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Stuart Pickering-Brown,28 Sara Rollinson,28 Giacomina Rossi,29 Fabrizio Tagliavini,30

William S. Brooks,31 Carol Dobson-Stone,32,33 Glenda M. Halliday,32 John R. Hodges,32,34

Olivier Piguet,34,35 Giuliano Binetti,36 Luisa Benussi,37 Roberta Ghidoni,37

Benedetta Nacmias,38 Sandro Sorbi,38,39 Amalia C. Bruni,40 Daniela Galimberti,41

Elio Scarpini,41 Innocenzo Rainero,42 Elisa Rubino,42 Jordi Clarimon,43,44 Alberto Lleó,43,44
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The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal

dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are

largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA

methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some

common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations.

Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of

false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the

association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on

the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association

study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly

associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140,

and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that
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every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later

than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal

dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later

age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest

subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies

of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is

associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune

responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-

genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-

carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to

better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.
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Introduction
The G4C2-repeat expansion in C9orf72 is the most

common known cause of amyotrophic lateral sclerosis

(ALS) and frontotemporal dementia (FTD) (DeJesus-

Hernandez et al., 2011; Renton et al., 2011; Gijselinck

et al., 2012) in Caucasians. It accounts for about 37%

familial and 7% sporadic ALS patients; as well as 25%

familial and 6% sporadic FTD patients (Rademakers,

2012) with age and sex dependent disease penetrance

(Murphy et al., 2017). High phenotypic heterogeneity of

C9orf72 patients also includes a wide range in disease

age of onset (27–74 years) and duration (0.5–22 years)

(Gijselinck et al., 2016). Yet, genetic modifiers of age of

onset in C9orf72 patients are largely unknown [only the

T-allele of rs1990622 in TMEM106B was associated with

a later age of onset of FTD, but not ALS (Gallagher et al.,

2014; van Blitterswijk et al., 2014)]. Detection of the age of

onset modifier(s) might increase the accuracy of predicting

age of onset in asymptomatic mutation carriers, which is

important for clinical trials focused on early intervention.

Age of onset could be influenced by genetic and environ-

mental modifiers, both of which may trigger epigenetic

changes, such as DNA methylation at CpG sites (Zhang

et al., 2016). Indeed, there is no a strict dichotomy between

action of genetic and epigenetic factors; they often work in

concert. Genome-wide DNA methylation profiles of identi-

cal twins are much more similar than between fraternal

siblings (Zhang et al., 2016), demonstrating that many epi-

genetic changes are genetically controlled (e.g. the repeat

expansion causes hypermethylation of the C9orf72 locus

leading to downregulation of C9orf72 expression) (Xi

et al., 2015b; Gijselinck et al., 2016). The DNA methyla-

tion levels of some CpGs are age-related allowing the esti-

mation of DNA methylation age based on the cumulative

assessment of 353 CpGs included on the genome-wide

450K BeadChip. Currently, DNA methylation age is the

most accurate predictor of chronological age across mul-

tiple tissues (Horvath, 2013), but may in fact reflect biolo-

gical age better than chronological age. Indeed, we recently

reported that increased DNA methylation age acceleration

(DNA methylation age minus chronological age) is
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associated with earlier age of onset in C9orf72 patients

analysed on the 450 K BeadChip after exclusion of CpGs

mapped to common single nucleotide polymorphisms

(SNPs) (Zhang et al., 2017).

CpGs are the most mutable sites in the human genome

because methyl-C can spontaneously deaminate to T (e.g.

35% of all coding mutations occur at CpG sites)

(Lek et al., 2016). Hence, in the current study we tested

the hypothesis that age of onset in C9orf72 patients is

associated with some common SNPs causing a gain or

loss of CpG sites (CpG-SNPs) and thus resulting in DNA

methylation changes. Allele-specific DNA methylation is

largely attributed to CpG-SNPs (Shoemaker et al., 2010),

which have often been detected within promoter regions,

transcription factor binding sites and DNase I hypersensi-

tive sites (Gagliano et al., 2016), thus regulating the level of

gene expression. CpG-SNPs belong to a group of methyla-

tion quantitative trait loci (Hannon et al., 2016), which are

linked to some mental disorders (Gagliano et al., 2016).

We combined epigenetic and genetic approaches to map

functional variants (CpG-SNPs) associated with age of

onset in C9orf72 carriers. Such a study design reduces

the likelihood of false negative results due to excessive cor-

rection for multiple testing in genome-wide association stu-

dies (GWASs). Our study also includes suggestions on how

the significant SNPs exert their effects (e.g. by influencing

gene expression).

