stress ratings were stable throughout the day (Fig. 

S1A). These results suggest that self-reported fatigue (like hunger and stress) 

should be distinguished from the actual fatigue related to the exertion of 

cognitive control. 

To reveal cognitive fatigue associated with demand on cognitive control, we 

turned to economic choices. Participants made four choices after each 24-trial 

block of cognitive task trials. Each choice opposed a small-reward/low-cost 

option to a big-reward/high-cost option. The four choices corresponded to the 

four possible cost domains: 1) delay in reward delivery (bank transfer, as in 

previous protocol), 2) cognitive effort (difficulty level of a 30-min block of N-

switch task to be performed after the experiment), 3) physical effort (power of 

a 30-min cycling session on a home bike after the experiment), 4) probability of 

reward delivery (in a lottery played after the experiment). Big rewards were 

always 50€ and high costs were randomly varied across five predefined levels. 

Low costs were either zero or a close-to-zero fixed level (such as 3 days for 

delay discounting). Small rewards (associated with low-cost options) were 

adjusted to individual indifference points, in a calibration session before the 

experiment, such that each participant started the protocol in the morning with 

a rate of low-cost choices of around 50%. 

To analyze economic choices, we used a computational modeling approach 

that was previously validated23,25. Models included a domain-specific 

discounting function (with a free discount parameter 	) that integrated rewards 

and costs to generate option values and a softmax choice function (with a free 
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inverse temperature 
) that generated selection probabilities from the 

difference between option values. In addition to these standard parameters (k 

for the steepness of discounting and 
 for the consistency of choices), we 

included an additive bias parameter that shifted the softmax function towards 

the selection of the low-cost option. All free parameters were estimated per 

participant and session. 

To determine whether a computational parameter would capture cognitive 

fatigue related to task difficulty, we looked for group-by-session interactions in 

a two-factor linear mixed model analysis performed across cost domains. The 

interaction was neither significant for discounting steepness 	 (p = 0.24), nor 

for choice consistency 
 (p = 0.63), but was significant for the low-cost bias (p 

= 0.02, see Figure 2A and Table S1). The same analysis performed separately 

in each cost domain showed that the interaction was significant for delay, 

cognitive and physical effort discounting (all p <0.05), but not for probability 

discounting (p=0.98). Thus, the signature of cognitive fatigue was captured by 

the same low-cost bias parameter as in our previous studies23,25, now 

extended to other cost domains that involve cognitive control (not only to wait 

for gratification but also to exert effort), while sparing discount factors that do 

not involve cognitive control (such as the outcome probability in a lottery). 

Note that a model-free analysis would lead to similar conclusions. Indeed, the 

low-cost choice rate followed the same pattern as the low-cost bias parameter: 

no significant change in the low-demand group, but a highly significant 

increase (p<0.001) in the high-demand group. Among domains, the low-cost 

choice rate significantly increased for delay, physical effort, and cognitive 

effort discounting, but not probability discounting (see Figure S1), again 

mirroring the low-cost bias parameter. Thus, the computational decomposition 

into parameters capturing different sources of variance only contributed to 

clarifying the impact of cognitive fatigue on economic choice, with a 

significant group-by-session interaction. Note also that including performance 

as a covariate in the linear mixed model analysis did not change the main 

result (additional performance regressor: p=0.85, group-by-session 

interaction: p=0.02), ruling out a potential effect of frustration related to the 
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error rate (which participants could not monitor anyway, because they were 

provided no feedback about their performance in cognitive tasks). 

The computational signature of cognitive fatigue suggests a shift of preference 

favoring the options involving low control costs. An alternative would be that fatigue 

changes the way choices are made, favoring heuristics that avoid the pain of 

deliberation. From this perspective, participants might choose the low-cost option 

because it is easier to valuate. However, this would not explain why we observed a 

similar shift towards options with non-zero low cost, which are harder to valuate than 

zero-cost options. When adding the zero/non-zero-cost factor to the linear model, we 

found no evidence for a different effect of session on the two trial types (interaction 

trial-type x session: beta = 0.003, p = 0.87). In addition, a time-saving heuristic would 

predict that choices would be made faster and faster along the day, which was not 

the case (see Figure 2A). Indeed, a three-factor (group x session x choice) linear 

mixed model fitted on choice RT across cost domains (except probability) showed 

borderline effect of task difficulty (hard vs. easy: beta = 0.11, p = 0.06), no main 

effect of session number (from 1 to 5: beta = -0.01, p = 0.34), no effect of choice-

type (low-cost vs. high-cost option: beta = -0.01, p = 0.58) and critically, no 

significant interaction (all p >0.14). Thus, there was no evidence for cognitive fatigue 

resulting in the use of time-saving heuristics. 

Pupillary measures of cognitive fatigue 

While fatigue induced a systematic bias favoring options that require less cognitive 

control, we could not check whether this bias was related to reduced lPFC activity 

during choice, as we observed in previous studies24,25, because there was no fMRI 

scanning here. However, as an index of cognitive effort exerted during economic 

choice, we measured pupil dilation, which has been associated to the demand in 

cognitive control and the level of effort invested33. 

Within-trial pupil size time series were submitted to a sample-wise multiple 

regression against session number and all relevant nuisance variables (see 

methods). The time course of the intercept (see Figure 2B) shows, irrespective 

of experimental variables, an initial constriction for the first second, followed 

by a dilation ending with the choice. The initial constriction is commonly seen 

as a response to low-level features, like a surprise signal evoked by a change 
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in stimulus display, independent of luminance34, while the late dilation likely 

reflects the effort invested in the deliberation33. When comparing the 

regression estimates of session number between groups, we observed a 

significant difference (after correcting for multiple comparisons using random 

field theory) in a late time cluster (from 1.42s to 3.5s). The difference was 

driven by the late dilation plummeting with session number in the hard group 

(see Figure 2B, right plot), suggesting that less effort was invested in choice 

deliberation with cognitive fatigue. 

Metabolic measures of cognitive fatigue 

Behavioral results suggest that the fatigue-induced preference shift towards low-cost 

options is associated with less effort invested in decision-making. This pattern is 

consistent with our proposal that cognitive fatigue can be conceived as an increase 

in the cost of recruiting cognitive control. To explain why control cost is increased by 

the performance of hard cognitive tasks, we turned to brain metabolism. Our model 

(see  

Figure 3A) assumes that recruiting cognitive control regions either exhaust some 

metabolic resource or accumulate some toxic by-product. This metabolic alteration 

may somehow be sensed by a meta-controller that would adjust the intensity of 

control exertion depending on expected costs and benefits, as previously 

suggested35. Thus, the diminution of control exertion would be the outcome of a 

regulation loop aiming at maintaining the concentration of metabolites within 

acceptable limits. Increasing the expected benefits could naturally counteract the 

impact of increased metabolic costs and maintain the intensity of control exertion. 

