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Online prediction of novel trajectories using a library of movement
primitives

Paris Oikonomou1, Athanasios Dometios1, Mehdi Khamassi1,2,‡ and Costas S. Tzafestas1,‡

Abstract— Learning to anticipate other agents’ future move-
ments has gained increased interest in robotics, especially
in situations requiring interaction. Such a prediction allows
the robotic systems to plan their actions as a task evolves
and before its completion. Specifically, in case of active robot
collaboration, early decision making might ensure smoothness
during motion and collision avoidance. While previous work has
addressed prediction and recognition of primitive actions, to our
knowledge little attention has been paid to the aspect of unseen
ones. In this paper, we introduce a method for online continuous
prediction of the evolution of previously unseen trajectories
based on a recency weighting of past observations using a
library of trained probabilistic movement primitives (ProMPs).
The proposed method makes the assumption that parts of
any novel trajectory could be considered as a combination
of simpler ones. A probability distribution is derived across
the evolution of the trajectory, and is updated in a recursive
manner. We present a set of simulation experiments to showcase
the new method, and compare it with a state-of-the-art method.

I. INTRODUCTION

Equipping autonomous systems with the capability of
predicting the future state of their surroundings based on
current observations is a topic of high interest for the robotics
community over the last years, due to the wide variety of
applications (e.g., intention prediction in assistive robotics
[1] and [2], and in industrial environments [3]). Such a
knowledge is important for robots that operate in non-
stationary environments whose continuous variability might
be induced by other agents (e.g. humans, robots) that directly
interact with and perform collaborative tasks, or operate in
the same workspace. This dynamic nature constantly changes
the perception of the robot which requires to replan its
actions and demonstrate compliance. Predicting future states
of the environment would allow robots to make fast decisions
and adapt to rapidly evolving conditions.

A. Related Work

In the general context of multi-agent systems operating
in a shared collaborative workspaces, a substantial amount
of work have considered the prediction of intention topic.
In particular, [4] develops a method for real-time intention
inference using a model of the intention-driven dynamics.
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The method is evaluated in a table tennis task where an
inference of the ball movement is made by analyzing the
human player body movement before hitting it. The approach
developed in [5] aims at online adapting the executing
ProMP-based trajectory of the robot based on the prediction
of the human motion, to ensure safety in tasks where the
human and the robot share the same workspace. In this work,
the model that provides the prediction consists of a goal
tracker that learns the human motion goals, and a belief
tracker that computes the transition probabilities between
them based on past observations. Another work where a
human and a robot operate in close proximity is presented in
[6]. The developed method exploits patterns trained offline
with Gaussian Mixture Models (GMMs) for predicting the
human motion based on early observations, and perform
a robotic action that minimizes the interference between
them. Similarly, [7] attempts to predict the human motion
using a cost function learned from a set of demonstrations
representing the collaboration between two human agents,
using inverse optimal control. In the context of shared
workspaces, [8] manages to recognize a trajectory from
early observations using a dynamic library of GMMs while
predicting its remainder with Gaussian Mixture Regression.
In addition, [9] proposes the prediction through a recurrent
neural network after training a semantic graph modelling the
interactions of all humans and objects in a scene. In [10], the
authors introduce a multiple-predictor system that is a data-
driven approach for predicting human motion by properly
combining individual predictors drawn from a library.

Another class of related applications perform predictions
based on the ProMP framework [11]. Such an approach
is studied in [12] in the context of physical human-robot
interaction. There, the authors attempt to predict the evo-
lution of a movement whose early part is kinaesthetically
demonstrated to the robot by a human, and complete the
trajectory with the robot. The developed method initially
classifies the movement to one of the learned primitives,
and subsequently refines it based on the observed part.
The outcomes of this method are exploited by [13] in an
application which aims at eliminating the effects of commu-
nication delays in a master-slave teleoperation scheme where
a human operator commands a humanoid robot in a remote
environment, while receiving visual feedback. The properties
of the ProMP framework are further enriched in [14] to allow
online replanning and prediction of trajectory distribution.