Materials and methods

Participants

Informed consent was obtained from all participants in accord-
ance with the respective ethics review boards. Sample character-
istics are presented in Table 1 and Supplementary Table 1 for
C9orf72 carriers, and Supplementary Table 2 for C9orf72 nega-
tive patients. Briefly, our study included patients diagnosed with
bulbar or limb onset ALS, behavioural FTD (bvFTD), semantic
dementia, progressive non-fluent aphasia (PNFA), and FTD-
ALS. All patients were of Caucasian origin and diagnosed at
hospitals specializing in neurodegenerative disorders using estab-
lished clinical criteria for ALS (Brooks et al., 2000) and FTD
(Neary et al., 1998), including the revised diagnostic criteria for
bvFTD (Rascovsky et al., 2011) and language variants of FTD
(Gorno-Tempini et al., 2011). Age of onset was defined as the

age at which the first disease symptoms appeared, including
initial bulbar or limb symptoms in ALS, and cognitive dysfunc-
tion in judgement, language, memory, or changes in behaviour
or personality in FTD. Age of onset was either self-reported (for
ALS) or obtained from unaffected family members (for FTD).

The discovery cohort was recruited from Canada, Italy,
Spain, UK, USA or Argentina and consisted of 144 C9orf72
carriers, including 21 symptomatic and 22 asymptomatic car-
riers from 16 pedigrees. The independent replication cohort
was obtained from centres (different from those that collected
the discovery cohort) participating in the International FTD-
Genomics Consortium (IFGC; https://ifgcsite.wordpress.com/)
(Ferrari et al., 2014). It consisted of 187 unrelated FTD or
FTD-ALS C9orf72 carriers from the USA, Canada, UK,
France, Belgium, Italy, Germany, Spain, Sweden, the
Netherlands and Australia. Information about family related-
ness was obtained from the clinical notes of the neurologists
who collected the samples. In addition, the presence of related-
ness in the replication cohort was previously assessed as part
of a GWAS that identified and excluded all first-degree rela-
tives (through identity by descent for any pair with an estimate
50.125) (Ferrari et al., 2014).

For a follow-up study of unrelated C9orf72 negative
patients, we investigated 2142 FTD and 164 FTD-ALS patients
from the IFGC (Ferrari et al., 2014), as well as 328 sporadic
ALS patients from the ALS clinic at Sunnybrook Health
Sciences Centre, Toronto (Supplementary Table 2), which
also provided frontal cortex from 25 unrelated ALS autopsy
cases without an expansion in C9orf72 (530 repeats) for the
gene expression studies (Supplementary Table 3).

Procedures

Blood genomic DNA was extracted using a QIAGEN kit. First,
we analysed the genome-wide DNA methylation data from the
450K BeadChip (Illumina) that was previously generated using
bisulfite converted DNA of 46 Canadian C9orf72 carriers
(Zhang et al., 2017) to discover common CpG-SNPs with
minor allele frequencies 45% that are associated with age of
onset. The raw data were preprocessed and analysed using the
minfi package in R-project (Aryee et al., 2014). The b-value was
used to estimate the DNA methylation level of each CpG-site (b-
value of 0: non-methylated; b-value of 1: completely methylated).

All participants of the discovery and replication cohorts
(n = 331) were carriers of an expansion in C9orf72 (430 re-
peats) based on previous analysis by repeat-primed PCR (Ferrari
et al., 2014; Xi et al., 2015b). Genotypes for rs9357140,
rs2143466 and rs1990622 were obtained by Sanger sequencing
in the discovery cohort (Supplementary Table 4). For the

Table 1 Sample characteristics of the discovery and replication C9orf72 datasets

Discovery cohort Replication

cohort
Unrelated

carriers

Symptomatic carriers

from 16 families

Asymptomatic carriers

from 16 families

Unrelated

carriers

Number of cases 101 21 22 187

Sex, male, n (%) 55 (54.4) 10 (47.6) 12 (45.5) 104 (55.6)

Age of onset, years, median (IQR) 59 (54–66) 55 (48–60) NA 58 (51–63)

Age of onset, years, mean (range) 59.82 (37–78) 54.86 (38–73) NA 57.2 (34–80)

NA = not applicable.

