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SUMMARY
Functional precision medicine aims to match individual cancer patients to optimal treatment through ex vivo
drug susceptibility testing on patient-derived cells. However, few functional diagnostic assays have been
validated against patient outcomes at scale because of limitations of such assays. Here, we describe a
high-throughput assay that detects subtle changes in the mass of individual drug-treated cancer cells as a
surrogate biomarker for patient treatment response. To validate this approach, we determined ex vivo
response to temozolomide in a retrospective cohort of 69 glioblastoma patient-derived neurosphere models
with matched patient survival and genomics. Temozolomide-induced changes in cell mass distributions pre-
dict patient overall survival similarly to O6-methylguanine-DNA methyltransferase (MGMT) promoter methyl-
ation and may aid in predictions in gliomas with mismatch-repair variants of unknown significance, where
MGMT is not predictive. Our findings suggest cell mass is a promising functional biomarker for cancers
and drugs that lack genomic biomarkers.
INTRODUCTION

Cancer precisionmedicine seeks tomatch each individual patient

to the most effective available therapy. To date, precision medi-

cinehas largelybeenbasedongenomicprofiling, inwhichpatients

with certain pre-defined genetic alterations are identified and

matched with drugs targeting those specific abnormalities.

Despite early success, progress in identifying additional action-

able mutations has been slow, and today fewer than 20% of pa-

tients with metastatic cancer are eligible for U.S. Food and Drug

Administration (FDA)-approved genome-guided drugs (Marquart

et al., 2018). This slow progress has led some to speculate that

most of the ‘‘low-hanging fruit’’ of actionable mutations have

already been identified and that additional complementary ap-

proacheswill beneeded tocontinuemakingprogress in improving

outcomes for patients with cancer (Friedman et al., 2015).
This is an open access article under the CC BY-N
As a complement to genomic precision medicine, functional

precision medicine aims to match patients with cancer to effec-

tive therapies by performing ex vivo drug susceptibility testing

directly on biopsied tumor cells. The vision of functional preci-

sion medicine is to predict drug susceptibility at the level of indi-

vidual patients by sampling the tumor, exposing the tumor cells

to candidate drugs ex vivo, and then measuring the cellular

response using integrative readouts, such as cell growth, prolif-

eration, or apoptotic signaling. Unlike genomic profiling, which

typically focuses on identifying small subsets of patients

harboring a few specific, well-understood targetable mutations,

functional testing could potentially be used to test susceptibility

to a broad range of drugs, regardless of the patient’s specific

disease or genomic background.

Despite continued efforts to develop functional assays for

drug susceptibility testing in cancer (Letai, 2017), there are still
Cell Reports 37, 109788, October 5, 2021 ª 2021 The Author(s). 1
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no such assays currently used in clinical practice. A key factor

that has limited the translation of functional assays to the clinic

is a general lack of studies that directly assess whether ex vivo

drug susceptibility testing is correlated with measures of patient

treatment outcome, such as overall survival duration on therapy.

This lack of compelling evidencewas the basis for a clinical prac-

tice guideline published by the American Society of Clinical

Oncology, which concluded that, as of 2011, there was not suf-

ficient evidence to support the use the use of functional drug

susceptibility testing in clinical oncology practice; the group

has not published a revised guideline since then (Burstein

et al., 2011). Most studies linking functional testing to patient

outcome have only obtained matched clinical outcomes for

small numbers of patients (for example, n = 4–9 patients per

study; Bhola et al., 2020; Cetin et al., 2017; Tiriac et al., 2018; Vla-

chogiannis et al., 2018), in part because of the logistical chal-

lenges involved in obtaining clinical follow-up.

To address this limitation, we sought to identify a tractable

model system in which to conduct a retrospective study

comparing functional drug susceptibility testing with patients’

clinical outcomes. Glioblastoma (GBM) is one cancer in which

such a large-scale retrospective study is possible: using three-

dimensional (3D) tumor neurosphere culture techniques, ‘‘pa-

tient-derived neurosphere models’’ can be established from pri-

mary tumor resections, and stored long-term as viable cells. Pa-

tient-derived neurosphere models have been robustly validated

to preserve key phenotypic and genotypic features of the

patient’s tumor in vitro. Further, because patients with GBM

typically receive only a single drug (temozolomide) for the course

of their treatment, overall survival duration provides ameaningful

readout of each patient’s susceptibility to temozolomide against

which to compare ex vivo drug susceptibility testing.

In this study, we performed functional drug susceptibility

testing on a retrospective cohort of 69 genomically characterized

patient-derived neurosphere models (generated by the Dana-

Farber Cancer Institute Center for Patient Derived Models) with

matched patient treatment history information, including overall

survival duration. Although primary tumor samples or more com-

plex patient-derived organoid models (Jacob et al., 2020) may

ultimately be the most predictive and convenient tumor model

for clinical implementation of functional testing, the immediate

availability of banked patient-derived neurosphere models,

which are similar to organoids in their 3D growth, with matched

patient treatment history information took precedence in this

study.

We measured the response of these GBM patient-derived

neurosphere models to temozolomide (TMZ), an alkylating

chemotherapy agent that serves as the standard-of-care treat-

ment for GBM and, then, asked whether functional TMZ suscep-

tibility testing correlated with the duration that patients survived

after standard-of-care treatment that included TMZ. This study

serves as a useful intermediate step between initial validation ex-

periments (using immortalized cell lines with little clinical rele-

vance) and a full-scale prospective clinical trial (using fresh pa-

tient tissue, but with additional technical and logistical

challenges), allowing us to evaluate whether a particular func-

tional assay predicts treatment outcome in a more tractable

model system.
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RESULTS

Single-cell mass measurements for functional drug
susceptibility testing
A variety of functional assays have been used as readouts for

ex vivo drug susceptibility testing. The ideal assay would

work for drugs with a range of cytotoxic or cytostatic mecha-

nisms; would be amenable to acute testing, without requiring

extended culture; and would achieve high sample throughput.

Previously, our laboratory developed the mass accumulation

rate (MAR) assay, which enabled acute testing of both cyto-

toxic and cytostatic drugs (Cermak et al., 2016; Stevens

et al., 2016). In that assay, a microfluidic cell mass sensor,

called a suspended microchannel resonator (SMR), measures

the instantaneous growth rate of individual drug-treated tumor

cells by weighing each cell repeatedly over a period of 10–

15 min. By measuring drug-induced changes in single-cell

growth rates, the MAR assay has been shown to predict drug

susceptibility in a variety of cancer model systems, including

clinical response in a small cohort of patients with multiple

myeloma who were treated with a variety of standard-of-care

agents (Cetin et al., 2017). However, despite promising early re-

sults, clinical implementation of the MAR assay has been chal-

lenging because of the assay’s low throughput; typically, at

least 1–2 h are required to measure enough cells for each

drug condition, limiting the amount of testing that can be per-

formed in the limited window during which a primary tumor

sample remains viable.