This is why the reduction of control exertion is more salient in economic choices, 

where the expected benefit cannot be precisely estimated, compared to cognitive 

tasks, in which correct performance results in a precise payoff. 

To keep the predictions simple (see  

Figure 3B), we assumed that metabolic alteration (either exhaustion or 

accumulation), 1) would only occur when performing hard cognitive tasks (not 

easy ones), 2) would only affect the lPFC (the region identified as related to 

cognitive fatigue in previous studies) and not in the primary visual cortex 
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(although it is constantly stimulated in this experiment), 3) would 

progressively develop with session number, until it reaches a plateau due to 

meta-regulation. Thus, the two metabolic hypotheses predicted a (group x 

region x session) three-way interaction. 

To test for this three-way interaction, we measured in-vivo metabolic 

concentrations with magnetic resonance spectroscopy, using a optimized 

semi-LASER 1H sequence27,28, in both the left lPFC and V1 voxels of interest 

(VOI), during sessions 1, 3 and 5 of the experiment (Figure 4A). The only 

metabolite showing a significant three-way interaction was glutamate, 

irrespective of the ratio computed for normalization (Figure 4, see Figure S2 

for other metabolites): glutamate/myo-Inositol (Glu/Ins, beta = 0.06, p = 0.02), 

glutamate/totalCreatine (Glu/tCr, beta = 0.04, p < 0.01, see Table S2), 

glutamate/totalNAA (Glu/tNAA, beta = -0.02, p = 0.03). A log-likelihood ratio test 

confirmed a significant improvement of the linear mixed model fit when adding 

interaction terms (Glu/Ins: p <0.001, Glu/tCr: p <0.001, Glu/tNAA: p <0.001). 

The observed pattern was consistent with the accumulation hypothesis, in the 

sense that the group performing hard cognitive tasks ended the experiment 

with more glutamate in the lPFC than the control group, (Glu/Ins: t = 2.23, p = 

0.03, Glu/tCr: t = 2.27, p = 0.03, Glu/tNAA: t = 1.68, p = 0.10, between-group t-

test in session 5), no difference being observed in the visual cortex (Glu/Ins: t 

= -1.10, p = 0.28, Glu/tCr: t = -0.95, p = 0.35, Glu/tNAA: t = -0.44, p = 0.66; 

between-group t-test in session 5). However, contrary to our expectations, the 

interaction was not driven by an increase in the hard condition but by a 

decrease in the easy condition. 

We also measured metabolic diffusion in the same VOIs using a second semi-

LASER sequence added with diffusion gradients29 and again found a 

significant three-way interaction involving glutamate (Figure 4B, lower part). 

More specifically, the interaction was observed for the apparent diffusion 

coefficient (ADC) of Glx (glutamate and glutamine quantified together: beta = 

6.95e-06, p = 0.02, see Table S3). This interaction was driven by Glx ADC 

increasing across sessions in the lPFC (but not in V1) of participants 

performing the hard version of cognitive tasks (but not the easy version). This 
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is consistent with the hypothesis that glutamate concentration is regulated 

during cognitive control exertion, potentially leading to higher concentrations 

in the extracellular space where diffusion is faster. The pattern was in line with 

the prediction of the metabolic accumulation model, as the interaction was 

driven by an increase in the hard condition versus a steady state in the easy 

condition. 

Finally, we assessed the correlation between behavioral and neuro-metabolic 

measures of cognitive fatigue, as was done in our previous studies between 

behavioral and fMRI measures24,25. After regressing out variables of no interest 

(see methods), we tested the correlation across participants between the 

increase in low-cost bias (from session 1 to session 5) and the increase in Glu 

concentration and Glx diffusion, separately (see Figure 5). The correlation was 

positive in both cases, but significant for Glx diffusion only (r=0.43, p=0.039), 

not Glu concentration (r=0.30, p=0.24). The significant correlation suggests 

that the choice bias towards low-cost options was linked to the level of Glx 

diffusion, and hence to a need for slowing down glutamate accumulation. 

Modeling the link between neural activity and metabolic measures 

To examine whether the down-regulation of cognitive control, resulting in decreased 

lPFC activity, as observed using fMRI in our previous study24, could explain the 

pattern of lPFC glutamate measures, as observed using MRS in the present study, 

we developed a Markov chain model. This model (see Figure 6) predicts the 

evolution of a metabolic measure X across time, depending on two opposite flows: 

an accumulation due to control exertion (indexed by fMRI activity) and a clearance 

proportional to X (measured by MRS). 

Results show that MRS measures were consistent with the principle of a 

metabolic regulation mechanism, reducing lPFC activity to maintain glutamate 

accumulation within acceptable levels (i.e., manageable by clearance 

processes). However, the concentration and diffusion measures suggest 

different parameterizations of the model, notably regarding baseline lPFC 

glutamate levels in the morning (relative to glutamate accumulation rate). 
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Discussion 

In this study, we investigated the impact of performing hard cognitive control tasks 

for several hours, compared to performing easy versions of the same tasks for the 

same duration. We observed 1) a shift in preferences toward low-cost options, 2) a 

reduction of pupil dilation during economic choice, 3) a glutamate concentration 

maintained at a high level in the lateral prefrontal cortex (lPFC), 4) an increase in 

glutamate/glutamine diffusion within the lPFC. This pattern of results is compatible 

with the assumption of an increase in the cost of cognitive control, related to the 

necessity of maintaining glutamate levels within acceptable boundaries. The 

elevated cost would both limit the recruitment of cognitive control during choice, and 

bias decisions away from costly options. 

