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Abstract—The problem of configuring the variability models
is pervasive in plenty of domains. Renault, a leading automobile
manufacturer, has developed an internal product configuration
system to model its vehicle diversity. This system is based on the
well-known knowledge compilation approach and is associated
with a set of parameters. Different input parameters have a
strong influence on the system’s performance. The parameters
actually used are determined manually. Our work aims to study
and determine these parameters automatically. This paper studies
Renault’s variability models and product configuration system
and presents a parameter prediction model for this system. The
results show the predicted parameters’ competitiveness compared
with the parameters by default.

Index Terms—Variability model, knowledge compilation, ma-
chine learning, parameter tuning

I. INTRODUCTION

Variability Modeling Problems [1] are very common in
real life. In the car industry, such problems are important
since they are related to different business activities, including
engineering design, manufacturing, etc.

As an example of Variability Model (VM) in car in-
dustry, let’s consider a VM M : it has a variable model,
which represents the vehicle model with a value range in
the domain {m1,m2}; a variable fuel with the domain
{petrol, diesel, lpg}. Then, variable dependencies describe
activity-related constraints (business, technical, legal require-
ments, and many others). For instance, the constraint model =
m1 ⇒ fuel = lpg leads to four possible combinations that
form the different configurations for this vehicle. We refer to
the set of possible configurations for a VM as the configuration
(or the solution) space.

Renault, a world-leading automobile manufacturer [2], uses
such VMs to model its vehicle range. Some ranges of its
vehicles can reach 1032 possible configurations. With such a
large configuration space, a common requirement is to be able
to search for satisfying configurations based on users’ queries.

These queries can include consistency checks (to determine if
a specified vehicle model exists) or requests for all the possible
satisfied configurations, among others.

To deal with such requests, Renault has adopted a knowl-
edge compilation [3] based approach. The idea of knowledge
compilation is using symbolic structures (e.g., BDDs [4],
SDDs [5], etc.) to represent the problem configuration space.
An internal product configuration system has been developed
to assist in building the configuration space for VMs using
these symbolic structures.

Although this system provides an efficient method to handle
large vehicle models, its performance can be limited by the
memory size of the symbolic structure. The total size of such
compiled structures can reach dozens of gigabytes, which puts
pressure on memory usage. In Renault’s configuration system,
the compilation1 of such symbolic structures is associated
with several parameters that greatly influence the structure’s
size. Determining the best-performing parameters manually for
each VM is difficult and tedious. This paper addresses this
problem, proposes, and implements an automated parameters
prediction model to obtain the best-performing parameters for
each VM.

The paper is organized as follows: Section II presents related
research; Section III describes the internal system with its as-
sociated parameters; Section IV presents the parameter tuning
and prediction process; Section V presents the obtained results;
and finally, Section VI concludes the paper and provides
perspectives for future work.

II. RELATED WORK

The performance of many algorithms relies heavily on
carefully tuned parameter configurations based on user pref-
erences or performance criteria [6]. Over the years, various

1Here, ”compilation” refers to the process of building the configuration
space in knowledge compilation terminology.



automatic parameter tuners have been proposed, which can
be categorized into two types: local methods ¡¡¡¡¡¡and model-
based methods.

In the category of local methods, notable examples include
GGA [7], paramILS [8], SPOT [9], and irace [10]. These
methods employ local search strategies in the configuration
space, such as genetic algorithms, iterated local search, rac-
ing procedures, and more. They have demonstrated strong
competitiveness when applied to solvers in diverse problem
domains like mixed integer programming (MIP) [11], machine
learning, and propositional satisfiability solving [12]. However,
these tools suffer from a limitation of being problem feature-
independent. In other words, the parameter tuning results are
static and cannot be adjusted based on the characteristics of the
input problem instance [13]. Theoretical and empirical studies
on various algorithms and problems have shown that algorithm
parameters are highly dependent on specific instance features
of the target problem [14]. Indeed, the optimal parameter
values can vary significantly with different input instance
features, such as problem size [15].

On the other hand, model-based tuners consider problem
features during the tuning process by leveraging machine
learning techniques to build a model. Two notable examples
in this category are SMAC and PIAC.