Here, we developed a functional assay that retains the key ad-

vantages of the MAR assay (i.e., compatibility with a wide variety

of drug mechanisms and not requiring extended culture) and

achieves the higher sample throughput needed for clinical imple-

mentation (Figure 1A). Our approach, the ‘‘SMR mass assay,’’ is

based on detecting subtle changes in the mass distributions of

drug-exposed versus control cells (Figure 1B). We first used

the SMR mass sensor to measure the buoyant mass (referred

to hereafter simply as ‘‘mass’’) of single cells in baseline growth

conditions by detecting a shift in the resonance frequency of a

hollowmicro-cantilever beam as cells flow through it. The details

of the SMR system have been described thoroughly in previous

work from our group (Burg et al., 2007; Cermak et al., 2016; Son

et al., 2012; Stockslager et al., 2019) and are highlighted in the

Method details section. Using the SMR, we weighed individual

cells with precision near 50 fg, which is on the order of 0.1% of

the buoyant mass of a typical tumor cell. To achieve higher

throughput, we performed these single-cell massmeasurements

using our recently described parallel SMRarray (Figure 1C), ami-

crofluidic device containing 16 SMRs connected fluidically in

parallel and operated simultaneously on the same microfluidic

chip (Stockslager et al., 2019). This enabled us to weigh a popu-

lation of cells withmaximum throughput of thousands of cells per

minute. By sequentially measuring themass of�2,000 cells from

each sample, then comparing the mass distributions of drug-

exposed versus control cells, we can detect changes in mean

cell mass as small as 3% with high statistical power and confi-

dence and use as little as 2 min of instrument time per sample.

This approach represents an �30-fold improvement in the rate

at which samples can be measured compared with that of the



Figure 1. Single-cell mass measurements for functional drug susceptibility testing

(A) General workflow for drug susceptibility testing. Patient-derived tumor tissue is isolated, dissociated to form patient-derived neurosphere models, exposed

ex vivo to candidate drugs, and then, dissociated again to single cells for mass measurements.

(B) Schematic of a single suspended microchannel resonator (SMR), a microfluidic sensor that weighs single cells as they flow through a resonating micro-

cantilever beam. Cell mass is measured by detecting a shift in the cantilever’s resonance frequency as the cell passes through. Cell mass can be used as a

readout for ex vivo drug susceptibility testing, by comparing the mass of drug-exposed tumor cells to untreated controls.

(C) Using the parallel SMR array, single-cell mass distributions can be measured at high throughput because cells are simultaneously weighed by multiple SMR

sensors in parallel on the same microfluidic chip.
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MAR assay, in which each cell must be weighed repeatedly to

measure its growth rate.

Because (unlike the MAR assay) the SMR mass assay has not

previously been applied to ex vivo drug susceptibility testing, we
first used conventional cancer cell lines as a model system to

validate that the single-cell massmeasurements were consistent

with expected patterns of drug susceptibility and resistance. We

used two model systems: (1) two BCR-ABL+ leukemia cell lines
Cell Reports 37, 109788, October 5, 2021 3
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treated with the BCR-ABL inhibitors imatinib and ponatinib, and

(2) two EGFR-mutant lung adenocarcinoma cell lines treated

with the EGFR inhibitors gefitinib and osimertinib (Method de-

tails). For bothmodel systems, the SMRmass assay was consis-

tent with expected susceptibility versus the resistance of each

cell line to each drug (Figure S1).

Single-cell mass measurements for predicting
temozolomide susceptibility in GBM
After validating the SMRmass assay for predicting drug suscep-

tibility in conventional cancer cell lines, we next asked whether

single-cell mass measurements could predict the clinical

response of patients with GBM to TMZ. To benchmark the per-

formance of the SMR mass assay, we also measured TMZ

response using the Cell Titer-Glo (CTG) assay, which measures

ATP levels as a proxy for numbers of viable cells, because of

the assay’s frequent use in ex vivo drug susceptibility testing (Ku-

lesz-Martin et al., 2013; Tiriac et al., 2018; Vlachogiannis et al.,

2018).

We performed functional testing as follows (Figure 2A; Method

details): GBM patient-derived neurospheres were seeded in cul-

ture, exposed to either 20 mMTMZ or a vehicle control, and then,

functional readouts were taken at fixed time points (3, 5, 7, 10,

12, and 14 days of TMZ exposure) with feeding at regular

intervals over the course of the drug exposure. Neurospheres

remained intact for the duration of drug treatment but were

dissociated to single cells immediately before mass measure-

ments using the SMR.

We observed a wide range of biophysical TMZ responses in

the patient-derived neurosphere models (Figure 2B). Interest-

ingly, in many TMZ-responsive models, the SMR mass assay

measured an increase in mean cell mass after TMZ exposure,

consistent with the fact that TMZ arrests susceptible cells at

the G2/M checkpoint (Hirose et al., 2001), where individual cells

typically have double their initial mass just before division. This

accumulation of larger cells was often accompanied by an accu-

mulation of small particles (<25 pg), likely because of the accu-

mulation of dead cells and debris in the culture, especially at later

time points. In some models, the accumulation of small particles

and debris dominated, and there was not an obvious accumula-

tion of larger cells. Other patient-derived models (e.g., BT330)

showed a striking lack of TMZ response (Figure 2B, right).

As expected, the CTG assay typically measured a reduction in

total ATP levels relative to controls (Figure 2C, left) in the TMZ-

responsive models and less reduction in TMZ-non-responsive

models (Figure 2C, right).

To quantify the TMZ responsiveness of each model, we

defined a ‘‘response score’’ for each functional assay, a single

statistic describing the extent to which each functional readout

changes when the cells are exposed to TMZ (Figures 2B and

2C, right; Method details). For both the SMR mass assay and

the CTG assay, a greater response score indicated a larger

response to the drug exposure. The SMR mass response score

is defined as the Hellinger distance (Kitsos and Toulias, 2017) be-

tween the vehicle and TMZ-treated cell mass distributions, aver-

aged across three time points of drug exposure (days 5, 7, and

10). The Hellinger distance is a statistic thatmeasures the degree

of difference between two mass distributions, regardless of how
4 Cell Reports 37, 109788, October 5, 2021
the mass distributions might differ. This statistic has the advan-

tage of capturing multiple factors that are reflected as changes

to the drug-exposed cell mass distribution, such as the accumu-

lation of larger cells due tolate-cell-cycle arrest and the accumu-

lation of small particles due to cytotoxicity.

The CTG response score is defined as the average of the CTG

luminescence signal (normalized to the control at each time

point) across all time points of drug exposure; larger CTG

response scores correspond to greater reduction in ATP levels

in drug-exposed samples relative to controls. In future steps to-

ward clinical implementation, it will be important to understand

the biological mechanism by which a drug of interest alters cell

phenotypes and how those phenotypic changes manifest in

the assay results. However, in this study, we chose to use these

response scores as a surrogate for the degree of drug suscepti-

bility due to our limited knowledge of the biological mechanism

by which temozolomide induces these changes to cell mass

(the SMR assay) or ATP levels (the CTG assay).

Of the 69 patient-derived neurosphere models on which any

functional testing was performed (Table S1), data were success-

fully collected for 67/69 models using the SMR mass assay (full

dataset shown in Figure 3) and 55/69 models using the CTG

assay (full dataset shown in Figure S2).

Single-cell mass biomarker is consistent with known
molecular biomarkers for TMZ susceptibility
To assess whether functional testing predicts patient response

to TMZ, we first asked whether the SMR mass assay and the

CTG assay were consistent with known molecular biomarkers

for TMZ susceptibility. The best-known molecular biomarker

for TMZ susceptibility is methylation of the O6-methylguanine-

DNA methyltransferase (MGMT) promoter (Touat et al., 2020).