The present behavioral results replicate and extend previously published 

observations that exerting intense cognitive control, either for intellectual 

work24 or endurance sport25, induces a form of cognitive fatigue that manifests 

as an increased preference for immediate options. The key results are 

significant group-by-session interactions, showing a specific effect of task 

difficulty, ruling out time or boredom as potential explanations. We did not find 

such an interaction in self-reported fatigue, which similarly increased across 

sessions in the two groups. This may be due to participants mapping the 

range of their subjective sensations on the same portion of the rating scale, as 

they were unaware of the other condition (imposed on the other group). It 

could also reflect a dissociation between actual fatigue of the cognitive control 

brain system and conscious perception of fatigue. This dissociation is 

common in everyday life, for instance when people go on working or driving 

and start making errors because they failed to detect their true fatigue state. In 

any case, it shows that subjective ratings cannot be taken as absolute 

measures and that cognitive fatigue might be better evidenced by preference 

shifts toward low-cost options in economic decisions. Conversely, choice-

related markers of cognitive fatigue might not account for the subjective 

perception of intense fatigue that represents a frequent clinical symptom in 

many neuropsychiatric conditions23. As in previous studies, this cognitive 

fatigue did not affect performance in cognitive control tasks (N-back and N-



 

15 
 

switch), suggesting that cognitive control exertion is sustained in these tasks, 

despite an increase in its cost, due to the high benefit attached to correct 

performance. Indeed, making correct responses in cognitive control tasks 

entailed an objective monetary benefit, whereas the benefit of making a sound 

decision in economic choice tasks was more difficult to estimate. The new 

observations provide further support for an interpretation of the preference 

shift as stemming from an elevation of cognitive control cost. 

First, we have introduced other types of discount factors in our economic 

choices (probability, cognitive effort, physical effort), on top of delay. The shift 

in preference was specifically observed for choices that involve cognitive 

control (waiting longer or exerting more effort to obtain better rewards), not for 

choices involving risk (a cost associated to the lottery, not imposed on the 

participant). These results are consistent with the idea that cognitive and 

physical effort both involve cognitive control because they both require to 

over-rule automatic routines25. In all cases but probability discounting, the 

shift in preference was captured in the choice model by an additive bias 

favoring low-cost options, not by the choice consistency (inverse temperature) 

parameter. Note that a decrease in choice consistency could not mimic a 

preference shift with our design, because options were tailored around 

individual indifference points, such that participants started the experiment at 

chance level (with a 50/50 preference between low-cost and high-cost options). 

Also, choices were not more impulsive in the sense that they were made faster 

with cognitive fatigue. As in previous experiments, choice RT did not vary with 

the number of sessions completed along the day and did not depend on which 

option was selected (costly or uncostly).  

Second, we used eye-tracking during scanning sessions and observed that 

cognitive fatigue was accompanied by lesser pupil dilation when making a 

choice. This can be taken as evidence for lower cognitive effort invested in 

economic choice, consistent with the reduced lPFC activity that was found in 

our previous study using fMRI. Indeed, pupil dilation has been validated as an 

index of cognitive effort 33,36–40. Pupil dilation has also been associated with 

activation of noradrenaline neurons in the locus coeruleus, and hence 

activation of the anterior cingulate cortex41–44. It is tempting to interpret these 
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results in the light of the theoretical framework assuming that the intensity of 

cognitive control is adjusted by the anterior cingulate cortex, depending on 

expected costs and benefits35. Applied to our case, the decrease in pupil 

dilation would suggest that the reduction of cognitive control during economic 

choice, due to its elevated cost, is mediated by the anterior cingulate cortex 

down-regulating activity in the lPFC, which we observed with fMRI. 

The next question in this general account of cognitive fatigue was about the 

cost of cognitive control: why is it increasing with the performance of high-

demand tasks? To articulate the cost-benefit arbitration framework with a 

neuro-metabolic account of cognitive fatigue, we imagined two scenarios: 

cognitive control could be reduced to prevent some resource from dangerous 

exhaustion or to prevent some by-product from dangerous accumulation. The 

two scenarios predicted a three-way interaction between group, region, and 

session, which we only found in glutamate levels, whatever the normalization 

procedure. At the end of the day, lPFC glutamate concentration and 

glutamate/glutamine diffusion were significantly higher in the group 

performing high-demand tasks relative to the low-demand group, while there 

was no difference in the visual cortex. These observations are consistent with 

higher-demand cognitive control tasks being associated with greater 

glutamate release45,46, which would result in steeper glutamate accumulation 

with time on task across a workday.  

However, the interaction observed in glutamate concentration was mainly 

driven by a decrease in lower-demand conditions, which we did not expect. 

Yet we verified that such a pattern was still consistent with our dynamic model 

including clearance proportional to glutamate concentration and accumulation 

related to the intensity of cognitive control (hence to lPFC activity). The fitted 

parameters indicated that what we had not anticipated was a high level of lPFC 

glutamate at the beginning of the day. Facing the new scanning environment 

and implementing new instructions (e.g., to provide a manual response 

without moving the head) might already be cognitive control demanding47, 

possibly explaining the elevated glutamate level. In this scenario, the gradual 

elimination of glutamate would be observable in the low-demand conditions, 

while it would be compensated by gradual accumulation related to task 
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performance in the high-demand conditions. Such a scenario was 

corroborated by results showing that glutamate/glutamine diffusion was 

higher in the lPFC after high-demand cognitive control exertion, compared to 

the control group and region. Diffusion measures displayed the expected 

pattern, with an increase related to intense cognitive control, and no change in 

low-demand conditions. The interpretation can hence be refined, as a change 

in glutamate/glutamine diffusion might signal a relative accumulation in the 

extracellular compartment (where diffusion of molecules is faster), presumably 

related to strong spiking activity31,32. Note however that, although release in 

the extracellular space is a standard interpretation of the diffusion measure, it 

could in principle reflect other phenomena, such as release from vesicles to 

the intracellular space, or change in the glutamate/glutamine ratio (because 

the two molecules may diffuse in different compartments). 

Obviously, our results are only correlational and cannot be taken as proof that 

what limits cognitive control exertion is the need to prevent glutamate 

accumulation. Causal manipulations would be required to validate this 

assumption. In addition, the metabolic spectrum was narrow and constrained 

by technical limitations, as there are metabolites that cannot be quantified with 

in-vivo MRS methods, or at least in a 3T MRI scanner, using a semi-LASER 

sequence, with the echo-time optimized for glutamate. For instance, GABA 

would also have been a possible candidate, but could not be reliably 

quantified with our MRS data acquisition sequence. In any case, it should be 

noted that the target substance requiring regulation may not be glutamate 

itself but any substance whose concentration is linked to glutamate 

accumulation. Nevertheless, glutamate regulation has been pointed out as an 

essential component in the brain energy budget and discussed as a potential 

source of cognitive fatigue48–50. Thus, there are good reasons for which 

glutamate accumulation may need to be regulated. 