2898 | BRAIN 2018: 141; 2895–2907 M. Zhang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/141/10/2895/5106718 by guest on 10 April 2024

https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy238#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy238#supplementary-data
https://ifgcsite.wordpress.com/
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy238#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy238#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awy238#supplementary-data


replication dataset, these SNPs together with eight SNPs in
strong linkage disequilibrium (LD) with rs9357140 and
rs2143466 (R24 0.9) were either genotyped or imputed using
the latest data from the Haplotype Reference Consortium
(McCarthy et al., 2016) (Supplementary Table 5).

Genotypes for rs9357140 in a follow-up cohort of 2634
unrelated C9orf72 negative patients with ALS, FTD or FTD-
ALS, were obtained by TaqManTM assay (C___9782529_10,
ThermoFisher Scientific) for 328 ALS patients, or imputed
from IFGC-GWAS for 2306 FTD and FTD-ALS patients
(Ferrari et al., 2014) using the latest data from the
Haplotype Reference Consortium (McCarthy et al., 2016).

To measure the degree of LD, we extracted R2 values (range
from 0 to 1 with higher values indicating a higher LD) from
the LDlink tool (https://analysistools.nci.nih.gov/LDlink) using
the 1000 Genomes European population data. We searched
for known variants within the boundaries of the LD block
(R24 0.8) tagged by the top significant SNP (rs9357140)
using the ‘proxy search’ in LDlink. Functional predictions
for the missense SNPs were based on the PolyPhen-2 and
SIFT data available from the Exome Aggregation
Consortium database (Lek et al., 2016). Using the UCSC
genome browser, the LD-block was also analysed for tran-
scriptional factor binding sites and DNase I hypersensitivity.

To detect genes whose expression is associated with
rs9357140, we searched for expression quantitative trait loci
(eQTL) using Genotype-Tissue Expression (GTEx v7) data from
48 types of human tissues (GTEx Consortium et al., 2017). The
GTEx portal (https://www.gtexportal.org/) was used to analyse
the association between rs9357140 genotypes and gene expres-
sion by a linear regression method. Normalized effect size (NES)
was defined as the slope of the linear regression.

To quantify gene expression, total RNA was extracted from
human frontal cortex of ALS cases without C9orf72 expansions
using the QIAzol plus RNeasy� Mini Kit (QIAGEN) and reverse
transcribed to cDNA using oligo dT primers and the
AffinityScript Multiple Temperature cDNA Synthesis Kit
(Agilent Technologies). Quantitative RT-PCR was conducted
for 25 samples (Supplementary Table 3) with an RNA integrity
number 46.5 (based on an Agilent 2100 Bioanalyzer). To select
endogenous control genes for the frontal cortex, we assessed
four housekeeping genes including HPRT1 (MIM: 308000;
Hs99999909_m1), UBC (MIM: 191340; Hs00824723_m1),
B2M (MIM: 109700; Hs99999907_m1), and RPLP0 (MIM:
180510; Hs00420895_gH) (ThermoFisher Scientific) in nine
samples (n = 3 per each rs9357140 genotype). We used
Normfinder (Andersen et al., 2004) to identify the least variable
housekeeping genes (B2M and RPLP0) in our samples
(Supplementary Table 6). We measured expression of HLA-
DRB1 transcript variant 1 (MIM:142857; Hs04192464_mH)
and all C9orf72 transcripts (MIM:614260; Hs00376619_m1)
(ThermoFisher Scientific) in triplicate for 25 samples with differ-
ent rs9357140 genotypes: AA (n = 9), AG (n = 8) and GG
(n = 8). Relative quantification was calculated with the ddCt
method by geometric mean of housekeeping gene expression
(B2M and RPLP0).

Statistical analyses

We used the linear regression model of the R minfi package to
assess the genome-wide association between the DNA methyla-
tion status of CpG-SNPs and age of onset in C9orf72 patients,

as well as to evaluate the false discovery rate to generate ad-
justed q-values (Zhang et al., 2017). We used a Manhattan plot
to prioritize significant variants (P50.01 and q50.05) for
further genetic study, and a Q-Q plot to highlight potential
confounders using the R qqman package (Turner, 2018).