A second relevant biomarker is mismatch-repair (MMR) defi-

ciency: even in MGMT-methylated tumor cells, which are nor-

mally expected to be more responsive to TMZ, MMR deficiency

can lead to profound TMZ resistance because those cells

continue to cycle and accumulate a large drug-induced muta-

tional burden (Touat et al., 2020). To isolate MGMT promoter

methylation as a response predictor, we initially limited our anal-

ysis to the subset of 64/69 models that had no MMR alterations

(Figure 4A).

We compared functional response scores between MGMT-

methylated and MGMT-unmethylated models and found that, for

both the SMR and CTG assays, the MGMT-unmethylated models

had significantly lower functional TMZ response scores

thanMGMT-methylatedmodels (Figures 4B and 4C). To compare

the degree to which each functional biomarker differed between

MGMT-methylated and MGMT-unmethylated models, we

computed the receiver operator characteristic area-under-the-

curve statistic (ROC AUC); the values were comparable for both

functional assays (ROC AUC values: SMR mass assay, 0.75;

CTG assay, 0.81). Across all 69 patient-derived models, the SMR

mass-response score and the CTG response score were moder-

ately positively correlated (Spearman r = 0.71; Figure 4D).

For robustness, for 58 of the 68 patient-derived neurosphere

models in our cohort with knownmodel MGMT status (mMGMT),

we also independently measured or collected from clinical re-

cords the MGMT promoter methylation status of the primary



Figure 2. Profiling TMZ responsiveness in glioblastoma patient-derived neurosphere models
(A) Workflow for performing functional drug susceptibility testing in glioblastoma (GBM). Patient-derived neurosphere models are established from primary

tumors, exposed to temozolomide (TMZ) or a vehicle control, then single-cell massmeasurements (or for comparison, the CellTiter-Glometabolic assay) are used

to measure the TMZ response at multiple time points of drug exposure. Biophysical assay results are compared against MGMT promoter methylation status and

overall survival duration.

(B) For the SMR mass assay, TMZ-responsive models generally increase in mean cell mass over time compared with that of controls.

(C) For the CellTiter-Glo (CTG) assay, TMZ-responsive models have generally reduced CTG luminescence signals compared with controls.
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patient tumor sample (pMGMT). Both mMGMT and pMGMT had

similar correlations with functional response scores (Method

details).

Functional testing would be particularly useful for patients for

whom existing genomic biomarkers are non-predictive. In GBM,

one such group is the subset of patients with recently described

alternative mechanisms of TMZ resistance not mediated by
MGMT promoter methylation. For example, MGMT promoter

methylation may not reliably predict TMZ susceptibility in

MMR-mutated patients, who comprise 5/69 patients in our

cohort and a similar fraction of patients with GBM overall

(McLendon et al., 2008). Deficient function of the MMR pathway

results in TMZ resistance, even in MGMT-methylated patients;

therefore, patients with MMR-inactivating mutations would be
Cell Reports 37, 109788, October 5, 2021 5
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expected to be resistant to TMZ. Consistently, the two models in

our cohort with known MMR-inactivating mutations (N16-1162

and BT1160) were both functionally non-responsive to TMZ,

despite one (N16-1162) having the methylated MGMT promoter

(Figure S3). However, for other patients—such as those with

MMRmissense mutations—it remains unclear whether each pa-

tient’s particular mutation is expected to result in loss of MMR

functionality and, therefore, lead to TMZ resistance. Interest-

ingly, we found that, of the three patients in our cohort with

MMR missense mutations of unknown clinical significance, two

were functionally non-responsive to TMZ (BT559 and BT168),

whereas only one was functionally responsive (BT422), despite

all three models having the methylated MGMT promoter (Fig-

ure S3). The functionally non-responsive patient with known sur-

vival duration had shorter-than-average overall survival

(1.5 months), whereas the functionally responsive patient had

longer-than-average overall survival (20.4 months), although a

much larger cohort of patients with mutant MMR would be

needed to determine whether that trend is supported. These ob-

servations suggest that functional testing has the potential to

predict treatment outcome independent of genomics, which

would be useful for subsets of patients for whom genomic bio-

markers are currently non-predictive.

Single-cell mass measurements predict overall survival
in patients newly diagnosed with GBM
Next, we asked whether single-cell mass measurements could

retrospectively predict the overall survival of patients with

GBM who were treated with standard-of-care therapy that

included TMZ. To limit potentially confounding effects, we

limited our analysis to the 30 patient-derived models derived

from patients who, at the time, were newly diagnosed, had

wild-type isocitrate dehydrogenase (IDH) status, were subse-

quently treated with TMZ, and had known overall survival. The

median overall survival among this group was 14.6 months.

We used the ROC to assess the sensitivity and specificity with

which the SMR and CTG functional biomarkers predicted overall

survival of 15 months or greater (Figure 5A). For each functional

biomarker, we computed the ROC AUC as a measure of the bio-

marker’s predictive power. The SMR assay was moderately pre-

dictive of 15-month survival (ROC AUC statistic, 0.78), whereas

the CTG assay was somewhat less predictive of 15-month sur-

vival (ROC AUC statistic, 0.66). For robustness, we confirmed

that the predictive power was similar when using other binary

survival outcomes, such as 12-month, 18-month, 21-month,

and 24-month survival (Figure S4A).

Next, we compared overall survival distributions between

TMZ-responsive and non-responsive patients. Ideally, the pre-

dictive power would be evaluated by dividing the cohort into a

training set (to set a response threshold to classify patients as re-

sponders versus non-responders) and a test set (to compare
Figure 3. Single-cell mass measurements for profiling the TMZ respon

Models are ranked in order of low to high SMR mass-response score, which is b

TMZ-treated cell populations at each time point. Points overlaid on the histograms

coordinate represents density (dimensions pg�1), with the same horizontal scale f

least one sample for that model accumulated many particles of the same size, c

models (bottom) because of the accumulation of low-mass particles (<25 pg) in
survival between responders and non-responders). However,

because of the limited size of our cohort, we instead chose to

classify the 50%of patients with the highest functional-response

scores as TMZ responders (Figure 5B). This approach is reason-

able because previously published imaging results suggest that

approximately one-half of patients with glioma respond to TMZ

(Lee, 2016; Ollier et al., 2017). Although the exact fraction of

TMZ-responsive patients in GBM is debated, we noted that

our results were robust when different fractions of patients

were classified as TMZ responders (in the range of 25%–75% re-

sponders, which generally includes the clinically estimated range

of responses to TMZ; Figure S4B).

Overall survival was significantly longer for SMR mass assay

responders than it was for SMR mass assay non-responders

(Figure 5C; median overall survival, 20.1 versus 12.2 months,

respectively; log-rank p = 0.01). Although CTG responders had

longer median survival than CTG non-responders (18.8 versus

10.3 months, respectively), there was not a statistically signifi-

cant difference in overall survival distributions between those

two groups (Figure 5C; log-rank p = 0.11). The predictive power

of the SMR mass assay was comparable to that of the patient-

derived mMGMT status (Figure 5C; log-rank p = 0.001; median

survival, 18.8 months versus 8.2 months for patients with meth-

ylated versus unmethylated mMGMT, respectively). A detailed

statistical comparison is included in Figures S5A and S5B.