The method introduced in [12] constitutes the state-of-
the-art for prediction using ProMPs. Hence it is used as
benchmark for evaluating the methodology proposed in this



paper. The drawback of this approach is the limitation to only
cope with trajectories that are close variations of the trained
primitives. Therefore, the prediction of novel trajectories, i.e.
those that largely differ from the ProMPs in the stationary
library, is not recommended. Such a limitation is justified by
the consideration that all observations contribute equally to
the prediction, while normally the most recent ones provide a
better notion of the future. Even trajectories that differ only
by a scaling or a shifting factor from a primitive, are not
taken into account. Moreover, the strict classification into a
single primitive excludes the flexibility of exploiting more
than one ProMPs in the prediction process.

B. Contribution

This paper proposes a method for predicting the evolution
of novel trajectories using a library of trained ProMPs.
Particularly, it attempts to compute a trajectory distribution
implying the probability of the evolution of the observed tra-
jectory, as the weighted combination of the known primitive
distributions. To accomplish this, it is assumed that (a) the
most recent observations play major role in the prediction
compared to the older ones, and (b) parts of any trajectory
could be approached as the linear sum of primitive ones.
Another key factor is that the trained ProMPs are considered
along with their affine transformations. The performance
of the methodology is evaluated in simulation, where the
prediction of various trajectories is requested. The results
highlight its effectiveness and its robustness, especially when
it is compared to a state-of-the-art method.

The key novelties of our work are summarized below:
• the prediction is a distribution derived as the proper

combination of all primitive distributions;
• the library of primitives is enriched with their affine

transformations, thus allowing scaling and shifting;
• weighted contribution of observations based on recent-

ness; the most recent ones affect more the prediction;
• all updates are performed recursively as new observa-

tions are obtained, to reduce computational complexity.

II. PRELIMINARIES

The methodology consists of some individual algorithmic
components whose knowledge is considered preliminary. For
the reader’s convenience, their mathematical background and
formulation are presented in this section for easy reference.

A. ProMPs: formulation, training and prediction

The ProMPs [11] provide a framework for learning and
representing distributions over similar trajectories. Without
loss of generality, the following presentation concerns the
case of one-dimensional trajectories.

1) Mathematical formulation: Each ProMP is a Bayesian
parametric model defined as Xt = Ψtω + ϵX , where Xt is
the random variable representing the trajectory distribution
at time t, and ϵX denotes the trajectory noise, while Ψt =
[ψ1(t), ψ2(t), . . . , ψM (t)] is a vector of M radial basis
functions (RBFs) computed at t. For uniformly distributed
RBFs, ψm(t) is Gaussian function with center cm = m/M

and variance h = 1/M2, normalized over all ψj(t)’s. Even-
tually, ω is a parameter vector that weights the RBFs, and
its probability distribution is normal p(ω) ∼ N (µω, Σω).

2) Training: During the ProMP training process, the
weight vector ω(j) of the j-th primitive demonstration is
computed through ridge regression:

ω(j) =
(
ΨTΨ+ γ1

)−1

ΨTx(j) (1)

where x(j) =
[
x
(j)
t1 , x

(j)
t2 , . . .

]T
represents the entire prim-

itive demonstration, Ψ =
[
ΨT

t1 , Ψ
T
t2 , . . .

]T
is an array

derived as the vertical concatenation of Ψt at all time-
instances, and γ ≥ 0 is the ridge parameter. From the set of
weight vectors {ω(1), ω(2), . . . } of all demonstrations, the
mean vector µω and the covariance matrix Σω are computed.