SMAC, sequential model-based algorithm configuration
[16], is an algorithm that automates the process of finding the
optimal parameter set for algorithms. It is often used for pa-
rameter tuning in machine learning models. SMAC iteratively
runs the model with different parameter combinations and uses
the results to learn which parameters are likely to yield good
performance. It employs a Bayesian optimization strategy that
takes into account both the model’s performance and the
uncertainty in estimated performances. This enables efficient
search in the parameter space, achieving good solutions with
fewer iterations compared to other methods.

PIAC (per instance algorithm configuration) relies on learn-
ing an empirical performance model (EPM) that can predict
algorithm performance based on the instance and specified
parameter settings [17]. The empirical performance model cap-
tures the relationship between instance features, parameters,
and algorithm performance, enabling performance prediction
with given features and parameters. However, PIAC faces
challenges when it comes to predicting or searching for the
best parameter setting in cases where the parameter space is
large.

In our case, we aim to develop a feature-dependent, model-
based automated algorithm tuner for each instance. In the
following sections, we describe the problem and present our
contributions.

III. BACKGROUND & PROBLEM STATEMENT

The product configuration system used by Renault involves
the generation of VMs and their associated configuration
spaces. In this section, we provide a brief overview of Re-
nault’s variability model and its configuration system. We also
introduce the system’s parameters and their usage. Finally, we

outline the objectives and analyze the challenges associated
with the tuning process.

A. Variability model: Definitions
A variability model represents variables (also known as

features) and their options, along with the relationships and
dependencies between them. Formally, the VM can be defined
as follows [18]:

A Variability Model is a triple (V,O,C), where V is a
set of variables, O is a set of options for the variables, and
C is a set of constraints. Each variable v ∈ V is associated
with a domain Domain(v) ∈ O. A constraint c ∈ C can be
intentional or extensional:

• Extension constraint: Also known as a table constraint, it
is defined by enumerating a list of allowed or forbidden
value tuples. It has the form extension(V, S), where V =
⟨v1, .., vn⟩ and S is a set of supported/forbidden value
tuples, S = ⟨⟨d1, ..., dn⟩, ...⟩ (with di ∈ Domain(vi)).

• Intension constraint: It is a constraint of the form
intension(V, P ), where V = ⟨x1, ..., xn⟩ is a sequence
of n variables (the scope of the constraint), and P is
a predicate expression with n formal parameters on the
variables of V .

A literal is a statement of the form v = d, where d ∈
Domain(v). An assignment is a set of literals covering all
the variables in V . A partial assignment is a set of literals
covering a subset of V . A solution is an assignment consistent
with all the constraints in C.

Here we give an example of a VM M :
• V ariables = {model, fuel, airconditioning, dustfilter}
• Options = {{m1,m2}, {petrol, diesel, lpg},
{manual, auto}, {with, none}}
with, Domain(model) = {m1,m2},
Domain(fuel) = {petrol, diesel, lpg},
Domain(airconditioning) = {manual, auto, none}
and Domain(dustfilter) = {with, none}

• Constraints :

c1 : extension(⟨model, fuel⟩, ⟨⟨m1, lpg⟩, ⟨m2, petrol⟩,
⟨m2, diesel⟩, ⟨m2, lpg⟩⟩)

c2 : intension(⟨model, fuel, airconditioning⟩,
⟨(((model = m1) ∨ (model = m2)) ∧

((fuel = petrol) ∨ (fuel = diesel))) ⇒ airconditioning =
auto⟩)

c3 : intension(⟨airconditioning, dustfilter⟩,
⟨airconditioning = manual ⇒ dustfilter = with⟩)

B. Variability model as undirected graphs
We introduce two undirected graphs that are used to encode

a VM. These graphs are defined as follow:
• variable-constraint graph: each constraint is represented

by a node; Each variable is represented by a node; An
arc exists between a constraint node and a variable node
if the variable is involved in the constraint.

• variable graph: each variable is represented by a node;
An arc exists between two variable nodes if the two
variables are involved in the same constraint.



Fig. 1: Variable-constraint graph and variable graph of M .