To confirm that the SMR and mMGMT biomarkers did not

reach statistical significance due only to their increased sample

size relative to theCTG (28 eligible patients had SMRdata and 29

patients had known mMGMT status, whereas only 25 patients

had CTG data), we repeated this analysis limited to the subset

of 25 patients with CTG data and found similar results (Method

details).

We asked whether the SMR mass assay could be combined

with the MGMT promoter methylation biomarker to make more

accurate predictions of patient survival outcomes. By combining

functional biomarkers with MGMT, one can achieve either

greater sensitivity or specificity for identifying TMZ-resistant pa-

tients (Figures S5C–S5E).

DISCUSSION

This retrospective study demonstrates that single-cell mass

measurements can be used as a functional readout for ex vivo

drug susceptibility testing and that, in particular, the SMR

mass assay can be used in individual patients with GBM to pre-

dict overall survival duration after TMZ treatment, with predictive

power comparable to the existing standard molecular

biomarker. Although the SMR mass assay and MGMT appear

to have similar predictive capability in GBM, the SMR mass

assay has the potential to serve as a complementary and orthog-

onal biomarker for providing an integrative readout of cell
siveness of 67 GBM patient-derived neurosphere models

ased on the Hellinger distance between the mass distributions of DMSO and

indicate the meanmass for each drug condition and time point. The horizontal

or all distributions for each model. Some histograms appear narrow because at

ompressing the horizontal (density) scale; this is common for TMZ-responsive

the culture as a result of drug-induced cell death.
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Figure 4. Functional drug susceptibility testing is consistent with MGMT methylation for predicting TMZ susceptibility

(A) Clinicopathologic characteristics of the patient cohort from which the patient-derived models were established.

(B and C) MGMT-methylated patient-derived models have significantly higher functional-response scores compared with that of the MGMT-unmethylated

models, for both (B) the SMRmass assay (Wilcoxon rank-sum, p < 0.001; ROC AUC, 0.75) and (C) the CellTiter-Glo assay (Wilcoxon rank-sum, p < 0.0001; ROC

AUC, 0.81).

(D) Correlation between SMR mass response score and CellTiter-Glo response score (shown for models with known MGMT status).
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response in a rapid and cost-effectivemanner. In the future, such

a biomarker could be useful to predict drug susceptibility in dis-

eases and patient subsets for which predictive genomic or clin-

ical biomarkers are not available. However, to establish that an

assay is predictive, one needs to first compare its predictions

against a validated indicator of a patient’s drug susceptibility

or resistance, andGBM is a useful model system for such a study

because of the presence of MGMT as well-validated molecular

biomarker and the availability of banked patient-derived neuro-

sphere models with matched clinical data. The close agreement

among functional testing, MGMT, and overall survival provides a

foundation of evidence that functional testing predicts patient

outcome, which will need further development through prospec-

tive studies in other cancers.
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As functional precision medicine approaches move toward

clinical implementation, key practical considerations are

emerging. First, is the throughput of the assay. In this study, it

took 4 months for two researchers to perform functional testing

on 69 patient-derived neurosphere models. The main rate-

limiting factor in our study was the time required to culture the

models. However, the next rate-limiting factor would have

been the throughput of profiling the models using the SMR

mass assay. The on-device data collection time was approxi-

mately 20 min per SMR sample; therefore, measuring a total of

12 conditions per patient model (two drug conditions and six

time points), required a total of 3 h of SMR instrument time per

patient model. This level of throughput is likely compatible with

current clinical pathology workflows. Further, we estimate that



Figure 5. Single-cell mass measurements predict overall survival duration

(A) Receiver operator characteristic (ROC) between continuous functional biomarkers (the SMR mass response score and CellTiter-Glo response score) and a

binary survival outcome (15-month survival). Points indicate the performance of the thresholds used for the classification in (B) and (C).

(B) For each assay, patients within the top 50% of response scores were labeled as functional ‘‘responders,’’ and the bottom 50% were labeled as ‘‘non-re-

sponders.’’

(C) Overall survival distributions of functional responders versus non-responders. For the SMR mass assay, TMZ responders survived significantly longer on

therapy than TMZ non-responders did (median overall survival, 20.1 versus 12.2months, respectively; log-rank p = 0.01). Median survival was longer for CellTiter-

Glo assay responders than it was for non-responders (median overall survival, 18.8 versus 10.3 months, respectively), but overall survival distributions were not

significantly different between these groups (log-rank p = 0.11). The predictive power of the SMRmass assaywas comparable to the predictive power ofmMGMT

promoter methylation (median overall survival, 18.8 versus 8.2 months for mMGMT-methylated versus mMGMT-unmethylated patients, respectively; log-rank

p = 0.001).
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the required time per sample could be significantly reduced: as

we have shown previously (Stockslager et al., 2019), using

more concentrated cell samples, the SMR can achieve mass-

measurement throughput reaching thousands of cells per min-

ute, potentially reducing the required SMR instrument time per

sample by several fold.

A second practical consideration is sample consumption, i.e.,

the number of tumor cells required to perform functional testing.

Depending on the cancer, a typical solid-tumor biopsy or resec-

tion might contain several hundred thousand tumor cells, setting

an upper bound on the number of drug conditions or replicates

onwhich testing can be performed. In our study, because the pa-

tient-derived neurosphere models could be propagated ex vivo

to obtain more sample material, tumor cells were abundant,

and so we did not fully optimize the study design to use cells effi-

ciently. Despite that, across all time points, our assays

consumed a total of only 120,000 cells per patient for each

drug tested. These sample requirements are comparable to

next-generation sequencing, which is already a standard

component of many clinical workflows and requires as much
as 1 mg of DNA from typically 100,000 tumor cells (Bäumer

et al., 2018). However, the sample input requirements of the

SMRmass assay could be reduced by several fold because suf-

ficient statistical power can be obtained by weighing as few as

2,000 cells per sample, which is considerably less than our cur-

rent protocol (Method details).

A third practical consideration is the duration for which cells

must be exposed to drugs ex vivo before a response can be de-

tected. Although evaluating this metric was not a focus when

designing this study, the SMR mass assay can detect ex vivo

drug response faster than traditional indicators of cell viability.

For example, in this work, we showed that the SMR mass assay

can detect the response of the leukemia cell line Ba/F3 BCR-ABL

to imatinib in as little as 8 h (Figure S1), whereas, in previous

work, we found that the traditional cell-viability markers DAPI

and annexin V did not detect the same response even after

24 h of drug exposure (Stevens et al., 2016). Although this

difference in response speed was not important for performing

drug susceptibility testing on the GBM patient-derived neuro-

sphere models, which can propagate indefinitely ex vivo without
Cell Reports 37, 109788, October 5, 2021 9
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loss of viability, it will be a more important consideration when

moving to primary patient samples with a limited window of

viability and when drugs that act more quickly than temozolo-

mide are tested.

A frequent concern with functional drug susceptibility testing

approaches is that ex vivo testing only measures tumor-cell-

intrinsic drug susceptibility and does not capture other factors

that determine a patient’s response to therapy and overall sur-

vival duration. In particular, our study did not assess the effects

of radiation therapy, which most patients with GBM receive

concurrently with TMZ (Martı́nez-Garcia et al., 2018) and which

is known to provide additional survival benefit. In this work, we

chose to focus specifically on assessing tumor-cell-intrinsic

drug susceptibility to limit the complexity of the study. However,

in future work, it will be of great interest to evaluate whether func-

tional testing could also be used to predict the degree of

response to radiation or combination therapies in a more quan-

titative manner than existing predictors.