3) Prediction: The modulation of via-points of a tra-
jectory is one of the most important properties provided
by the ProMP framework. Such an operation is performed
through Gaussian conditioning, resulting in the following
update of the mean vector µ̂ω and the covariance matrix
Σ̂ω , respectively:

µ̂ω = µω + K (y(t)−Ψtωt)

Σ̂ω = Σω − K (ΨtΣω)

K = ΣωΨt

(
Σy +ΨtΣωΨ

T
t

) (2)

where K is the Kalman gain matrix, and Σy is the measure-
ment noise.

The operation of conditioning using Eqs. 2 is also ex-
ploited in [12] for predicting the evolution of a trajectory
from early observations. Particularly, all observations are
conditioned on the selected primitive, and the resulted trajec-
tory distribution constitutes the probability of the prediction.

B. Recursive least squares formulation

In the task considered in this paper where the observations
are obtained sequentially, it is preferable to perform compu-
tations recursively as new data become available in order
to reduce computational effort and time. The recursive least
squares (RLS) filter constitute one of the core mathematical
tools whose properties are exploited in this work. According
to [15] and [16], this adaptive filter provides estimations
of slowly time-varying coefficients in an efficient recursive
manner by minimizing the exponentially weighted least
squares cost function shown below:

C(t) =

t∑
ti=1

λt−ti |eti |2 =

t∑
ti=1

λt−ti
∣∣∣zti − ϕT

tiwt

∣∣∣2 (3)

where eti indicates the error at time ti ϕti is the regres-
sion matrix, zti denotes the observation vector, wt is the
requested coefficients’ vector at current time t, and λ ∈ [0, 1]
is the forgetting factor indicating the level that the new
estimation is affected by the old one. The updates are derived
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Fig. 1: Overview of the proposed pipeline using an illustrative example, depicting all processes taking place for the online prediction of
a trajectory’s (gray) evolution. The first column of figures (blue box) depicts the offline process of forming a library of ProMPs through
demonstrations, which is executed only once. The remainder concerns the proposed methodology which runs after every new observation
is obtained. In order of execution, the following processes are depicted: the online regression of target weight vector ω̂tk , the computation
of confidence b′m and approach bm coefficients, the fitting of ProMPs (orange box), the computation of contribution coefficients dn, and
the formation of the predicted distribution before and after conditioning (green box) presented in Sections III-B-III-F, respectively.

by the following set of equations:

Kt = Pt−1ϕ
T
t

(
λ1 + ϕT

t Pt−1ϕt

)−1

Pt =
(

1 −Ktϕ
T
t

)
Pt−1/λ

wt = wt−1 +Kt

(
zt − ϕTwt−1

) (4)

where w0 = 0L×1 for L coefficients to estimate, P0 =
δ−11L×L, and δ is a small positive constant.

III. PREDICTION IN THE PROMP FRAMEWORK

The prediction of a trajectory’s evolution under the ProMP
framework is a task that has been considered in [12]. One
question that arises concerns its capability to cope with novel
trajectories, i.e. those not included in a library of learned
primitives whose number is inevitably limited. Moreover, this
method suggests the classification of the observed trajectory
as one of the ProMPs, and the uniform consideration and
exploitation of all observations for predicting the evolution.
But what if the weighted contribution of observations or the
weighted classification as primitives are considered?

A. Overview

To cope with the drawbacks of previous implementa-
tions, the proposed methodology has been built based on
certain key factors. To start with, the main assumption
behind this work is that any trajectory could be seen as
the weighted combination and blending of simpler ones
which are constantly being activated and de-activated. The
simple trajectories are considered primitives and are stored
in a (non-)stationary library along their features - mean and
variance in case of trajectory distributions. In addition, it is
expected that the most recent observations have greater effect
on the evolution of a trajectory. Another key feature is that all
computations are performed in a recursive or online manner,
which principally results in low computational complexity.
The recursive computation of the requested coefficients leads
also to small updates based on previous estimations ensuring
the smooth change of predictions.