To assess if genotypes affect age of onset, we used a Cox
proportional hazard regression model (R survival and survminer
packages) (Grambsch, 2000) adjusting for sex, rs1990622 geno-
types, disease phenotypes, and censoring age of last follow-up
for the 22 currently asymptomatic C9orf72 carriers. To adjust
for relatedness in the Cox proportional hazard regression ana-
lysis of the discovery cohort, we created an indicator number
for each family; then used the coxph function of the R coxme
package with a frailty approach (Ripatti and Palmgren, 2000).
The hazard ratio (HR) with 95% confidence interval (CI) is
presented. To analyse the association between genotypes and
age of onset in the C9orf72 disease subgroups, we used multi-
variate linear regression with an additive, dominant or recessive
model adjusting for sex, rs1990622 genotypes, or DNA methy-
lation age-acceleration. We also used multivariate linear regres-
sion to analyse the association between genotypes and age of
onset in C9orf72 negative disease subgroups (adjusting for sex).
We present the linear regression coefficient (B) with standard
error (SE) and percentage of response variance explained by
the linear regression model (r2). Results of additive model
were presented, unless otherwise specified.

We used a meta-analysis (R metafor package) with a fixed-
effect model to assess the pooled effect size of the Cox regres-
sion coefficient (logHR) from the discovery and replication
stages (Trinh et al., 2016). We performed a trend analysis
using the Cochran–Armitage test to analyse if rs9357140
genotypes are associated with C9orf72 disease subgroups. A
non-parametric Mann-Whitney U-test or Kruskal-Wallis test
was used to assess differences in age of onset or gene expres-
sion among two or more groups where appropriate. Sex and
rs1990622 genotype adjusted P-values are shown, unless
otherwise specified. The results with P5 0.05 were accepted
as statistically significant.

Data availability

The data that support the findings of this study are available
on request from the corresponding authors (E.R., M.Z.). The
data are not publicly available because of information that
could compromise the privacy of the research participants.

Results

Epigenetic analysis suggested
CpG-SNPs associated with age of
onset

The study design is presented in Fig. 1. First, we estimated the

association between age of onset in a Canadian cohort of 46

unrelated C9orf72 patients and DNA methylation levels at

7603 common CpG-SNPs available on the 450K BeadChip.

Age of onset was significantly associated with DNA methyla-

tion levels (q50.05) at three CpG-SNPs (rs12763379 on

10q24.2; rs9357140 and rs2143466 on 6p21.3):
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P = 9.6 � 10�6, P = 6.0 � 10�6 and P = 1.8 � 10�5, respect-

ively (Fig. 2A and Supplementary Table 7). However,

rs12763379 in PYROXD2 was removed from follow-up

study because of its overlap with insertion/deletion variations

and single tandem repeats precluding reliable genotyping.

Genetic association study confirmed
the association between rs9357140/
rs2143466 and age of onset

Multivariate linear regression suggested that rs9357140

genotypes control the gain or loss of DNA methylation

at CpG-site cg18698799 (P5 1.0 � 10�6), thereby under-

lying the association with age of onset: adjusted

P = 2.2 � 10�5, B = 7.01 (SE: 1.47) (Fig. 2B). The associ-

ation remained significant after adjusting for DNA methy-

lation age-acceleration: P = 2.7 � 10�4, B = 6.72 (SE: 1.68).

AA-carriers have significantly lower DNA methylation

levels compared to AG-carriers (P = 2.2 � 10�5, Mann-

Whitney U-test) or GG-carriers (P = 4.7 � 10�5, Mann-

Whitney U-test); mean b-value: 0.04 (AA-carriers) versus

0.54 (AG-carriers) versus 0.88 (GG-carriers) (Fig. 2B).

Similar results were observed for rs2143466 (Supplemen-

tary Fig. 1). The Q-Q plot suggested that there are no other

confounders for the association (Supplementary Fig. 2).

Both SNPs belong to a strong 124.7 kb LD-block

(R24 0.8) on chr6:32213638–32338386 containing

two overlapping genes: a long non-coding RNA

(LOC101929163) and C6orf10—an uncharacterized testes-

specific gene with rs9357140 mapped to intron 9 and

rs2143466 mapped to intron 14 (Fig. 2).

Next, we enlarged our discovery dataset to 144 carriers by

genotyping rs9357140 and rs2143466 in 98 recently col-

lected C9orf72 carriers, including 101 unrelated symptom-

atic carriers and 16 families with 21 symptomatic and 22

asymptomatic C9orf72 carriers (Fig. 1 and Table 1). To

obtain the median age of onset for different SNP genotypes,

we used the Kaplan-Meier estimate, censoring age of last

follow-up for asymptomatic carriers. The median age of

onset difference between rs9357140 AA- and GG-carriers

was 12 years: 67 years for AA (95% CI: 60–71), 59 years

for AG (95% CI: 56–64) and 55 years for GG genotype

(95% CI: 54–60) (Fig. 3A). Cox proportional hazard regres-

sion analysis also revealed that age of onset in C9orf72 car-

riers is significantly associated with rs9357140 genotypes:

adjusted P = 1.1 � 10�4, HR = 0.43 (95% CI: 0.28-0.66),

suggesting that every A-allele could reduce hazard by 57%

(Fig. 3B and Table 2). A similar association with age of onset

was also observed for rs2143466: adjusted P = 1.1 � 10�4,

HR = 0.43 (95% CI: 0.28–0.68) (Supplementary Fig. 3).