C. The product configuration system of Renault: Overview &
Challenges

Renault’s product configuration system can be divided into
two parts: the offline part generates and saves the configuration
space, while the online part deals with different requests. The
parameters are taken as inputs for the offline part and are then
used to help control and make decisions during the compilation
process. The online process searches for solutions in the
compiled structure generated by the offline phase. Figure 2
presents the system architecture.

Fig. 2: Renault’s product configuration system.

As mentioned before, the configuration space is represented
in the form of a symbolic structure, which implicitly saves all
the possible configurations. More specifically, it is based on a
private compiled representation of vehicle diversity in the form
of a cluster tree, which has been used in various applications
at Renault since 1995 [19]. Here, we detail the offline process
of the construction of the cluster tree (more details can be
found in [19], [20]).

• A cluster is a group of variables associated with a set of
partial solutions of a set of constraints. These constraints
should only involve the variables in the cluster. The
compilation process encodes literals as Boolean variables,
where a literal represents a variable value assignment.
Each partial solution is encoded as a vector of bits.
For M , consider that cluster1 refers to variables
model and fuel, and cluster2 refers to variables
airconditioning and dustfilter. c1 contains two vari-
ables, model and fuel, so c1 is associated with cluster1.
c3 is associated with cluster2. Boolean variables encode
literals: a for model = m1, b for model = m2,

c for fuel = petrol, d for fuel = diesel, and e
for fuel = lpg. f, g, h encode the choices manual,
auto, none for airconditioning. i, j encode the choices
with, none for dustfilter. The partial solutions for each
cluster, cluster1 and cluster2, are presented in Figure 3.

Fig. 3: cluster1 and cluster2.

• A cluster tree is a tree where each node represents a clus-
ter. An arc between two clusters indicates a dependency
between them in terms of constraints. These constraints
involve variables from both clusters. The arc between the
clusters contains a Matrix which evaluates whether the
partial solutions within the linked clusters are consistent
with the constraints. The Matrix enables the restoration
of complete configurations from the partial solutions in
each cluster. Figure 4 presents an example of a cluster
tree and the Matrix is contained in the red arrow.

Fig. 4: Cluster tree example.

Multiple cluster trees can be derived for the same prob-
lem, depending on how the variables are arranged within
clusters. To optimize the size of the cluster tree, the current
system constructs it using heuristic analysis of the variable-
constraint graph [21]. The system follows a process of
variable-constraint graph-based partitioning to assign vari-
ables to clusters. Two important parameters are considered
during this process to achieve an optimized cluster tree size:

• PartitionVariables: This parameter represents a list of
variables in the variability model. The order of variables
in the list is significant. The system uses these variables to
partition the variable-constraint graph and construct the
cluster tree. Each graph partition results in several sub-
graphs (or sub-cluster trees). In each sub-cluster tree, the
partitioned variable is assigned a value from its domain
to remove it. For example, in Figure 1, if we partition the
graph using the node airconditioning, we obtain three
sub-cluster trees as shown in Figure 5. Each sub-cluster
tree consists of two clusters linked by an arc, with each



arc containing a matrix that represents the consistency
information of partial solutions.

Fig. 5: Example of graph partition

• MatrixSize: This parameter represents the maximum size
threshold of the matrices in the cluster tree. A matrix be-
tween clusters reflects the consistency of partial solutions
within the linked clusters. The value of this parameter has
a significant impact on the final size of the cluster tree.
A large MatrixSize allows for variables to be dispatched
with large matrices between clusters, resulting in a larger
compiled structure. However, a small MatrixSize can
lead to a smaller overall size of the compiled structure.
Nevertheless, it also leads to more graph partitions. As
a consequence, more sub-cluster trees are created in
the compiled structure, which in turn increases the time
required to iterate through all the sub-cluster trees when
responding to requests.
In summary, the choice of MatrixSize affects both the
size of the compiled structure and the computational
efficiency of processing requests. It is crucial to strike
a balance between the size of the compiled structure and
the runtime performance.

The primary objective of the tuning process is to propose
a parameter prediction model that accurately predicts the
appropriate values of MatrixSize and PartitionVariables for
each input instance. This prediction model aims to reduce the
size of the cluster tree compared to the default parameters.
The next section presents the process of tuning and predicting
these parameters.