Glutamate is well known as the main excitatory neurotransmitter in the brain, 

which must be maintained in tight balance with inhibitory neurotransmission 

for regular cortical functioning 51–53. Indeed, glutamate is present in the cells at 

high concentrations, as it is involved in the detoxification of ammonia and also 

serves as a precursor for the synthesis of proteins54. It is therefore important 
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to limit glutamate release, both because it is a useful resource in the 

intracellular compartment and because it is a potentially toxic by-product in 

the extracellular compartment. In line with our results, extracellular glutamate 

tends to accumulate in stressful conditions or with increasing task demands 

such as working memory load46,55. The issue with too high concentrations of 

extracellular glutamate is not only the disruption of excitation / inhibitory 

balance but also the induction of activation bursts, which might impair the 

transmission of information and cause excitotoxicity in the most severe 

cases51,52,54. A known regulation mechanism at the synaptic level is glutamate 

reuptake through transportation into surrounding glial cells56,57 or axons58,59 

and conversion into glutamine. Unfortunately, our measurement technique 

was not sensitive enough to explore molecular/cellular mechanisms. While we 

could distinguish concentrations of glutamate and glutamine, diffusion 

measures pooled the two metabolites. Additional limitations relate to the low 

spatial and temporal resolution of MRS scanning. As our VOI was about 40 

cm3, it is impossible to draw precise conclusions about anatomical locations. 

And because data acquisition takes about ten minutes, it is impossible to 

know which particular task events most contributed to glutamate 

accumulation. 

In the dynamic model, fMRI and MRS measures were integrated to verify that 

our data were compatible with glutamate accumulation being the trigger of 

cognitive control regulation. Nevertheless, there are some gaps in this 

demonstration, as we took some shortcuts. An obvious one is that we did not 

collect fMRI and MRS data in the same participants, so we could only make 

predictions at the group level, and could not test inter-individual correlations. 

However, the assumption that the BOLD signal is linearly related to glutamate 

release is corroborated by simultaneous fMRI and MRS recordings in the 

visual cortex60. On a related note, the very principle of the model, postulating 

that glutamate is regulated, may have weakened inter-individual correlations 

between glutamate levels and behavioral signatures of fatigue. This is because 

glutamate level is supposed to be maintained at a given boundary, by reducing 

lPFC activity during choice, so the choice bias inferred from the behavior 

should be strongly correlated with lPFC activity, as we indeed observed in our 
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previous studies24,25, but only weakly with glutamate level, as we observed 

here. Note that our MRS findings are not just mirroring the fMRI findings: lPFC 

BOLD activity was reduced across sessions, while glutamate concentration 

was steady or slightly increasing, as was glutamate/glutamine diffusion. This 

is evidence of some accumulation taking place: if glutamate was purely 

reflecting the momentary activity of the brain region, it should have 

plummeted throughout the day. 

Even if our model provides proof of concept that a metabolic account of 

cognitive fatigue can be combined with a cost-benefit mechanistic framework, 

several aspects remain speculative at this stage. Notably, how glutamate 

levels would be monitored to estimate the costs of cognitive control is unclear. 

It remains possible that the brain may not monitor glutamate itself but any 

phenomenon linked to glutamate accumulation (e.g., GABA synthesis). Also, 

an explanation is still missing for why cognitive control regions would 

accumulate glutamate more than other regions like the visual cortex. On a 

different note, research is needed to explore the recovery of glutamate levels 

at rest or during sleep. Interestingly, the cognitive control network is 

deactivated in rest conditions that activate the default mode network10,61, 

which could favor the clearance of extracellular glutamate. Moreover, it has 

been shown that glutamate concentrations decrease during sleep, in relation 

to EEG slow-wave activity62. Glutamate could therefore belong to the 

potentially toxic substances that are eliminated during sleep, which could 

mediate recovery from cognitive fatigue63. Finally, how cognitive fatigue due to 

excessive use of cognitive control relates to other forms of fatigue remains to 

be specified. As it was also observed in a mild form of burnout syndrome25 

and patients with low-grade glioma23, we tend to believe that an elevated cost 

of cognitive control is key to several clinical manifestations of fatigue64,65, but 

this speculation still requires empirical confirmation. It would also require a 

theoretical articulation between the objective fatigue of the cognitive control 

brain system documented here with choice-related markers and the subjective 

fatigue sensation that might represent the main complaint of patients in the 

clinics. 
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Figure legends 

Figure 1: Experimental design. From top to bottom the protocol is shown with 

diminishing time resolution, from single-trial to day-long experiment. In two 

training sessions (not shown) preceding the testing day, participants learned 

to perform the cognitive tasks with a correct response rate higher than 90% 

and practiced the economic choices to reveal their indifference points. During 

the main experiment, participants alternated between cognitive tasks and 

economic choices. One group of participants (n=16) was assigned the easy 

version and the other group (n=24) the hard version of cognitive tasks. In 

every block, cognitive tasks included either 24 N-switch trials (1 vs. 12 

switches in the easy vs. hard condition) or 24 N-back trials (1 vs. 3-back in the 

easy vs. hard condition). The task to do was announced at the beginning of the 

block and was changed once per session. Economic choices included one trial 

per cost domain (delay, probability, physical and cognitive effort). In all 

choices, the two options were a variable reward at a low cost versus 50 € at a 

variable cost. Participants performed 5 sessions (S1 to S5) of 70 blocks, for a 

total duration of 6.25 hours. Three of these sessions were performed in the 

scanner to simultaneously collect Magnetic Resonance Spectroscopy (MRS) 

data. 

 

Figure 2: Behavioral results. A. Behavioral measures of cognitive fatigue. Top 

graphs: average correct response rate (left) in cognitive tasks (pooling N-

switch and N-back trials) and subjective rating of experienced fatigue (right), 

between 0 (“I’m in top form”) and 100 (“I’m totally exhausted”), separately for 

the groups performing easy and hard versions. Middle graphs: median 

response time (RT) during N-switch and N-back tasks (left) and median RT 

during economic choice tasks except probability discounting (right). Bottom 

graphs: average bias parameter in economic choices (pooling all cost domains 

but probability) across experimental sessions (left) and for the different cost 

domains in the hard condition (right) shown across experimental sessions. 