We found that the SMR mass assay was consistent with the

MGMT biomarker and that SMR responders survived for signifi-

cantly longer on therapy than non-responders did. It is inter-

esting to note that, although the CTG assay was also consistent

with the MGMT biomarker and CTG responders had longer me-

dian survival than non-responders, in our hands, there was not a

statistically significant difference in overall survival distributions

between CTG responders versus non-responders. However,

this finding should not be viewed as an indictment of the CTG

assay as a whole and should be viewed in light of the large

body of existing work in which the assay has successfully been

used for drug susceptibility testing. As others have described

previously (Niepel et al., 2019), even simple experiments, such

as measuring the response of cells to in vitro drug exposure,

can be affected by factors such as cell-counting protocols, mi-

cro-titer plate selection, and cell-seeding density; all of which

result in significant inter-center variability. We ran the CTG assay

using one particular assay format (i.e., plate type, cell-seeding

density, feeding schedule, drug dose, and time-point selection),

and although our selection was a reasonable choice, it is entirely

possible that, under different conditions, the assay could be

more predictive. Further studies might reveal biological under-

pinnings that explain the differences in drug responsiveness us-

ing biophysical versus metabolic assay readouts.

An interesting finding of this work is that both functional as-

says identified a continuous spectrum of TMZ responsiveness,

rather than a bimodal distribution with clearly distinct TMZ-

responsive and TMZ-resistant models. This may suggest that

patients with GBM also exhibit a continuous spectrum of cell-

intrinsic TMZ susceptibility versus resistance, rather than the

binary classification typically represented by the presence or

absence of MGMT promoter methylation. The notion of a

continuous spectrum of TMZ responsiveness is consistent

with previous work showing that MGMT promoter methylation

status is also continuously distributed across patients and

that there is not a clear, unambiguous level of methylation

separating ‘‘methylated’’ from ‘‘unmethylated’’ patients (Hegi

et al., 2019). Furthermore, recent studies suggest that quantita-

tive levels of MGMT methylation in gliomas may also correlate

with the response to TMZ (Mathur et al., 2020). It is possible
10 Cell Reports 37, 109788, October 5, 2021
that a continuous distribution of functional response scores

could be used to make more quantitative predictions of survival

for individual patients, by classifying patients into multiple

levels of TMZ susceptibility depending on the extent of their

functional TMZ response. Assessing whether these approaches

are predictive will require larger patient cohorts and greater sta-

tistical power. However, if validated, more quantitative, graded

predictions of drug susceptibility could be a valuable addition

to existing clinical workflows.

A key distinction between this work and most other applica-

tions of functional drug susceptibility testing is that this study fo-

cuses on stratifying patients by predicted susceptibility to one

specific drug, as opposed to selecting between several candi-

date drugs. The most common application of functional drug

susceptibility testing is, given a patient and several candidate

drugs, which drug is likely to be the most effective? Previous

studies in leukemia (Swords et al., 2018) and multiple myeloma

(Cetin et al., 2017) have focused on this application, in which

the goal is to test many candidate drugs against a patient’s tu-

mor and to select themost effective from among them. However,

our study focused on a simpler question: given a single stan-

dard-of-care drug and a population of patients, which patients

are most likely to benefit from the drug? Although more limited

in scope compared with studies that test dozens of novel drugs

and combinations, such studies focused on single clinical sce-

narios of need are more likely to be translated into clinical prac-

tice and FDA approval as diagnostics.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Description of patient cohort

B GBM patient-derived model initiation and culture

B Ba/F3 BCR-ABL and Ba/F3 BCR-ABL T315I cell lines

B PC9 and PC9-GR4 cell lines

d METHOD DETAILS

B Functional testing of PC9 and PC9-GR4 cell lines

B Functional testing of Ba/F3 BCR-ABL and Ba/F3 BCR-

ABL T315I cell lines

B Functional testing of GBM patient-derived models

B Functional testing of GBM patient-derived neuro-

sphere models

B SMR operation

B Measurement of MGMT promoter methylation

d QUANTIFICATION AND STATISTICAL ANALYSIS

B SMR mass response score

B CellTiter-Glo response score

B Receiver operator characteristic analysis

B Comparing throughput of the MAR and SMR mass as-

says



Article
ll

OPEN ACCESS
B Validation of the SMR mass assay using conventional

cancer cell lines

B Comparing patient-derived model MGMT status to pa-

tient MGMT status

B Comparing overall survival in a reduced patient subset
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2021.109788.

ACKNOWLEDGMENTS

The authors thank David Weinstock for providing the Ba/F3 BCR-ABL T315I

cell line, Pasi Jänne for providing the PC9 and PC9-GR4 cell lines, Ahmed Id-

baih for providing N16-1162, and Jesse Boehm and members of the Cancer

Cell Line Factory for providing other patient-derived models. This work was

supported by the MIT Center for Precision Cancer Medicine and the Cancer

Systems Biology Consortium U54 CA217377 (S.R.M.), R33 CA191143

(S.R.M.), and Cancer Center support (core) grant P30-CA14051 from the Na-

tional Cancer Institute, as well as P50 CA165962 (K.L.L.) and R01CA219943

(K.L.L.).

AUTHOR CONTRIBUTIONS

M.A.S., S.M, S.R.M., and K.L.L. designed the experiments. M.A.S., S.M.,

J.C.Y., and M.M. performed the experiments. S.M., P.Y.W., A.S.K., and J.G.

collected and interpreted patient clinical and molecular data. S.M., M.T.,

and K.-H.C. established patient-derived neurosphere models. M.A.S. and

S.M. analyzed the data. M.A.S. wrote the manuscript with contributions from

S.M., K.L.L., and S.R.M. All authors reviewed and approved the manuscript.

DECLARATION OF INTERESTS

S.R.M. and K.L.L. are founders of Travera. S.R.M. is a founder of Affinity Bio-

sensors and an inventor of a relevant patent (US8087284B2). K.L.L. receives

consulting fees from BMS, Rarecyte, and Integragen, research funding to

DFCI from BMS, Lilly, and Amgen. The other authors declare no competing

interests.

Received: January 13, 2021

Revised: August 17, 2021

Accepted: September 10, 2021

Published: October 5, 2021

REFERENCES
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Glioblastoma patient-derived neurosphere models DFCI Center for Patient-Derived Models https://www.dana-farber.org/cpdm

Chemicals, peptides, and recombinant proteins

Temozolomide Selleck Chemicals CCRG81045

Imatinib Selleck Chemicals STI571

Ponatinib Selleck Chemicals AP24534

Gefitinib Selleck Chemicals ZD1839

Osimertinib Selleck Chemicals AZD9291

Critical commercial assays

CellTiter-Glo Promega G7570

Deposited data

Functional testing and genomics raw data Mendeley Data https://doi.org/10.17632/9fyc3mk76x

Experimental models: Cell lines

Ba/F3 BCR-ABL Weinstock lab, DFCI CVCL_UE63

Ba/F3 BCR-ABL T315I Weinstock lab, DFI CVCL_UE64

PC9 Jänne lab, DFCI CVCL_B260

PC9-GR4 Jänne lab, DFCI CVCL_DH34

Software and algorithms

Raw data analysis code Mendeley Data https://doi.org/10.17632/8fp65yrn34
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Scott Man-

alis (srm@mit.edu).