The replication study validated the
association between rs9357140/
rs2143466 and age of onset

In the replication stage (Fig. 1 and Table 1), we obtained

genotypes from the IFGC-GWAS (Ferrari et al., 2014) for

10 SNPs tagged by rs9357140 (R24 0.9) (Supplementary

Table 5) for 187 C9orf72 patients with a median age of

onset of 58 years and interquartile range (IQR) of 51–80

years. Cox proportional hazard regression analysis showed

that age of onset was significantly associated with

Figure 1 Flow chart of the study design. AO = age of onset.
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Figure 2 Genome-wide DNA methylation analysis of the CpG-SNPs in C9orf72 patients. (A) Manhattan plot presenting the

association between DNA methylation status of CpG-SNPs and age of onset, including a locus on chr6:32160000–32580000 with two age of

onset-associated CpG-SNPs (rs9357140 and rs2143466 indicated by the box). Arrows indicate the transcriptional direction of each gene (50 to

30). ‘Me’ in red represent methylation sites controlled by rs9357140 and rs2143466. The LD block tagged by rs9357140 (R24 0.8) is highlighted in

green. (B) Genotypes of rs9357140 are significantly associated with DNA methylation status: P5 1.0 � 10�6, B = �0.39 (SE: 0.01); and age of

onset: P = 2.2 � 10�5 adjusted for sex and rs1990622 genotypes, B = 7.01 (SE: 1.47). The dashed line represents the linear regression trend.
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rs9357140: adjusted P = 0.03, HR = 0.79 (95% CI: 0.64–

0.98), suggesting that every A-allele reduced hazard by

21% (Table 2 and Fig. 3). As expected, similar associations

with age of onset were observed for rs2143466: adjusted

P = 0.025, HR = 0.79 (95% CI: 0.64–0.97) (Supplementary

Fig. 3) and for the other eight SNPs within the LD block

listed in Supplementary Table 5 (data not shown).

Meta-analysis revealed overall effect
of rs9357140/rs2143466 on age of
onset

We conducted a meta-analysis of logHR in all 331 C9orf72

carriers using a fixed-effects model and observed that every

Figure 3 The association between rs9357140 genotypes and age of onset in C9orf72 carriers. (A) Kaplan-Meier curve of cumulative

incidence of disease onset in the discovery cohort (n = 144) stratified by rs9357140 genotypes. (B) Meta-analysis of the Cox regression coef-

ficient from the discovery cohort (n = 144) and the replication cohort (n = 187). The regression coefficient equals logHR.

Table 2 The Cox proportional hazard regression results

for the association between the rs9357140 genotypes

and age of onset in the discovery and replication

cohorts

Discovery

(n = 144)

Replication

(n = 187)

HR (95% CI) 0.59 (0.45–0.77) 0.79 (0.64–0.98)

P-value for AA versus

AG versus GG

0.0001 0.029

Adjusted HR (95% CI)* 0.43 (0.28–0.68) 0.79 (0.64–0.98)

Adjusted P-value for

AA versus AG versus GG*

0.00011 0.03

*The hazard ratio (HR) and P-value was adjusted for sex, rs1990622 genotypes, disease

phenotypes and family relationship in the discovery stage. HR was adjusted for sex,

rs1990622 genotypes and disease phenotypes in the replication stage.
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A-allele of rs9357140 reduced hazard by 30% (pooled

HR = 0.70, P = 0.0003) (Fig. 3B). Again, a similar effect

was observed for rs2143466 (pooled HR = 0.70,

P = 0.0002) (Supplementary Fig. 3). The association between

age of onset and rs9357140 was also significant in 304 un-

related C9orf72 patients: adjusted P = 2.3 � 10�6, B = 3.2

(SE: 0.67) (Supplementary Table 1). The median age of

onset of rs9357140 AA-carriers was 6 years later than GG-

carriers: 62 years (IQR: 57–68) versus 56 years (IQR: 50–62).