The bias parameter is an additive bonus for the low-cost option in the choice 

model. Bias data are normalized to the grand mean in the first session. See 
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Figure S1 for model-free behavioral results and Table S1 for results of the 

statistical analysis. B. Pupillary measures of cognitive fatigue. The left graph 

shows estimates (beta weights) from a linear regression model meant to 

explain pupil size, at each time point within an economic choice trial. The 

model included intercept, group, and session as factors of interest, and 

various factors of no interest (including choice and response time, see 

methods). Before linear regression, pupil recordings were preprocessed, 

aligned to choice onset (i.e., option display), and baseline corrected (by 

subtracting the mean over the -500 to 0ms time window). The vertical dashed 

line indicates the median RT. The intercept shows the time course of pupil 

dilation, irrespective of group and session. The impact of cognitive fatigue 

corresponds to the difference in session effects between the easy and hard 

conditions (stars indicate time points when the difference is significant). For 

visual comparison with the other behavioral results, the right graph shows 

non-z-scored, but baseline corrected, pupil size during the time window when 

the group difference was significant, per group and session (normalized to the 

grand mean of the first session). In all graphs, error bars indicate inter-

participant standard errors of the mean (SEM). The error bars for subjective 

ratings of fatigue are plotted but are too small to be visible in the graph. Stars 

on brackets indicate significant group-by-session interactions. 

 

Figure 3: Neuro-metabolic predictions. A. Model. Our conceptual model 

assumes that the amount of cognitive control to be invested in behavioral 

response is submitted to a cost/benefit trade-off. The benefit of control is to 

improve performance (depending on task difficulty) and hence the associated 

reward (depending on payoff schedule) or to make a sound economic choice. 

The cost of control relates to the necessity to either restore an exhausted 

resource or clear out an accumulated by-product of neural activity. The model, 

therefore, specifies the relationships between behavioral observables 

(accuracy in cognitive tasks and bias in economic choice) and brain measures 

(lPFC activity with fMRI, and X concentration with MRS). B. Predictions. 

Regarding the metabolite X (be it an exhausted resource or an accumulated 
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by-product), the model predicts a three-way interaction between region (lPFC 

vs. V1), group (easy vs. hard conditions), and session (growing fatigue). 

 

Figure 4: MR spectroscopy results. Glutamate was the only metabolite to show 

the expected three-way interaction (group x region x session). A. Data 

collection. The left lateral prefrontal region (axial slice at the bottom) was 

defined as the cluster showing reduced activity with cognitive fatigue in a 

previous fMRI study24. On top slices are shown the locations of the MRS 

voxels of interest (VOI, 35x25x15mm) in the primary visual cortex (V1, left) and 

in the lateral prefrontal cortex (lPFC, right). The lPFC VOI was individually 

adjusted to cover most of the cluster identified with fMRI, while the V1 VOI was 

placed to cover the medial part of the occipital cortex. The glutamate peak 

(Glu) is indicated within an example individual spectrum acquired in the lPFC. 

B. Main results from 1H MRS. Top: Glutamate concentration levels were 

normalized over concentrations of total creatine (tCr, shown here), myoinositol 

(Ins, shown in Figure S2), and total N-acetyl aspartate (tNAA, shown in  Figure 

S2). The three-way interaction (group x region x session) was significant in the 

three normalized measures. For visual comparison with behavioral measures 

and model predictions, data were also normalized to the grand mean of the 

first session. See Figure S3 for additional metabolites. Bottom: Main results 

from diffusion-weighted MRS. Glx (glutamate plus glutamine) were again the 

only metabolites for which diffusion measures (apparent diffusion coefficients, 

ADC, see methods) showed the expected three-way interaction. Error bars 

indicate inter-participant standard errors of the mean (SEM). Stars on brackets 

indicate significant group-by-session interactions. See Table S2 and S3 for 

results of the statistical analysis.  

 

Figure 5: Correlation between behavioral and MR spectroscopy measures. For 

each participant of the high-demand group, the increase (from first to last 

session) was calculated for both the behavioral measure (choice bias toward 

low-cost option, regressing out the effect of cost domain) and the MR 

spectroscopy measures (Glu/tCr ratio or Glx ADC, after regressing out 
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nuisance variables such as quality estimates of metabolic spectra, gray matter 

concentration in the scanned voxel and head movement parameters). Graphs 

show the correlation across participants (dots), with regression lines and 

confidence intervals (shadow areas). The star indicates that the correlation 

with LC bias was only significant for ADC Glx.  

 

Figure 6: Model linking neural activity (fMRI) to metabolic measures (MRS). A. 

Formalization of the dynamic model of metabolite concentration. In our model, 

the evolution of metabolite � across time follows a Markov chain. ��� is 

determined by �, minus a passive clearance depending on � level, plus 

accumulation of � due to exerting control at time  (for cognitive tasks or 

economic choices). We illustrate here the accumulation model because it fits 

with glutamate measurements. Note that a resource exhaustion model would 

follow the same logic, except that exerting control would deplete �, which 

would need to be restored instead of cleared. B. Predictions of glutamate 

measurements. Top plots represent the input to the model, i.e., lPFC fMRI 

activity extracted from a previous study24. Data were normalized between 0 

and 1 across conditions, but separately for the cognitive tasks and economic 

choice, upsampled to 22 sessions and smoothed with a moving average. 

Middle plots show the two components driving the dynamics of glutamate 

measure: accumulation due to lPFC activity (during both cognitive task and 

economic choice) and clearance proportional to glutamate level. The bottom 

plots show two simulations with different sets of parameters that correspond 

to glutamate concentration measures (
� = �. ��, 
����� = �. ��,
��	 =

�. ��, 
������ = �. ��) and glutamate/glutamine diffusion measures (
� =

�. ��, 
����� = �. ��, 
��	 = �. ��, 
������ = �. ���). In both cases, the interaction 

between group and session is driven by the reduction of lPFC activity with 

fatigue in the hard group.  



 

25 
 

STAR METHODS 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources should be directed to and will be 

fulfilled by the lead contact, Antonius Wiehler (antonius.wiehler@gmail.com). 

Data availability 

The data are available at https://zenodo.org/record/6795446. 