Materials availability
Additional samples from 65/69 patient-derived neurosphere models are publicly available for licensing from the Dana-Farber Cancer

Institute Center for Patient Derived Models (https://www.dana-farber.org/cpdm); see also the Key resources table and Figure S1.

Data and code availability

d Genomics and functional testing raw data has been deposited at Mendeley Data and is publicly available as of the date of pub-

lication (Mendeley Data: https://doi.org/10.17632/9fyc3mk76x)

d The code used to analyze the data has also been deposited at Mendeley Data and is publicly available as of the date of pub-

lication (Mendeley Data: https://doi.org/10.17632/8fp65yrn34)

d Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact (Scott Man-

alis; srm@mit.edu) upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Description of patient cohort
All patients, clinical data and models were studied following consent to research (DFCI IRB#10-417) or waiver of consent (DFCI

IRB#10-043) per institutional review board procedures at the Dana-Farber Cancer Institute and Brigham and Women’s Hospital.

We performed functional testing on 69 patient-derived models established from GBM patients, all of whom had wild-type IDH. Of

these 69 models, functional response data was successfully collected for 67/69 models using the SMR assay and for 55/69 models
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using the CellTiter-Glo assay. Of the 69 models, 64/69 have a wild-type mismatch repair (MMR) genotype, while 5/69 have MMR

mutations.

For comparing functional response data toMGMTmethylation status, we restricted our analysis to the subset of patients with wild-

type MMR genotypes. Of these 64 patients, 63/64 had models with known MGMT methylation status (38/63 methylated, 25/63 un-

methylated). Further, of these 64 patients, 62/64 had SMR mass assay data and 52/64 had CellTiter-Glo assay data.

For comparing functional response data to patient survival outcomes, we further restricted our analysis to patients who were

newly-diagnosed and were treated with TMZ. Of the 69 total models, 45/769 were derived from newly-diagnosed patients, and of

these 45 patients, 32/45 were treated with TMZ.

Of these 32 eligiblemodels (those established fromnewly-diagnosed patientswhowere treatedwith TMZ), overall survival duration

was known for 30/32 patients. Of these 30 patients, 28/30 have SMRmass assay data, 25/30 have CellTiter-Glo assay data, and 29/

30 have known patient-derived model MGMT status (18/29 methylated, 11/29 unmethylated).

GBM patient-derived model initiation and culture
GBM patient-derived models were established and maintained as described previously (Stevens et al., 2016). Briefly, GBM tumor

resections were subjected to enzymatic and mechanical dissociation, then seeded in neurosphere culture conditions. The models

were propagated in a proprietary neurosphere culture medium (NeuroCult; STEMCELL Technologies) supplemented with additional

growth factors (20 ng/mL epidermal growth factor, 10 ng/mL fibroblast growth factor) and 2 mg/mL heparin. Models were propagated

in ultra-low attachment flasks (Corning 3814), and passaged by dissociating to single cells (5 minute treatment with 1X Accutase at

37 �C; STEMCELL Technologies) and resuspending at a concentration of 100k-300k cells/mL. Models and data are available via the

Dana Farber Cancer Institute Center for Patient Derived Models (models@dfci.harvard.edu) and were created in laboratories at DFCI

(Ligon) and the Broad Institute (K. Ligon and J. Boehm, Cancer Cell Line Factory). Where available from clinical records, the sex of

each cell line is reported in Table S1.

Ba/F3 BCR-ABL and Ba/F3 BCR-ABL T315I cell lines
Ba/F3 BCR-ABL and Ba/F3 BCR-ABL T315I cell lines were a gift from the Weinstock laboratory at the Dana-Farber Cancer Institute.

Both the Ba/F3BCR-ABL andBa/F3BCR-ABL T315I cell lines weremaintained in RPMI-1640medium (ThermoFisher) supplemented

with 10% FBS (Sigma-Aldrich), 25 mM HEPES (GIBCO), and 1X antibiotic/antimycotic (GIBCO). For maintenance, cells were

passaged every 2-3 days to a minimum concentration of 75,000 cells/mL.

PC9 and PC9-GR4 cell lines
PC9 and PC9-GR4 cell lines were a gift from the Jänne laboratory at the Dana Farber Cancer Institute. Both cell lines weremaintained

in RPMI-1640medium (ThermoFisher) supplemented with 10% FBS (Sigma-Aldrich), 25mMHEPES (GIBCO), and 1X antibiotic/anti-

mycotic (GIBCO) in 75 cm2 culture flasks (VWR 10062-860). For maintenance, cells were passaged every 3 days to a concentration

50k cells/mL in a volume of 15mL (i.e., 10k cells/cm2). At each passage, mediumwas aspirated, cells were detached from the culture

surface by incubating with 0.25% trypsin-EDTA (ThermoFisher) for 10minutes at 37�C, then washing with medium and resuspending

at the desired concentration.

METHOD DETAILS

Functional testing of PC9 and PC9-GR4 cell lines
For functional testing, cells were trypsinized and seeded in 12-well plates (Argos P1012) at a concentration of 50k cells/mL in a vol-

ume of 1 mL. After 24 hours, cells were exposed to gefitinib (Selleck Chemicals), osimertinib (Selleck Chemicals), or a vehicle control

(0.1% DMSO). At time points of 8, 16, and 24 hours of drug exposure, cells were trypsinized then resuspended in 150 mL medium for

SMR measurement, with a measurement duration of 20 minutes per sample.

Functional testing of Ba/F3 BCR-ABL and Ba/F3 BCR-ABL T315I cell lines
For functional testing, cells were seeded at 75,000 cells/mL in 12-well plates (Argos P1012), with a volume of 1 mL/well. After 24

hours, cells were dosed with imatinib (Santa Cruz Biotechnology), ponatinib (Santa Cruz Biotechnology), or a vehicle control

(0.2% DMSO). At 8-10 hours of drug exposure, cells were collected and immediately sampled by a SMR system for up to 20 minutes

per sample.

Functional testing of GBM patient-derived models
For the SMR assay, patient-derived models were dissociated to single cells (5-minute treatment with 1X Accutase at 37�C), then
seeded at a density of 15,000 cells/mL in 24-well ultra-low attachment plates (Costar 3473), with a volume of 1 mL/well. Because

Accutase dissociation is the same technique used in the biweekly neurosphere passage protocol, we do not expect this process

to interfere with cell viability. After allowing 24 hours for neurosphere formation, the cells were exposed to 20 mM temozolomide

or a vehicle control (0.1% DMSO). Medium was replenished (100 mL/well) at days 3, 6, 10, and 13 after drug exposure, while cells

were sampled for SMR measurement on days 3, 5, 7, 10, 12, and 14. For SMR mass measurement, neurospheres were dissociated
e2 Cell Reports 37, 109788, October 5, 2021
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to single cells by treatment with 1X Accutase for 10minutes at 37 �C, then resuspended in 50 uLmedium and sampled by the SMR for

20 minutes. Samples with fewer than 300 cells detected in this time period were excluded.