Subgroup analyses of the association
between rs9357140 and age of onset

The association between age of onset and rs9357140 was

evident in unrelated C9orf72 patients with either pure ALS

(n = 59; adjusted P = 0.002, B = 4.97, SE: 1.53) or pure

FTD (n = 174; adjusted P = 0.0008, B = 2.82, SE: 0.83),

but not in patients with FTD-ALS (n = 71; adjusted

P = 0.125, B = 2.63, SE: 1.69) (Supplementary Table 1

and Supplementary Fig. 4A–C). A similar result was

observed for rs2143466 (Supplementary Fig. 4D–F).

Notably, we found no significant difference in age of

onset among patients affected by pure ALS, pure FTD or

FTD-ALS; or ALS/FTD subtypes (bulbar ALS, limb ALS,

unspecified ALS, bvFTD, semantic dementia, PNFA, un-

specified FTD): P40.05, Kruskal-Wallis test

(Supplementary Fig. 5). Multivariate linear regression ana-

lysis in different disease subtypes revealed that age of onset

was associated with rs9357140 genotypes in limb ALS

(n = 35) and bulbar ALS (n = 23) under a dominant

model (adjusted P50.05), and bvFTD (n = 157) under a

recessive model (adjusted P5 0.05), but not in FTD-ALS

patients (n = 71) (Supplementary Table 1).

To evaluate if rs9357140 genotypes modify disease

phenotypes, we performed a trend analysis using the

Cochran–Armitage test to analyse the association between

rs9357140 genotypes and C9orf72 disease phenotypes

(ALS versus FTD, ALS versus FTD-ALS, or FTD versus

FTD-ALS) under an additive model (AA versus AG versus

GG) (Supplementary Table 8); and found no statistically

significant results (P40.05).

Age of onset in C9orf72 negative
patients is associated with rs9357140

We analysed 2634 C9orf72-negative patients with ALS,

FTD or FTD-ALS (Supplementary Table 2), and found a

significant association between rs9357140 genotypes and

age of onset (adjusted P = 0.007 for recessive model)

(Supplementary Table 2). Subgroup analysis detected a sig-

nificant association only in the largest subgroup of FTD

patients (n = 2142, adjusted P = 0.01 for recessive model)

with a small effect size (B = 1.44, SE: 0.55) (Supplementary

Table 2). The association is evident in the bvFTD patients

(n = 1364, adjusted P = 0.035 for recessive model), but not

the other smaller FTD subtypes (Supplementary Table 2).

We also observed that age of onset differed significantly

among the FTD subtypes (P5 0.01, Kruskal-Wallis test).

Cox proportional hazard regression analysis revealed that

the AA-genotype is associated with age of onset [P = 0.036,

adjusted for sex and FTD subtype; HR = 0.94 (95% CI:

0.88–0.99)], suggesting that the AA-genotype could

reduce hazard by 6% relative to the GG- and AG-geno-

types. Kaplan-Meier estimate analysis revealed that AA-car-

riers have a slightly later median age of onset (63 years in

AA-carriers versus 62 years in GG + AG-carriers) (Fig. 4).

A similar association with age of onset was also observed

for rs2143466 in the C9orf72 negative FTD patients:

P = 0.036, adjusted for sex and FTD subtype; HR = 0.94

(95% CI: 0.88–0.99).

The expression of HLA-DRB1 and
LOC101929163 is associated with
rs9357140

Since rs9357140 and rs2143466 control the loss or gain of

CpG-sites and therefore DNA methylation levels (Fig. 2),

we hypothesized that CpG-SNPs at the C6orf10/

LOC101929163 locus may modulate age of onset by reg-

ulating gene expression. We used the public eQTL dataset

of 48 types of human tissue (GTEx portal) to analyse if

genotypes of the top-significant tagging SNP (rs9357140)

are associated with the expression of nearby genes (10 top-

significant hits are shown in Supplementary Table 9).

Among brain tissues, the A-allele of rs9357140 was asso-

ciated with reduced expression of the LOC101929163

(P = 7.6 � 10�6, NES = �0.66 in the nucleus accumbens,

part of the basal ganglia; Supplementary Fig. 6A); and

HLA-DRB1, encoding major histocompatibility complex,

class II, DR beta 1 (P = 4.1 � 10�6, NES = �0.42 in the

frontal cortex; Supplementary Fig. 6B).