Materials Availability  

No new materials have been generated.  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Participants 

We included a total of n=40 participants, n=24 in the high-demand condition (age 

mean m = 22.21y, standard deviation SD = 6.91, 13 female), n=16 in low-demand 

condition (age m = 24.56y, SD = 6.12, 10 female). The two groups were matched 

regarding impulsivity trait (as measured by Barratt's Impulsiveness Scale BIS-11) and 

baseline fatigue state (as measured by Brief and Multidimensional Fatigue Inventory 

questionnaires, BFI and MFI-20). All participants gave informed consent before 

participating in the study. All participants were screened for exclusion criteria: left-

handedness, age under 20 or above 39y, regular use of drugs or medication, any 

history of psychiatric or neurological diagnosis, and contraindications to MRI 

scanning (pregnancy, claustrophobia, metallic implants). In both conditions, 2 

additional participants stopped the experiment before completion and were therefore 

excluded from the data analysis. All participants ate a sandwich and a fruit during the 

first break. Water was the only allowed drink during the day and was available 

without restrictions. Participants received 50€ as financial compensation for the two 

training sessions. For their performance on the experiment day, they received 5€ 

plus another 3€ for each percent above 75% in their average performance in the 
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cognitive tasks, which would result in 50€ for an average of 90% correct responses 

maintained throughout the day. Additionally, one choice trial in each domain 

(probability, delay, effort) was pseudo-randomly chosen and implemented. The study 

was approved by the local ethics committee of the Pitié-Salpêtrière Hospital (CPP no 

113-15, ID RCB: 2015-A01445-44). 

METHOD DETAILS 

Tasks 

Two cognitive control tasks were used to induce cognitive fatigue: N-switch and N-

Back. In each trial of both tasks, a letter appeared on the screen, colored either red 

or green. Participants had to give their response within a 0.8s time window, followed 

by a 0.8s inter-trial interval. During N-switch blocks, participants had to perform a 

discrimination task that depended on the color of the letter: upper case vs. lower 

case for one color, vowel vs. consonant for the other color (red or green, 

counterbalanced across participants). The task was switched 12 times per block of 

24 trials in the hard condition, whereas it was switched only once in the easy 

condition. During N-back blocks, participants had to indicate whether the letter on the 

screen was the same as the letter presented in three trials (hard condition) or one 

trial (easy condition) before. 

To reveal cognitive fatigue, we presented four choice trials after each block of 

24 task trials. The time out for choice trials was 3.25s, followed by a jittered 

inter-trial interval (mean 1.25s, SD = 0.33). Each choice trial opposed a small-

reward/low-discount option with a big-reward/high-discount option. Rewards 

ranged from 0.1€ to 50€. All rewards were presented with 2 digits precision but 

rounded to the first digit: for example, 41.23€ had been rounded to 41.20€. Discount 

factors were of four different types: delay, probability, cognitive effort, and 

physical effort. Delays ranged from zero (reward received in cash immediately 

after the experiment) to one year (reward received by bank transfer), with 

intermediate levels of three days, one week, one month, and three months). 

The probability of winning the lottery (vs. nothing) ranged from 5% to 100% 

with intermediate levels of 25%, 50%, 75%, and 95%. The cognitive effort 

consisted of performing the N-switch task for 30 minutes after the main 

experiment. Effort levels corresponded to the number of switches in a 24-trial 
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block: 0, 2, 4, 6, 9, or 12. The physical effort consisted of pedaling on a 

stationary bike for 30 minutes after the main experiment. Effort levels 

corresponded to the resistance of the bike, expressed in percentage of the 

maximum power that the participant could develop during calibration: 0%, 

12.5%, 25%, 37.5%, 56.25%, 75%. Participants were instructed that one 

randomly selected choice of each type would be realized, meaning that money 

would be given to the participant but only after the chosen delay / playing the 

chosen lottery / exerting the chosen effort level. 

All participants completed two sessions of training on the day before the main 

experiment. Each training session started with the easy version of the 

cognitive control tasks and gradually increased in difficulty until performance 

reached 90% correct responses at the highest difficulty level. During the 

second training session, participants were also instructed about the choice 

tasks, and they practiced with a test set of choices to get familiarized. 

On the day of the main experiment, participants first rehearsed the cognitive 

control tasks to ensure their performance was still above 90% correct 

responses. Then they underwent a choice calibration procedure. For all choice 

trials, the big reward was fixed to 50€, while the small reward was associated 

with either zero cost (e.g., 0 days for delay) or the lowest cost (e.g., 3 days). 

For each discounting domain and cost level separately, the size of the small 

reward was adjusted with a staircase procedure depending on the choice of 

the participant. Had the participant chosen the low-cost option twice in a row, 

the small reward was reduced to the mean between its current value and that 

of the last rejected low-cost option (0€ for the first trial). Had the participant 

rejected the low-cost option twice in a row, the small reward was increased to 

the mean between its current value and that of the last accepted low-cost 

option (50€ for the first trial). If the low-cost option was accepted/rejected only 

once, the small reward value was reduced/increased by 10%. The staircase 

procedure stopped when the difference between accepted and rejected small 

rewards was smaller than 4€. The mean between the last-rejected and last-

accepted small reward was taken as the indifference point for each cost level 

of a given domain. On average, participants made 15.47 [7-108] choices to 

reach the indifference point. 



 

28 
 

To reduce noise in these estimates, the calibration procedure was repeated 

three times and indifference points were averaged, separately for every cost 

level. In total, 36 indifference points were estimated, corresponding to four 

choice domains times nine cost levels (five opposed to zero discount, e.g., one 

year vs. 0 days, and four opposed to lowest discount, e.g., one year vs. 3 

days). 

In the main experiment, for every cost level, we tailored choice options around 

participant-specific indifference points, with five trials presenting small 

rewards at the indifference point (drawn from a normal distribution centered at 

the indifference point with SD=1), one trial with the small reward 30% below 

and one trial with the small reward 30% above the indifference point. The 

choice trials close to indifference were meant to maximize the sensitivity for 

detection of a preference shift, while distant trials were meant to ensure that 

computational models could be fitted with recoverable parameters. The 

consequence of tailoring choice options was that participants started the 

experiment with an average choice rate close to 50%, leaving room for either 

decrease or increase with fatigue. Under these constraints, small rewards were 

randomly drawn such that each of the 5 sessions presented novel choices. 

This resulted in a total of 5 sessions × 4 choice types × (4+5 cost levels) × 

(5+1+1 trials) = 1260 choice trials per participant. 

At the beginning of each session, participants rated their subjective fatigue by 

positioning a cursor on a visual analog scale between 0 (“I’m in top form”) and 

100 (“I’m totally exhausted”). 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Computational modeling 

To analyze choice behavior, we used a computational modeling approach. A priori, 

we favored multiplicative forms for delay and probability discounting, because a 

delayed or probabilistic reward must be positive (always better than nothing) and 

subtractive forms for effort discounting because the reward may not be worth the 

cost (so the value can be negative). We nonetheless used Bayesian model 

comparison to identify the discounting functions that provided the best account of 
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choices made during calibration for each cost domain. The most plausible 

discounting functions were indeed exponential for delay (as in our previous studies), 

hyperbolic for probability, and parabolic for effort (see equations below).  