Based on that, the goal of the proposed methodology is to
compute a “living” - in the sense that it constantly changes
as new data arrive - distribution as the weighted linear com-
bination of more than one primitive trajectory distributions,
based mainly on the most recent observations. To sum up,
this strategy differs from the standard one [12] in three
aspects: (a) the time-dependent influence of observations,
(b) the enhancement of the ProMP library with the scaling
and shifting transformations of the learned primitives and
(c) the simultaneous activation of multiple ProMPs for the
prediction. Fig. 1 provides an illustrative example of the step-
by-step implementation and the information flow.

Before proceeding to the detailed presentation of the
algorithmic procedures, keep note of the following: (a)
The duration of the trajectory to predict is assumed to be
a priori known which either might be the case in some
applications, or it is computed with one of the methods
described in [12] (e.g., maximum likelihood). (b) All primi-
tives and trajectories are formed using the same kernels, in
terms of type (RBFs) and distribution in time. (c) Primitive
demonstrations have been generated, classified into groups,
trained as ProMPs, and finally stored in a library - which
here is considered to be stationary. In the remainder of this
section, the algorithmic procedure taking place after every
new observation is obtained, is analytically presented.

B. Online regression from observations

The data manipulation and the trajectory encoding are
important factors in the prediction process. A common
approach assumes that the observed trajectory might be rep-
resented as the weighted sum of RBFs uniformly distributed
in time. Such a representation requires that ot = Ψtωt

holds, where ot, Ψt and ωt denote the observation, the basis
function, and the weight vector at time t, respectively.

As suggested in [17], the locally weighted regression with
recursive least squares method allows the online learning
of the weights of the forcing term in the discrete DMP
framework [18]. A similar approach might also provide the



online estimation of ω̂tk :

Ptk =
1

λ

(
Ptk−1

− Ptk−1
ΨT

tk
ΨtkPtk−1

λ+ΨtkPtk−1
ΨT

tk

)
ω̂tk = ω̂tk−1

+
(
otk −Ψtk ω̂tk−1

)
PtkΨ

T
tk

(5)

where λ serves like the forgetting factor in Eqs. 3 and 4,
tk denotes the current time-instance, and k is the k-th
observation, while Pt0 = 1M×M and ω̂t0 = 0M×1 for
M RBFs. Section IV involves experiments that evaluate the
performance of the online regression method in two indica-
tive trajectories, with respect to the kernel estimation through
ridge regression (Eq. 1). In the rest of the manuscript, the
most recent estimation of the weight vector of the observed
trajectory is denoted by ω̂.

C. Confidence and approach coefficients

The weight vector ω̂ of the observed trajectory computed
in the previous step is used as target during the fitting process
(Section III-D). Before that, it precedes the definition of a
heuristic indicating the level of confidence that the estimation
of the target weight ω̂m is reliable. Intuitively, the more
observations have been obtained around the m-th RBF, the
higher its level of confidence should be. Considering that
ψm(t) implies the proximity of observation ot to the m-th
RBF, the corresponding confidence coefficient until current
time tk is computed as follows:

b′m(tk) =

∑tk
t=t1

ψm(t)∑M
j=1 b

′
j(tk)

(6)

where t = {t1, . . . , tk} denotes the total set of time-
instances at which observations have been obtained. Ac-
cording to our strategy, the most recent observations - thus,
the target weights whose RBFs are closer to tk - should
contribute more on the prediction. Hence, another heuristic
is defined indicating the level that ω̂m affects the prediction
based on its recentness. The approach coefficient of the m-th
RBF whose center lie before the current time (cm ≤ tk), is:

bm(tk) = b′m(tk) · e−r(tk−cm) (7)

where r is a positive constant implying the decay rate of bm
towards past kernels. For future RBFs (cm > tk), Eq. 7 still
holds for r being negative. Eventually, a vector of approach
coefficients is derived: b(tk) = [b1(tk), . . . , bM (tk)]

T . For
simplicity, it is assumed that b always refers to the current
time in the rest of the manuscript.