IV. PARAMETERS TUNING AND PREDICTING FOR
RENAULT’S PRODUCT CONFIGURATION SYSTEM

Our objective is to develop an automated prediction model
that is capable of generating feature-dependent parameter

predictions. In this section, we outline the process of training
such a model and integrating it into the configuration system.

A. Parameter Prediction Model (PPM) Training

Training a parameter prediction model involves two main
processes: parameter tuning and learning. The tuning process
is used to search for the best-performing parameters for each
instance, while the learning process focuses on training a
machine learning model that maps the features of instances
to the corresponding best-performing parameters.

1) Parameters Tuning Process: The tuning process is
a prep-processing work to prepare data for training set. It
aims to identify the best-performing parameters that optimize
a given objective. It is important to note that the best-
performing parameter setting we search for is not necessarily
the theoretically best parameter setting, as that would be
computationally expensive and challenging to determine.
Instead, we aim to find the parameter setting that optimizes
the target algorithm the most within a given computational
resource and time limit, based on specific evaluation metrics.
In our case, the evaluation metric is the compilation result
size. Figure 6 illustrates the steps involved in this process.

Fig. 6: Parameters tuning process

Parameter settings space construction. The initial step
involves defining the parameter domains to create the param-
eter settings space. For the MatrixSize parameter, we have
constrained the domain to integers ranging from 10 to 300.
This choice is informed by practical experience, encompassing
all suitable values for MatrixSize. Through observation, we
have determined that values exceeding 300 result in a single,
unpartitioned large sub-cluster tree, whereas values that are too
small lead to excessive graph partitions. This, in turn, increases
the response time, as previously mentioned.

To specify the domain for ’PartitionVariables,’ we employ
the concept of ’betweenness centrality’ as introduced in [22].
Betweenness centrality is a measure of centrality in a graph
based on shortest paths [23]. We create a ’variable graph’ for
each instance and compute the ’betweenness centrality’ for
each variable node. Subsequently, we rank the variables based
on their centrality values and select the top five.



All subsets of this list are considered as potential domains
for PartitionVariables, with different orders of the same
variables treated as separate parameters. It’s worth mentioning
that the actual number of variables used in the daily
parameters2 ranges from 0 to 10. From extensive tests with
multiple instances, we observed that the first five variables
used in PartitionVariables often matter much more than
the later variables over the compilation result. The alteration
of the variables at the back position slightly change the
compilation result size. So, to facilitate the experiments, we
fix the number of used variables in PartitionVariables to five.

SMAC activity. Once the parameter domains are defined, we
initiate the tuning phase to search for the best-performing
parameter settings within the parameter settings space for each
instance. To accomplish this, we employ SMAC, an automated
algorithm configuration tool. As discussed in Section 2, SMAC
optimizes the performance of an algorithm by executing it
with different parameter settings. It employs various strategies,
such as random forest [24] and Bayesian optimization [25], to
guide the search process. Notably, SMAC excels in handling
categorical parameters.

We configure SMAC to run a maximum of 60 iterations
for each instance. The choice of 60 iterations is based on
extensive testing of multiple instances, where we observed that
the compilation size does not significantly decrease beyond
approximately 50 iterations. The target for optimization is the
compilation size. We record the best-performing parameter
settings found by SMAC and also measure the time consumed
during this process.

2) Parameters Learning Process: Before delving into the
learning process, it is important to address the issue of
choosing an appropriate machine learning model for the two
parameters. Predicting MatrixSize is a classical regression
task that involves mapping problem features to the optimal
MatrixSize for each instance. On the other hand, predicting
PartitionVariables is a classification task rather than regres-
sion. The model for predicting PartitionVariables should
be capable of selecting variables from the instance and de-
termining their position in the PartitionVariables list. To
tackle this issue, we decided to train two separate models:
one regression model for predicting MatrixSize, and one
classification model for PartitionVariables. The choice of
input instance features, models, and training processes for each
model will be explained separately in this section. Figure 7
illustrates this process.
Graph encoding activity. The first step involves encoding
the VM as a variable-constraint graph and a variable graph
to facilitate feature extraction.