In all models, rewards were first discounted with different functions depending on the 

considered factor (D: delay in days, P: winning probability, E: effort level) to generate 

subjective values (SV): 

Delay discounting66: 

 �� = �� 	!  (1) 

Probability discounting67: 
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Cognitive and physical effort discounting68,69: 

 �� = � # 	%�  (3) 

with the free parameter 	 controlling the steepness of discounting in each 

function. Then subjective values of the low-cost (LC) and high-cost (HC) 

options are compared and transformed into the probability of choosing the 

low-cost option (&'() through a softmax function: 
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 (4) 

With the inverse temperature parameter 
 controlling choice consistency with 

subjective values and the +��� parameter shifts the choice probability towards 

the low-cost option. 

The different models were inverted using a variational Bayes approach under 

the Laplace approximation, implemented in the VBA toolbox70 (available at 

https://mbb-team.github.io/VBA-toolbox) programmed in Matlab R2019a 

(MathWorks, Natick, MA, USA). We first modeled the calibration choices in 

each participant to build informed priors for the main experiment. Then, using 
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the individual priors, we estimated all posterior parameters independently for 

each participant, session, and choice type. 

Pupil dilation 

During sessions one, three, and five, we recorded pupil size with an Eyelink 1000 

eye-tracker (SR Research, right eye recorded, 1000 Hz sampling rate). Time series 

were pre-processed by removing blink periods, fixations outside the screen, and 

samples outside three times the median signal. Removed samples were replaced by 

linear interpolation. Time series were then band-pass filtered between 1/128 Hz and 

1 Hz, down-sampled to 60Hz, z-scored across all sessions per participant, epoched 

around choice trials, and corrected for baseline differences across trials (by 

subtraction of the mean pupil size within the 500ms before choice onset). Within-trial 

pupil size time course was analyzed using a sample-wise regression approach: for 

each time sample, pupil size was regressed against session number across trials. To 

remove potential confounds with low-level variables, the linear regression model also 

included low-cost choice (1 or 0), low-cost choice in the trial before (1 or 0), the 

choice type (probability, delay, cognitive effort, physical effort), type of low-cost 

option (zero or non-zero), the inter-trial interval before choice onset, the cognitive 

task performance for the current block, the block number and the trial number within 

the block. The regression was run at the individual level and regression estimates 

were tested against 0 at the group level with a 1-D random field theory 

implementation in the VBA toolbox70. 

MRS data acquisition 

Magnetic Resonance Spectroscopy (MRS) was performed on a 3 T Siemens 

MAGNETOM Prisma Fit MRI scanner (Siemens Medical Solutions, Erlangen, 

Germany), equipped with gradient coils capable of reaching 80 mT/m on each of the 

three axes. The standard RF body coil was used for excitation and a 64-channel 

receive-only head coil for reception. 

Participants alternated between performing the tasks inside the scanner 

(sessions 1, 3, and 5) and outside the scanner (sessions 2 and 4). Before every 

new scanning session, the spectroscopic volumes of interest (VOI) were 

manually placed to maximize the overlap with those of the previous session. 
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To precisely position the VOI and to perform tissue segmentation, the MRS 

protocol was preceded by a 3D T1-weighted magnetization-prepared rapid 

gradient echo sequence [field of view = 256 x 256; isotropic resolution = 1mm; 

TR/TE = 2300/4.18ms; total acquisition time = 4min 44s]. A VOI of 

35×25×15mm3 was positioned in the lateral prefrontal cortex. The size of the 

VOI was adapted to cover most of the activation cluster observed at the group 

level in our fMRI study24 while respecting the block shape imposed by the MRS 

sequence and a minimum volume which was needed to reach an acceptable 

signal-to-noise ratio. First, on the axial slice, the VOI, with an anterior-posterior 

expansion of 35mm, was placed on the middle frontal gyrus. We used the 

posterior border of the triangular part of the inferior frontal gyrus as the 

posterior reference. The VOI was then rotated to follow the cortex orientation 

and to include as little CSF as possible. Second, on the coronal slice, the VOI, 

which spanned 25mm, was again placed to cover the middle frontal gyrus and 

was rotated to follow the cortex orientation and to avoid including CSF. A 

control VOI of the same size was positioned over the primary visual cortex. 

For the MRS data acquisition, we used a modified single-voxel semi-LASER 

sequence27,28; TR/TE = 5000/28ms; number of complex points = 2048; averages 

= 64; total acquisition time = 5min 30s). B0 shimming in the VOIs was 

performed using a fast automatic shimming technique with echo-planar signal 

trains utilizing mapping along projections, FAST(EST)MAP71. Before the MRS 

acquisition, the RF power for the asymmetric slice-selective 90° pulse 

(duration, 2ms) of the semi-LASER sequence was optimized to produce the 

maximum signal. This was in turn used to automatically adjust the power of 

the 180° hyperbolic secant adiabatic full passage pulses (duration, 4 ms). 

Water suppression was performed using variable power with optimized 

relaxation delays (VAPOR) and suppression of signal contamination from 

other brain regions was achieved with outer volume suppression (OVS). In 

addition, unsuppressed water spectra were acquired for eddy current 

corrections. The contribution of cerebrospinal fluid (CSF) to the VOI was 

corrected by segmenting the brain and estimate the proportion of CSF in the 

VOI. 
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MRS data analysis 

All spectra were processed in MATLAB R2019a (MathWorks, Natick, MA, USA). 

Eddy currents and shot-to-shot phase and frequency correction were performed as 

described previously28. LCModel72 (Version 6.3.0-G) was used for the quantification 

of metabolite concentrations. The basis set was simulated using the density matrix 

formalism and included alanine, ascorbate, aspartate, creatine, GABA, 

glycerophosphorylcholine, phosphocholine, phosphocreatine, glucose, Gln, Glu, 

GSH, Myo-inositol, scyllo-inositol, lactate, N-acetylaspartate, N-

acetylaspartylglutamate, phosphorylethanolamine, and taurine, as well as 

macromolecule spectra that were acquired in healthy volunteers for a previous 

study28. Metabolite quantification was considered reliable for Cramér Rao Lower 

Bounds (CRLB) <20%, so we excluded data for 10% of the participants. According to 

this criterion, the following metabolites were reliably quantified: total creatine (tCr), 

Myo-inositol (Ins), total N-acetylaspartate (tNAA), total choline (tCho), Glutathione 

(GSH), Glycerophosphocholine (GPC), glutamine (Gln) and glutamate (Glu). 