To validate the link between rs9357140 genotypes and

HLA-DRB1 expression, we conducted quantitative RT-

PCR using frontal cortex from 25 unrelated ALS cases

(Supplementary Fig. 6C). Mann-Whitney U-test confirmed

that AA-carriers had significantly lower HLA-DRB1 expres-

sion compared to AG-carriers (P = 0.001) or GG-carriers

(P = 0.000003). Of note, C9orf72 expression did not differ

among the rs9357140 genotypes (P4 0.05, Mann-Whitney

U-test, Supplementary Fig. 7) and was not correlated with

HLA-DRB1 expression (adjusted P = 0.23, linear regression).

Bioinformatics analysis predicted
multiple DNase I hypersensitivity
sites within the LD-block associated
with age of onset

The LD-block associated with age of onset contains 196

known variants tagged by rs9357140 (R240.8), including

five missense substitutions with minor allele frequencies of

0.36–0.38 and conflicting functional predictions by
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PolyPhen-2 and SIFT (Supplementary Table 10). Since

C6orf10 is expressed mainly in testes, its coding variability

is likely not relevant to C9orf72 pathology. We found no

transcriptional factor binding sites mapped to any of the

196 SNPs; however, 12 of these SNPs are located at DNase

I hypersensitivity sites; including rs9268000 (78 kb up-

stream of rs9357140) with a high cluster score of 1000

(Supplementary Table 10). These results suggest that age

of onset modifiers of C9orf72 disease could be associated

with DNase I hypersensitivity sites and HLA-DRB1 expres-

sion (250 kb away from the investigated LD-block, Fig. 2).

Discussion
The current study combined epigenetic and genetic data to

detect functional variants associated with age of onset in a

large dataset of 331 C9orf72 carriers. A DNA methylation

study of CpG-SNPs in the discovery stage enabled prioritiz-

ing age of onset modifiers linked to DNA methylation status

for further genetic investigation. Such a novel strategy has

the advantage of reducing noise from GWAS signals. Indeed,

CpG-SNPs could help rank GWAS hits (Gagliano et al.,

2016), as they are important elements of methylation quan-

titative trait loci (Hannon et al., 2016). Our genome-wide

DNA methylation analysis of CpG-SNPs followed by a gen-

etic association study of the discovery and replication

C9orf72 cohorts revealed that age of onset is associated

with SNPs within a 124.7 kb LD-block tagged by

rs9357140. Overall, every A-allele of rs9357140 may

reduce hazard by 30% (the median age of onset of AA-car-

riers was 6 years later than GG-carriers). The genotypes of

rs9357140 were also moderately associated with age of

onset in C9orf72-negative patients although the effect size

was small (e.g. the median age of onset in AA-carriers af-

fected by FTD was 1 year later than GG-carriers).

Recently, a key tool for connecting phenotypes to genetic

variations has emerged from gene expression studies. Since

the locus with significant SNPs may not be the actual dis-

ease-related target, cis-acting eQTLs can provide a mech-

anistic link between SNPs and the biological processes they

affect (GTEx Consortium et al., 2017). In our study, the

minor A-allele of rs9357140 (top-significant SNP within the

C6orf10/LOC101929163 locus) is associated with reduced

brain expression of LOC101929163 (in nucleus accum-

bens) and HLA-DRB1 (in frontal cortex), while the

major G-allele is associated with their increased expression

(Supplementary Fig. 6). Future functional studies have to

investigate if the non-coding RNA LOC101929163 is a

modulator of HLA-DRB1 expression (e.g. affecting tran-

scriptional factors relevant to HLA-DRB1). The major

histocompatibility complex class II protein HLA-DR is

implicated in neurodegenerative diseases as a marker of

activated microglia (Walker and Lue, 2015) and is import-

ant in initiating immune responses by presenting peptides

derived not only from exogenous but also endogenous pro-

teins, such as peptides resulting from autophagy of intra-

cellular proteins by lysosomes (Dengjel et al., 2005).

Our results support the notion that microglial/autophagy

pathways play key roles in modulating C9orf72 disease, the

pathogenesis of which might involve both gain and loss of

function mechanisms (Hardy and Rogaeva, 2014). Normal

function of C9orf72 is essential for the lysosome/autopha-

gosome pathway and immune responses in macrophages or

microglia (O’Rourke et al., 2016; Shi et al., 2018). For

instance, transcriptome and histologic analyses of

C9orf72 carriers support the idea that decreased C9orf72
expression leads to altered microglial function and neuroin-

flammation (O’Rourke et al., 2016), while increased

C9orf72 levels could be neuroprotective (McGoldrick

et al., 2018; Shi et al., 2018). It is important to investigate

if rs9357140 GG-carriers, which have an earlier age of

onset and upregulated HLA-DRB1, are in a more pro-in-

flammatory state (e.g. by microglia) than AA-carriers.