D. Recursive fitting of primitives to observations

Here, the first process that correlates the observed trajec-
tory with the library of primitives takes place. Specifically,
the goal is to fit each primitive distribution Xn to the
observed trajectory using a scaling and a shifting factor. This
approach provides the flexibility of predicting trajectories
that constitute simple affine transformations of the primitive
ones. The fitting process runs in a recursive manner (Eqs. 4)
after every new observation otk is obtained using the weight

vector ω̂ as target. The importance of each target weight is
determined by the corresponding approach coefficient.

For each primitive Xn, the formulated problem attempts
to: (a) reduce the error between the target weights and the
primitive’s, (b) ensure continuity between the observed and
the predicted trajectory, and (c) restrict the scaling coefficient
to be as low as possible. Therefore, the error e(n)tk

for the n-
th primitive is defined as the sum of three addends that cope
with the aforementioned (a), (b) and (c) factors, respectively:

e
(n)
tk

=

M∑
m=1

bm · (un µωm
(n) + vn − ω̂m)

+ h1 · (un E [Xn(tk)] + vn − otk) + h2 · un (8)

where un and vn are the scaling and shifting coefficients to
estimate, µωm(n) denotes the mean weight of the m-th RBF
of Xn, E [Xn(tk)] indicates the expected value of Xn at
current time tk, and otk is the last observation, while h1 and
h2 are constants. Intuitively, bm, h1 and h2 imply the priority
to minimize the corresponding part of the cost function. In
this application, h1 should be considerably large to ensure
continuity between the observed and the predicted part of
the trajectory, while h2 is preferred to be relatively small
operating as a soft constraint to the scaling coefficient un.

Hence, N modified trajectory distributions are defined as:

X ′
n =

N∑
n=1

unXn + vn ∼ N
(
unµXn

+ vn, u
2
nΣXn

)
. (9)

E. Contribution of primitives based on Bayes rule

The definition of N modified trajectory distributions X ′
n

as affine transformations of the primitive ones, is followed
by the computation of the coefficients that properly combine
them. A simple way to quantify the contribution of X ′

n, is
to compute the probability that the observed trajectory is
derived by that. Aiming at reducing complexity, the target
weight vector ω̂ is used again for encoding the observed
trajectory. The probability of X ′

n given the target weight ω̂m

is obtained using the Bayes rule as follows:

p (X ′
n|ω̂m) =

p
(
ω̂m|θ(n)

)
p(X ′

n)∑N
j=1 p

(
ω̂m|θ(j)

)
p(X ′

j)
(10)

which could be simplified assuming uniform distribution for
the initial probability of all primitives (i.e. p(X ′

j) = 1/N ).
In Eq. 10, θ(j) denotes the parameters of primitive X ′

j , while
p(ω̂m|θ(n)) is the probability of ω̂m given θ(n):

p(ω̂m; θ(n)) = N
(
ω̂m|Ψcmµ′

ω(n),ΨcmΣ′
ω(n)Ψ

T
cm +Σω̂

)
(11)

where µ′
ω(n) and Σ′

ω(n) are the mean vector and covariance
matrix of X ′

n respectively (Section III-D), Ψcm is the radial
basis vector computed at t = cm, and Σω̂ is a diagonal
matrix indicating the target’s estimation noise.

The contribution of each transformed primitive is defined
as the weighted combination of probabilities based on the
approach factors. In particular, the contribution coefficient



that implies the proximity of X ′
n to the observed trajectory

is given by:

dn =

∑M
m=1 bm · p (X ′

n|ω̂m)∑N
j=1 dj

. (12)

F. Prediction as a new trajectory distribution

The previous sub-processes have provided all the nec-
essary parameters to form a new trajectory distribution
Xf that provides a prediction of the trajectory’s evolution.
Concretely, Xf is derived as the affine transformation of all
ProMPs Xn ∼ N (µXn

, ΣXn
) as follows:

Xf =

N∑
n=1

dn · (unXn + vn) ∼ N
(
µXf

, ΣXf

)
(13)

where un and vn are the scaling and shifting coefficients
of the n-th primitive respectively, and dn denotes the corre-
sponding contribution coefficient, while µXf

and ΣXf
are

the mean vector and covariance matrix of Xf , respectively:

µXf
=

N∑
n=1

dn ·
(
unµXn

+ vn
)

ΣXf
=

N∑
n=1

(dn un)
2 ·ΣXn .