To account for local inhomogeneities in the VOIs, as well as reduce the high 

inter-participant variability in the absolute concentration due to the variable 

amounts of CSF, gray and white matter in the VOIs, we report metabolic 

concentration as a ratio to the baseline peaks of Ins, tNAA, and tCr. To control 

for potential confounds, we included the following measures as covariates in 

the statistical analysis: age, linewidth (as estimated by LCModel), signal-to-

noise ratio (as estimated by LCModel), grey matter concentration in the voxel 

(estimated by a Freesurfer segmentation of the VOI), and movement 

regressors which were estimated in SPM1273 based on pre/post-measurement 

EPI images. 

Diffusion-weighted magnetic resonance spectroscopy acquisition 

Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) was performed in 

the same VOIs as for the MRS acquisitions using a single-voxel semi-LASER 

sequence with diffusion gradients added in a bipolar configuration (TE = 120ms, 

spectral width = 3kHz, number of complex points = 2048)29. All resonances were 

excited using a slice-selective 90° pulse (pulse length of 2.52ms) followed by two 

pairs of slice-selective adiabatic refocusing pulses in the other two dimensions (HS1, 
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R = 20, pulse length 7.5ms). All acquisitions were synchronized with the cardiac 

cycle using a pulse-oximeter device, to start each acquisition every three heartbeats, 

while maintaining a minimum TR of 2500ms. Diffusion-weighting was applied in three 

orthogonal directions ([1, 1, -0.5], [1, -0.5, 1], [-0.5, 1, 1] in the VOI coordinate 

system) with diffusion gradient duration = 22ms, diffusion time = 60ms and four 

increasing gradient strengths g = 0, 19, 39, 58mT/m, resulting in the b-values b0 = 0, 

b1 = 1080, b2 = 4300 and b3 = 9770 s/mm2. 

Sixteen averages were collected for each diffusion-weighting condition and 

saved as individual free induction decays for further post-processing. Water 

suppression was performed using VAPOR and OVS suppression74. For eddy 

current corrections, unsuppressed water reference scans were acquired from 

the same VOIs using the same parameters as water suppressed spectra. 

DW-MRS spectral processing 

DW-MRS data were corrected as described previously29. Eddy current corrections 

were performed for each DW condition using water reference scans. Zero-order 

phase fluctuations and frequency drifts were corrected on single averages before 

summation using an area minimization and penalty algorithm and a cross-correlation 

algorithm, respectively75. A peak-thresholding procedure was applied, for each DW 

condition, to discard the single spectra with artifactually low SNR caused by non-

translational tissue motion29. A threshold of 70% for the proportion of spectra 

rejected per DW condition was set. No datasets were excluded using this criterion. 

The remaining spectra, for each condition, were then averaged. 

The averaged spectra were analyzed with LCModel for metabolite 

quantification. The basis set was simulated based on the density matrix 

formalism76 and using chemical shifts and J-couplings reported previously77,78. 

The basis set included alanine, ascorbate, aspartate, creatine, ,-aminobutyric 

acid, glucose, glutamate, glutamine, glutathione, glycerophosphorylcholine, 

mIns, lactate, N-acetylaspartate, N-acetylaspartylglutamate, phosphocreatine, 

phosphorylcholine, phosphorylethanolamine, scyllo-inositol, and taurine. 

Independent spectra for the CH3 and CH2 groups of NAA, Cr, and PCr were 

simulated and included in the basis set. Metabolite quantification was 
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considered reliable for CRLB <20% at b0, and no data were excluded due to 

this criterion. Signal/noise was >10 at all b-values. 

ADCs were calculated for the metabolites fitted by LCModel. Metabolite ADCs 

for tNAA, tCr, tCho, Glx, and Ins were computed in each VOI and session by 

fitting a stretched exponential to the logarithmic metabolite signal decay: 

 
log)

�-�,+

�-�,�
) = #. " )#/!( ∗ +), 

 (5) 

Were �-�,+ is the metabolite signal at a given b-value, �-�,� is the metabolite 

signal at +�, /!( is the apparent diffusion coefficient (scaling factor) and , is 

the stretching factor. To control for potential confounds in the statistical 

analysis of /!(, we added the following measures as covariates: age, 

linewidth and signal/noise as estimated by LCModel, grey matter 

concentration in the voxel, and the proportion of spectra rejected during 

preprocessing. 

Metabolic accumulation model 

To test the link between neural activity measured using fMRI in our previous study 

using the same behavioral protocol24 and the present spectroscopy measures, we 

developed a metabolic accumulation model (see Figure 6), following a Markov chain: 

0123 =  0123 � # 5617890123 � " 538:;<=>?38:;, 3  "  56@AB67<=>?6@AB67, 3  (6) 

The model assumes that glutamate accumulates at a rate (Glut - Glut-1) that is 

proportional to instantaneous neural activity (proxied by BOLD signal measured with 

fMRI during the cognitive tasks and economic choice) and dissipates at a rate that is 

proportional to its current level. To generate the inputs to the dynamic model, we 

averaged BOLD activity measured for each session and group in our previous 

study24. The BOLD activity was then upsampled to 22 sessions, normalized between 

0 and 1, and smoothed with a moving average, before entering into the dynamic 

model. We then fitted both Glu concentration (mean of Glu/tCr, Glu/Ins, and 

Glu/tNAA) and Glx diffusion (ADC) measures, separately, as if they had been 

measured during sessions 2, 12, and 22, to match the timing of data acquisition in 
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the two studies. The model was inverted to estimate posterior parameters of the 

three scaling factors (βclear, βtask, and βchoice) using the VBA toolbox70. 

Statistical analysis 

All statistical analyses were performed in Matlab R2019a (MathWorks, Natick, MA, 

USA) with linear mixed models (function fitglme). Intercepts and all within-participant 

factors (e.g., session) were estimated on the participant level. All between-participant 

factors (e.g., condition) were estimated at the group level. Response times (RTs) 

during choice were log-transformed to correct a skewed distribution and we excluded 

trials with short RTs of <0.1s.  
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