Functional testing of GBM patient-derived neurosphere models
For the CellTiter-Glo assay, patient-derived models were dissociated to single cells (5-minute treatment with 1X Accutase at 37�C),
then seeded at a density of 1500 cells/mL in 96-well ultra-low attachment flat-bottom plates (Corning 7007), with a volume of 100 mL/

well, with three biological replicates per condition. After allowing 24 hours for neurosphere formation, the cells were exposed to

20 mM temozolomide or a vehicle control (0.1%DMSO).Mediumwas replenished (10 mL/well) at days 3, 6, 10, and 13 after drug expo-

sure. At days 3, 5, 7, 10, 12, and 14 after drug exposure, theCellTiter-Glo assaywas performed following themanufacturer’s protocol.

For the CellTiter-Glo assay, we excluded time points for which there was unusually high variation between replicates (specifically, we

excluded time points for which the coefficient of variation of the measured luminescence signal between replicates was greater than

30%, excluding a total of 7% of the measured time points).

SMR operation
The design and operation of the suspendedmicrochannel resonator (SMR) has been described thoroughly in previous work from our

group (Burg et al., 2007; Cermak et al., 2016; Olcum et al., 2015; Son et al., 2012). Briefly, single cells in suspension flow through a

micromechanical resonator with an embedded fluidic channel, generating a shift in resonance frequency proportional to the cell’s

mass. The sensors are calibrated by measuring monodisperse polystyrene beads of known mass. The measurements described

here were performed using a parallel SMR array, in which twelve sensors are connected fluidically in parallel and operated simulta-

neously for increased throughput (Stockslager et al., 2019). Individual SMR chips can be washed between samples and are reusable,

typically for several months of routine use. Before measurement, the fluidic channels were passivated with poly-L-lysine-grafted

poly(ethylene glycol). Cell samples remained at room temperature throughout the (typical) 20-minute measurement duration.

Measurement of MGMT promoter methylation
Methylation of the CpG island of the MGMT gene was measured using standard methylation-specific PCR at the Brigham and

Women’s Hospital Center for Advanced Molecular Diagnostics. Specifically, bisulfite treatment converted unmethylated (but not

methylated) cytosines to uracil, prior to PCR using primers specific for either the methylated or modified unmethylated DNA (Esteller

et al., 1999). PCR products were analyzed using capillary gel electrophoresis in duplicate parallel runs. Partially methylated or ambig-

uous calls were verified by a molecular pathologist (A.K.) and binned into one of the categories based on this review.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of each statistical analysis (including statistical tests and exact sample sizes) are provided in the corresponding figure leg-

ends. The size of our cohort was determined by the availability of sample material rather than an a priori power analysis. When

comparing functional response scores between MGMT methylated versus unmethylated patients, we initially limited our analysis

to the subset of 64/69 models which had no MMR alterations. Then, when comparing survival between functional responders and

non-responders, we limited our analysis to the 30 patient-derived models derived from patients who at the time were newly diag-

nosed, had wild-type IDH status, were subsequently treated with TMZ, and had known overall survival.

SMR mass response score
For each functional assay, a ‘‘response score’’ was calculated that summarizes the extent to which the sample responds to the drug

treatment compared to a vehicle control across all measured time points.

The SMR mass response score is based on the Hellinger distance between the control and drug-treated cell mass distributions.

The Hellinger distance is a measure of statistical distance between mass distributions PðmÞ and QðmÞ, and is defined as:

HðP;QÞ =
2
41�

ZN

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðmÞQðmÞ

p
dm

3
5

1=2

A Hellinger distance of 0 corresponds to no difference between the control and drug-treated mass distributions (i.e., no drug

response), and a Hellinger distance of 1 would correspond to completely non-overlapping mass distributions. This summary statistic

has the advantage that is agnostic to whether drug treatment caused mass to increase or decrease, and simply identifies the degree

of change in the mass distribution. We evaluated the Hellinger distance between each control-drug pair by computing kernel density

estimates of P and Q and then numerically integrating. Further, we obtained bootstrap standard errors and confidence intervals for

the Hellinger distance by repeatedly resampling the measured cell mass distributions and re-computing the kernel density estimates

and Hellinger distance (200 iterations per sample).

For the GBM patient-derived models, the SMR mass response score is defined as the average of the Hellinger distance between

the TMZ and vehicle control samples at days 5, 7, and 10.
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CellTiter-Glo response score
For the GBM patient-derived models, the ‘‘CellTiter-Glo response score’’ was defined as 1� ðaverage viability across timepointsÞ,
where ‘‘viability’’ is defined as the ratio of the mean CTG luminescence signal for the TMZ sample to the mean CTG luminescence

signal for the vehicle control sample. This metric integrates the difference between the treatment and control conditions across all

measured time points, with larger CTG response scores corresponding to a greater reduction in CTG luminescence signal in the

drug-treated samples compared to matched controls.

Receiver operator characteristic analysis
To evaluate whether functional biomarkers predicted patient outcome, we computed the receiver operator characteristic (ROC) be-

tween the functional biomarker value (i.e., the SMR mass response score or CellTiter-Glo response score) and the binary survival

outcome of interest (e.g., 15-month survival). We computed the ROC area-under-the-curve statistic (ROC AUC) by integrating the

receiver operator characteristic true positive rate with respect to false positive rate.

Comparing throughput of the MAR and SMR mass assays
For both the MAR assay and the SMRmass assay, throughput (in samples measured per hour of instrument time) is determined from

the rate at which individual cells can be measured and the number of cells required to detect a significant MAR or cell mass changes

with sufficient statistical power.

Previously, it has been reported that serial SMR array devices measureMAR at amaximum rate of approximately 200 cells/hr (Cal-

istri et al., 2018). While required sample sizes depend strongly on the specific cell type and the expected effect size of the drug, pre-

vious studies using MAR have typically reported sample sizes on the order of 100-200 cells (Calistri et al., 2018; Cetin et al., 2017;

Stevens et al., 2016). Therefore, we estimated that the MAR assay has average throughput of 1 sample per hour of instrument time.

We used a similar approach to estimate the sample throughput of the parallel SMR array. Based on a previous study, these devices

can measure cell mass at a maximum throughput of 6800 particles/minute when optimized for speed (Stockslager et al., 2019). For

our order-of-magnitude throughput calculations we used a more conservative estimate of 1000 particles/minute, since most tumor

cell samples are sparse and throughput is lower when measuring these generally lower-concentration samples. Next, to estimate

required sample sizes, we computed the number of measurements required to detect a significant reduction in mean mass with

specified power ð1 � bÞ, and confidence ð1 � aÞ, obtaining the following expression for a drug treatment that reduces mean cell

mass from m to m� Dm:

n>
2
�
CV2

population +CV2
error

�
ðz1�a + z1�bÞ2

ðDm=mÞ2

where n is the required sample size,CVpopulation is the coefficient of variation of the untreated cells’ masses, andCVerror is the fractional

error of the mass measurement, and z is the inverse normal cumulative distribution function. Although we generally compared drug-

treated versus control samples using the Hellinger distance rather than directly comparing themeanmass, this calculation provides a

rough estimate of required sample sizes. Using this expression, a sample size of n = 2000 cells allows us to detect a reduction inmean

cell mass as small as 3% for a typical sample (CVpopulation = 30%,CVerror = 1%) with 80%power and 99% confidence. Therefore, we

estimated that the parallel SMR array has average throughput of 1 sample per 2 minutes of instrument time.