Features extraction activity.
• Features for learning MatrixSize: To train the model

2The daily parameter is also called the production parameter, which is
manually determined and updated by the system developers

Fig. 7: Parameters learning process

for predicting MatrixSize, we draw inspiration from a
similar study called SATZILLA [26], which extracts 48
features to analyze SAT instances by encoding them as
variable graphs and variable-constraint graphs. In our
case, we also rely on graph-based features and select 14
specific features:
– Problem size features:

∗ Number of variables in the VM
∗ Number of constraints in the VM

– Variable-constraint graph features:
∗ Minimum, average, and maximum degree values3

of constraint nodes
∗ Minimum, average, and maximum degree values of

variable nodes
∗ Minimum, average, and maximum betweenness

centrality values of constraint nodes
∗ Minimum, average, and maximum betweenness

centrality values of variable nodes
Since the construction of the cluster tree is based on
the partitioning of the variable-constraint graph, it is
reasonable to select features from such graphs as inputs
for the learning process.

• Features for learning PartitionVariables:
PartitionVariables is a parameter that is related to each
variable of the instance. In order to build a model for
the classification task, we need to extract features for
each variable in the instance. For each variable, we
calculate its node degree and betweenness centrality
value separately in the variable-constraint graph and
the variable graph. We use a four-bit vector to represent
these pieces of information as features for each variable.

Regression Model Training activity: With the target

3The degree of a vertex in an undirected graph is the number of edges
incident with (meeting at or ending at) itself. [27]



MatrixSize and available features for each instance, we
proceed to the learning phase to train the regression model.
Various standard machine learning models, such as Linear
Regression [28], Support Vector Machines (SVM) [29],
Gaussian Regression [30], etc., can be utilized. After careful
evaluation, we select Random Forest Regression as our
choice. This decision is based on its ability to provide
reasonable predictions without requiring extensive hyper-
parameter tuning. Furthermore, it effectively addresses the
problem of overfitting that can occur with decision trees [24].

Classification Model Training activity: The process of se-
lecting a variable partition for the compilation process involves
evaluating the suitability of all variables in the instance. To
accomplish this, we develop a scoring model based on the
SVM classification model [29]. This model aims to assign
scores to all variables in an instance, with a higher score
indicating a more favorable position in the PartitionVariables
list. To train this model, we begin by labeling the variables in
the PartitionVariables list identified by SMAC. Each variable
is assigned a score ranging from 0 to 1, with the leading
variable receiving the highest score and the last obtaining the
lowest score. Variables not included in the list are assigned
a score of 0. Subsequently, we train a model to learn the
relationship between the features of these variables and their
corresponding scores. This trained model is capable of scoring
variables for unseen instances. By ordering the variables based
on their scores, we can dynamically define the number of
required variables for each instance. The resulting ordered list
serves as the predicted PartitionVariables.

B. Integrating the Prediction Models into Renault’s Product
Configuration System

Now that we have outlined all the necessary steps for
the tuning and learning process, we proceed to integrate the
prediction models into the configuration system. Figure 8
illustrates the enhanced system with the inclusion of the
prediction models. When a VM is processed, it is initially
passed through the ”graph encoding and features extraction”
activity to extract its features. This step is relatively quick
and does not significantly impact the overall compilation time.
Subsequently, the extracted features are fed into the prediction
models, which generate the predicted values for MatrixSize
and PartitionVariables. By applying these predicted parame-
ters to the configuration system, we obtain a new data structure
representing the configuration space. Figure 8 gives a global
overview of the newly developed system.

In the next section, we will evaluate the performance of the
parameters discovered by SMAC. Additionally, we will con-
duct separate and combined tests on the predicted MatrixSize
and PartitionVariables to assess their effectiveness.

V. EXPERIMENTS

In this section, we present the results of the tuning and
prediction processes described earlier. Firstly, we obtain the

Fig. 8: Integration of the parameters prediction model into the
configuration system

best-performing parameters using SMAC. Then, with the pa-
rameter settings discovered by SMAC, we train two separate
models to predict MatrixSize and PartitionVariables. The
compilation results for different parameter configurations and
the response time of the requests are analyzed. All experiments
are conducted on the same execution environment: a CPU i7
with 3.00GHz and 32GB RAM.