Our survey of the literature and the GWAS catalogue

database (https://www.ebi.ac.uk/gwas/) revealed that SNPs

within or close to the C6orf10/LOC101929163 locus

(Supplementary Fig. 8) are associated with autoimmune

disorders (multiple sclerosis, rheumatoid arthritis, systemic

sclerosis, Grave’s disease and asthma), as well as neurode-

generative diseases (FTD, Parkinson’s disease and

Alzheimer’s disease) (Lambert et al., 2013; Ferrari et al.,

2014; Lu et al., 2017), highlighting the role of the

immune system in neurodegeneration (Supplementary

Table 11). Notably, several dementia genes are linked to

microglia/immune function (e.g. TREM2 and CD33)

(Lambert et al., 2013). Our study of C9orf72-negative pa-

tients suggests that the C6orf10/LOC101929163 locus

could be a modest age of onset modifier for the general

Figure 4 Kaplan-Meier curve of cumulative incidence of

disease age of onset in 2142 C9orf72-negative patients with

FTD stratified by rs9357140 genotype (AA versus

GG + AG).
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population of FTD patients. Intriguingly, another two SNPs

(rs9268877 and rs9268856) near this locus have been re-

ported in a case-control GWAS as modifiers of FTD risk

(Ferrari et al., 2014). Of note, rs9357140 is not in LD with

rs9268877 and rs9268856 representing an independent as-

sociation signal (Supplementary Table 11), yet the mechan-

ism behind the association with age of onset or disease risk

could be similarly pointing to the functional significance of

the HLA-DRA/HLA-DRB5 locus.

Notably, age of onset estimation is more objective for ALS

(self-reported) than FTD (reported by family members)

(Pottier et al., 2018). Hence, the less significant result in

the replication C9orf72 cohort enriched in FTD patients

(72.7% versus 27.8% in the discovery stage) may be ex-

plained by a less accurate age of onset estimation

(Supplementary Table 12). In addition, the subgroup ana-

lysis could be further complicated by the less accurate esti-

mation of age of onset for the complex FTD-ALS phenotype

and reduced statistical power for the smaller subgroup.

One of the limitations of our study is the lack of unified

deep phenotyping for each patient and healthy control

data, however our findings set the basis for future research

(e.g. aimed at investigating the link between CpG-SNPs and

disease phenotype, risk, progression or severity). Another

limitation is the absence of information on the expansions

size in our study participants, because C9orf72 genotyping

was done by repeat-primed PCR. This is of note, since

repeat length examined by Southern blot was inversely cor-

related with age of onset (van Blitterswijk et al., 2013), and

the clinical data support disease anticipation in C9orf72

families, which is evident by an earlier age of onset

across successive generations (van Blitterswijk et al.,

2013; Xi et al., 2015a; Van Mossevelde et al., 2017).

However, C9orf72 repeat expansions are difficult to size

accurately by Southern blot because of their large size (up

to several thousand repeats) and somatic mosaicism mask-

ing the true length of the expansion (Xi et al., 2015a;

McGoldrick et al., 2018). It would also be important to

understand the genetic-epigenetic links across human tis-

sues relevant to neurodegenerative disorders, since DNA

methylation changes reflect the complex interactions

between genes, environmental factors, and ageing

(Zhang et al., 2016).

Our findings suggest that CpG-SNPs at the C6orf10/

LOC101929163 locus might modify age of onset in

C9orf72 carriers belonging to the entire ALS-FTD spectrum

by controlling DNA methylation and gene expression (e.g.

HLA-DRB1). CpG-SNPs at the C6orf10/LOC101929163

locus might also be age of onset modifiers for general FTD

patients to a lesser extent. Understanding the functional

mechanisms of the C6orf10/LOC101929163/HLA-DRB1

pathway (e.g. to investigate if the non-coding RNA

LOC101929163 is a modulator of HLA-DRB1 expression)

might prove critical for identifying biomarkers and/or de-

signing drugs to modify age of onset in C9orf72 driven

disease. Finally, the detected CpG-SNPs could be used to

better predict age of onset in C9orf72 asymptomatic

carriers in preventive clinical trials (e.g. based on the

Genetic Frontotemporal dementia Initiative study) (Rohrer

et al., 2015), for designing conditional and/or modifiers

studies in the sporadic FTLD spectrum, such as based on

IFGC related projects (https://ifgcsite.wordpress.com/) and

for genetic counselling.
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