Validation of the SMR mass assay using conventional cancer cell lines
Unlike theMAR assay, the SMRmass assay has not been previously applied to ex vivo drug susceptibility testing. Therefore, as a first

step, we used conventional cancer cell lines as a model system to validate that single-cell mass measurements were consistent with

expected patterns of drug susceptibility and resistance. We used two model systems: (1) BCR-ABL-positive leukemia cell lines

treated with BCR-ABL inhibitors, and (2) EGFR mutant lung adenocarcinoma cell lines treated with EGFR inhibitors.

First, we replicated a previous experiment in which leukemia cell lines expressing the oncogenic BCR-ABL fusion protein were

exposed to the BCR-ABL inhibitors imatinib and ponatinib (Figures S1A–S1D). We have observed previously that in the cell line

Ba/F3 BCR-ABL, exposure to BCR-ABL inhibitors arrests cells in G1 and drastically alters their growth rate distributions (Stevens

et al., 2016). Consistent with this finding, the SMR detected a significant reduction in mean cell mass within 8 hours of exposure

to 1.4 mM imatinib and 100 nM ponatinib (Figure S1A). For Ba/F3 BCR-ABL T315I, a cell line engineered to express an imatinib-resis-

tant mutant BCR-ABL, cell mass was not significantly reduced in response to 1.4 mM imatinib, but as expected, was reduced in

response to 100 nM ponatinib (Figure S1B).

To exploit the increased throughput of the SMR mass assay, we next measured dose-response curves for the Ba/F3 and Ba/F3

BCR-ABL T315I cell lines after 8 hours exposure to imatinib (Figures S1C and S1D). Instead of comparing the mean mass between

drug-exposed cells and untreated controls, we computed an alternative summary statistic, the Hellinger distance, to evaluate to what

extent the cell mass distributions were altered by drug exposure. The Hellinger distance is a statistic that measures the degree of

difference between the mass distributions of drug-treated and untreated cells, where larger Hellinger distances reflect greater

differences between the treated and untreated mass distributions (Method details). A drug treatment with no effect on the mass dis-

tribution would have a Hellinger distance of zero, while drug treatments causing larger shifts in the cell mass distribution would be
e4 Cell Reports 37, 109788, October 5, 2021
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assigned larger Hellinger distances, up to a maximum of one. The Hellinger distance statistic has the advantage of capturing effects

other than changes in cell mass, such as the accumulation of small debris in the culture due to drug-induced cell death, or the emer-

gence of cell subpopulations of different sizes in response to drug exposure. As expected, Hellinger distance increased with imatinib

dose for Ba/F3 BCR-ABL but not for Ba/F3 BCR-ABL T315I (Figures S1C and S1D).

Next, we asked whether the SMR mass assay could also detect expected patterns of drug sensitivity and resistance in a solid tu-

mor cell line model. We used PC9, an EGFR mutant human lung adenocarcinoma cell line (EGFR Del-E745-A750) known to be

sensitive to the EGFR inhibitor gefitinib. Additionally, we used PC9-GR4, a resistance model containing EGFR T790M, a secondary

mutation which is known to confer resistance to gefitinib (Hochmair et al., 2019). As expected, 1 mM gefitinib induced a large reduc-

tion in population cell mass in PC9 after 24 hours of drug exposure (Figure S1E; 19% reduction), but only a small change in PC9-GR4

(Figure S1F; 6% reduction). Also consistently, for both cell lines we observed a large reduction in population cell mass after 24 hour

exposure to 100 nM osimertinib, an EGFR inhibitor that also inhibits EGFR T790M (Hochmair et al., 2019) (16% and 34%mean mass

reduction respectively for PC9 and PC9-GR4).

In addition to measuring the cell mass response after 24 hours of drug exposure, we also captured the transient gefitinib and osi-

mertinib responses by sampling the cell mass distributions at 8, 16, and 24 hours of exposure (Figures S1G and S1H). As expected,

the Hellinger distance increased over time for PC9 but not PC9-GR4 when exposed to gefitinib, but increased over time for both cell

lines when exposed to osimertinib. Therefore, cell mass measurements reliably and sensitively identified expected patterns of drug

sensitivity and resistance in both liquid and solid tumor cell line model systems with vastly increased throughput compared to pre-

vious SMR-based approaches.

Comparing patient-derived model MGMT status to patient MGMT status
Wemeasured the MGMTmethylation status of the patient-derived neurosphere models (‘‘mMGMT’’) for 68/69 models in our cohort.

For 58 of these 68 patients, we also independently measured MGMT methylation status of the primary tumor sample at the time of

collection (‘‘pMGMT’’). Here we compare in detail for which patients these two MGMT status results (mMGMT and pMGMT) agree

and disagree.

Of the 58models where both pMGMT andmMGMT are known, 34/58 (59%) of models hadmethylatedmMGMT and the remaining

24/58 (41%) had unmethylated mMGMT. Of the 34 models with methylated mMGMT, 18/34 (53%) also had methylated pMGMT,

while 16/34 (47%) had unmethylated pMGMT. Of the 24 models with unmethylated mMGMT, 17/24 (71%) also had unmethylated

pMGMT, while 7/24 (29%) had methylated pMGMT.

In other words, 18/58 patients (31%) had both methylated pMGMT and methylated mMGMT; 17/58 patients (29%) had both un-

methylated pMGMT and unmethylatedmMGMT; 7/58 patients (12%) hadmethylated pMGMTbut unmethylatedmMGMT; and 16/58

patients (28%) had unmethylated pMGMT but methylated mMGMT.

It remains unclear whether these shifts in MGMT methylation between the patient sample and patient-derived model occur due to

bias in the MGMT assay (either an abundance of false negative unmethylated calls from primary samples, or false positive methyl-

ation calls from PDM samples), or whether this corresponds to a real phenotypic shift between the primary sample and patient-

derived model.

While the pMGMT and mMGMT biomarkers were both correlated with functional testing results (i.e., MGMT methylated samples

tended to havemore significant TMZ responses), the pMGMT biomarker was slightly more strongly correlated than was themMGMT

biomarker. We computed the ROC AUC statistic to quantify to what extent functional response scores are segregated by both the

pMGMT and mMGMT biomarkers. For both assays, the ROC AUC statistic was similar for pMGMT and mMGMT (SMR, ROC AUC

0.79 versus 0.75; CellTiter-Glo, ROC AUC 0.83 versus 0.81).

Comparing overall survival in a reduced patient subset
To confirm that the SMR and mMGMT biomarkers did not reach statistical significance due only to their increased sample size rela-

tive to the CellTiter-Glo (28 eligible patients had SMR data and 29 patients had known mMGMT status, while only 25 patients had

CellTiter-Glo data), we repeated this analysis limited to the subset of 25 patients with CellTiter-Glo data and found similar results.

Specifically, among this subset of patients, overall survival was still significantly longer for SMR assay responders versus non-re-

sponders (median overall survival 20.4 versus 12.5 months, log-rank p = 0.046), and for patients with MGMT methylated versus un-

methylated models (median overall survival 19.7 versus 11.3 months, log-rank p = 0.01), but not for CellTiter-Glo responders versus

non-responders (median overall survival 18.8 versus 10.3 months, log-rank p = 0.15).
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