A. Datasets

We collected a dataset consisting of 600 instances, each
representing a variable model of Renault. These instances are
divided into a training set containing 200 instances and a
validation set containing 400 instances.

To evaluate the influence of parameter tuning, we classify
the instances into three classes based on a custom indicator
provided by Renault. This indicator is associated with the
cluster tree compilation process discussed in Section III-C and
approximately measures the solving difficulty of each instance
within the configuration system. It is calculated by analyzing
the variable-constraint graph and determining the number
of cycles present. Specifically, we compute the number of
connected components (Ncc) in the graph and utilize Tarjan’s
cycle enumeration algorithm [31] to calculate the number of
cycles (Nci) for each connected component. Additionally, we
determine the number of nodes (Nnode) in each connected
component. Finally, we use the sum of the product of Nci
and Nnode (σ =

∑Ncc
i=1 (Ncii ×Nnodei)) as an indicator for

classifying the models. It’s worth mentioning that we chose to
use the number of cycles to calculate this indicator because the
cycle is more difficult to deal with during graph partitioning.
It takes more partitioning for the cycle parts in the graph to
obtain the separate sub-cluster trees. Generally, we detect more
cycles in the graph of large instances compared to the small
instances, which proves the reliability of this indicator.

We order the 600 instances based on the σ value and assign
them to three classes, each consisting of 200 instances. Within



each class, one-third of the instances are allocated to the
training set, while the remaining two-thirds form the validation
set. The details of the dataset subdivision are presented in
Table I. The column #VM indicates the number of VMs in
each class, while Avg(σ) represents the average σ value for
each class. Furthermore, Min(σ) (resp. Max(σ)) denotes the
minimum (resp. maximum) σ value within each class.

TABLE I: Subdivision of 600 instances in three classes using
the calculated σ.

Class #VM Avg(σ) Min(σ) Max(σ)

C1 200 210,517,750 1,593,181 2,462,269,412
C2 200 138,079 235 1,593,181
C3 200 61 0 235

B. Results

In this section, we present the results of the parameter
tuning and prediction processes. We begin by introducing
the Production parameters, which are currently used by
Renault’s configuration system as a reference. Then, we
compare the performance of the parameters found by SMAC
with the production parameters.

Production parameters. The production parameters are
manually determined and updated by the system developers.
They are obtained through an analysis of the input VM’s
variable-constraints graph and extensive simulation tests.
All the experimental results are compared to the compilation
results achieved using the production parameters.

Parameters found by SMAC. In this part, we evaluate the
performance of the parameters discovered by SMAC on the
training set instances, in comparison with the production
parameters. The results are presented for each class. We
calculate the sum of the instances’ compilation sizes for each
class and present the comparison in Table II. The column
sizepp represents the compilation size with the production
parameters, while sizesmac represents the compilation size
with the parameters found by SMAC. The column ∆ indi-
cates the percentage difference between the two sizes (∆ =
(sizepp − sizesmac)/sizepp). Additionally, the time taken by
SMAC to find these parameters is presented in Table III.

TABLE II: Compilation result comparison between production
parameters and parameters found by SMAC.(Unit:MB)

Class #VM sizepp sizesmac ∆

C1 67 44,948 22,030 51%
C2 67 5,286 1,682 68%
C3 67 17.31 17.19 0.12%

We observe that for all classes of instances, the parameters
found by SMAC outperform the production parameters. In
the case of the complex classes C1 and C2, the reduction in
compilation size is up to 68%. However, it is worth noting

TABLE III: Time usage of SMAC.(Unit:hour)

Class #VM time
C1 67 68.73
C2 67 2.61
C3 67 0.17

that SMAC requires a significant amount of time to find these
high-performance parameters.

MatrixSize Prediction Model. This experiment evaluates the
performance of the model for predicting MatrixSize. For
the instances in the validation set, we compile them using
the PartitionVariables of the production parameters along
with the predicted MatrixSize. The compilation results are
presented in Table IV, where sizepp represents the total
compilation size of the class with production parameters,
sizematrixmodel represents the compilation size with the pre-
dicted MatrixSize, and ∆ indicates the difference (∆ =
(sizepp − sizematrixmodel)/sizepp).

TABLE IV: Compilation result comparison between pro-
duction parameters and parameters predicted by MatrixSize
prediction Model. (Unit:MB)

Class #VM sizepp sizematrixmodel ∆

C1 133 155,845 101,030 35%
C2 133 5,441 4,806 11.6%
C3 133 54.13 64.91 -19.9%

From Table IV, we observe that the MatrixSize prediction
model performs well for the complex classes C1 and C2.
The parameters with the predicted MatrixSize can reduce the
total compilation size by up to 35%. However, for the simple
class C3, it results in an increase in the compilation size.
Upon further investigation, we found that for most instances
in C3, the compilation size remains the same, except for one
instance where the compilation size increases.

PartitionVariables Prediction Model. This experiment eval-
uates the performance of the model for predicting Partition-
Variables. For the instances in the validation set, we compile
them using the MatrixSize of the production parameters and
the predicted PartitionVariables. We trained a scoring model
to assist in selecting the partition variables. Specifically, for
each instance, we rank the variables based on the model’s
score and choose the top 5 variables as the PartitionVariables.
The compilation results are presented in Table V, where
sizevarmodel represents the total compilation size with the
predicted parameters.

From Table V, we observe that for all the classes, the
predicted parameters perform the same or worse compared to
the production parameters. Specifically, for the complex class
C1, it results in a twofold increase in the compilation size. We
suspect that this is due to the lack of controlled MatrixSize.



TABLE V: Compilation result comparison between production
parameters and parameters predicted by PartitionVariables
Prediction Model (Unit:MB)

Class #VM sizepp sizevarmodel ∆

C1 133 155,845 313,958 -101.45%
C2 133 5,441 5,609 -2.9%
C3 133 54.13 54.13 0.00%

Apparently, the MatrixSize of the production parameters
is not suitable for the predicted PartitionVariables. As
mentioned in Section III-C, improper variable dispatch
without appropriate MatrixSize control can lead to a
large cluster tree. The results of this experiment validate
this observation, especially for the complex instances.
Additionally, we observe that the compilation size remains
unchanged for the 133 instances of the simple class C3 with
the predicted parameters.

Combination of MatrixSize and PartitionVariables Pre-
diction Models. This experiment combines the parameters
predicted by the MatrixSize and PartitionVariables models.
For the instances in the validation set, we compile them using
the predicted MatrixSize and PartitionVariables parameters.
Table VI presents the compilation results, comparing them
with the production parameters, where sizeboth represents the
total compilation size with the combined predicted parameters
by the two models above.

TABLE VI: Compilation result comparison between pro-
duction parameters and parameters predicted sequentially by
Models for PartitionVariables and for MatrixSize.(Unit:MB)

Class #VM sizepp sizeboth ∆

C1 133 155,845 216,827 -39.12%
C2 133 5,441 5,022 7.7%
C3 133 54.13 64.91 -19.9%

From Table VI, we observe that for the most complex class
C1, the compilation size still increases with the predicted
parameters. However, the increment is smaller compared to the
results in Table V. The performance of the predicted parame-
ters improves when the predicted MatrixSize is considered.

For class C2, the predicted parameters perform positively,
reducing the compilation size by 7.7%. In the case of C3,
the increment is the same as in Table IV, indicating that
it is caused by the same instance. The compilation size
remains unchanged for all the other instances when using the
predicted parameters compared to the production parameters.

Response Time for Requests. The online part of the
compilation system is responsible for responding to requests
with the compiled structure. In this section, we compare the
response times of requests using different compilation results
obtained with the parameters mentioned above.

We begin by specifying the type of request used for this test.
For each instance, we generate 2000 requests for satisfiability
checks [32]. These requests consist of partial configurations
where certain variables are assigned specific values to check
their satisfiability. Out of these 2000 requests, 1000 are satisfi-
able and 1000 are not. This choice is motivated by the actual
number and type of requests used by Renault to verify the
consistency of their product offer [18].

Next, for each instance in the validation set, we compile
it separately using the production parameters, parameters
predicted by the MatrixSize model, parameters predicted
by the PartitionVariables model, and parameters predicted
by both models. We measure the response times of the
2000 requests for each compiled structure. The results are
presented in Table VII. RTpp represents the total response
time using the compiled structure with production parameters.
RTmatrixmodel represents the time using the predicted Ma-
trixSize parameters. RTvarmodel represents the time using the
predicted PartitionVariables parameters. RTboth represents
the time using parameters predicted by both models.

TABLE VII: Comparison of response times between compila-
tion results with production parameters and predicted param-
eters (Unit: Seconds)

Class RTpp RTmatrixmodel RTvarmodel RTboth

C1 694 1133 2030 3349
C2 22 22 28 27
C3 3 3 3 3

From Table VII, we observe that for all compilations using
predicted parameters, the response time is longer compared to
using the production parameters. There are two reasons:

• For compilations using predicted PartitionVariables pa-
rameters, the size of the compiled structures increases
(Table V and Table VI), which reasonably leads to longer
response times.

• For compilations using predicted MatrixSize parameters
and default PartitionVariables parameters, although the
compiled size is smaller than the default parameters
(Table IV), the response time still increases. This is
because more sub-cluster trees are generated during com-
pilation with predicted MatrixSize values. As mentioned
in Section III-C, a smaller MatrixSize can result in more
sub-cluster trees, reducing the size of the global structure
but increasing the response time for requests. When we
verify the predicted MatrixSize values, we confirm that
they are generally smaller than the MatrixSize of the
production parameters.

In fact, the remarkable reduction in size achieved by the
predicted MatrixSize outweighs the slight increase in response
time, making it a highly favorable trade-off. It adds only 3.3
seconds ((1133-694)/133) to the response time per instance
when handling 2000 requests, resulting in a mere 1.6ms
(3.3/2000) longer response time per request. Considering the
substantial benefits gained from the reduced size, this minor



impact on response time can be deemed negligible.

C. Summary

Based on the five experiments conducted, we draw the
following conclusions:

• SMAC demonstrates excellent performance in searching
for the best parameters for each instance, resulting in a
reduction of up to 68% in compilation size. However, the
drawback is its time-consuming nature.

• The MatrixSize prediction model proves to be success-
ful, achieving a significant reduction of up to 35% in
compilation size for the complex class C1. The trade-off
is a mere 1.6ms increase in response time per request.
The operational impact of this reduction is substantial.

• For simple instances, applying the predicted MatrixSize
and PartitionVariables separately or together has min-
imal impact on the compilation result. In most cases,
the compilation size remains unchanged, with only a few
instances experiencing a slight increase.

• The automated tuning and prediction of PartitionVari-
ables require further exploration. The related experiments
yielded negative results thus far.

Overall, the parameters found by SMAC perform the best
among the parameters above, but with the drawback of time-
consuming. After discussing with the stakeholders, we dis-
covered the compilation process can happen frequently. So,
applying SMAC each time before the compilation process is
impractical. On the other hand, with the MatrixSize model
obtained, we gain a 35% reduction in the compilation size
with the parameters predicted within seconds. So considering
both the compilation size reduction and the rapid parameters
prediction, integrating the MatrixSize model into the product
configuration system of Renault seems promising.

To facilitate the replication of the experiment
process, we have provided a file accessible at:
https://github.com/chiyanfly/Automated-Parameters-Tuning.
The file includes:

• Source code for building the ”variable-constraint graph”
and ”variable graph” and calculating ”betweenness cen-
trality”.

• Source code demonstrating the usage of SMAC.
• Examples of MatrixSize and PartitionVariables predic-

tion.
It is important to note that the verification of the experiment
results related to the configuration system is confidential, as it
is an internal proprietary system of Renault.

VI. CONCLUSION

This paper presents an automated parameters tuning and
predicting process to optimise Renault’s product configuration
system. The aim is to reduce the variability model’s com-
pilation size. We have shown the strong competitiveness of
the MatrixSize parameter predicted by our model, and the
reduction of compilation size is up to 35%.

Our first perspective is to continue exploiting the tuning
process for PartitionVariables, since the current experiments

show the negative results with its prediction model. We also
intend to enlarge the data sets to improve the performance of
models. In addition, since the MatrixSize prediction model
has brought very promising results, this model is expected to
be put into real usage for the operational system of Renault.
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