(14)

During the last step, the trajectory distribution Xf is
properly modulated through conditioning so that it complies
with the observed trajectory. In this case, the past target
weights (cm ≤ tk) are used as via-points using Eqs. 2 with
time-dependent measurement noise Σy . Preferably, the most
recent target weights should affect the modulation more than
the older ones. This outcome could be achieved through the
proper definition of the measurement noise σ2

m (= Σy) for
weight ω̂m based on its recentness, i.e. low noise for recent
ones, and high for older ones. Therefore, the noise σ2

m is
mathematically expressed as follows:

σ2
m = r1 e

r2(tk−cm) (15)

where r1 and r2 are positive constants. The distribution Xf

is also conditioned on the last observation otk to ensure
continuity between the observed and the predicted part of
the trajectory. Eventually, Xf after conditioning implies the
probability distribution of the trajectory’s evolution, whose
expected value indicates the most possible prediction.

IV. EXPERIMENTAL EVALUATION

The advantage of the proposed methodology over a state-
of-the-art method, to predict the evolution of novel trajecto-
ries (whose novelty metric is given in Table I), is showcased
through a series of experiments.

A. Comparison with a state-of-the-art method

At first, the proposed method is evaluated based on its
capability to predict the evolution of trajectories with vary-
ing deviation from the ProMPs constituting the library, in
comparison with the method presented in [12]. The latter, as

stated in Section I-A, initially classifies the observed trajec-
tory as one of the trained primitives, and then modulates the
selected ProMP through conditioning using the observations
as via-points (Eqs. 2). The outcome is a trajectory distribu-
tion indicating the probability of the trajectory’s evolution.
For the comparison with our new method, the above process
is repeated after every new observation is received.

Fig. 2 illustrates the results of the first set of experiments,
where the two methods attempt to predict evolution of four
different trajectories (one in each row), whose deviation from
the trained ProMPs (green) varies. In the first case (Tr1), the
deviation between the real trajectory to predict and the first
ProMP is negligible. The second (Tr2) and third (Tr3) cases
constitute shifting and scaling transformations of the first
ProMP, respectively. In the last row (Tr4), there is an arbi-
trary trajectory formed as a Gaussian function with different
left-hand and right-hand sides. The fifth column of the figure
shows two different prediction error measurements: the mean
distance between the prediction and the real trajectory (thick
curve), and the same error computed using the Mahalanobis
distance (thin curve) as following:

eMah(tk) =
1

1− tk

∫ 1

tk

√
(ot − µt)

T
(Σt)

−1
(ot − µt) dt

(16)
where µt = ΨtµXf

and Σt = ΨtΣXf
ΨT

t +Σo.
In the first simple case (Tr1, first row), the state-of-the-art

method (red) manages to converge faster than the proposed
one (blue). This is expected since the trajectory to predict
(gray) lies within the high-probability range of the first
ProMP. However, in more difficult cases (second and third
rows), our proposed method achieves a better performance
due to its capability to implicitly enhance the library with the
affine transformations of the ProMPs. In the last experiment
(Tr4, fourth row), where the trajectory to predict is arbitrary
compared to the trained primitives, the proposed method
manages to adapt its estimation providing a more natural
and reliable prediction while converging faster.

B. Evolution of internal coefficients over time and prediction

The second set of experiments focus on predicting the
evolution of novel trajectories, while observing the evolution
of the methodology’s internal coefficients over time. The re-
sults are depicted in Fig. 3. The first three columns illustrate
the prediction (blue) at three different time instances, while
the next two (fourth and fifth columns) depict the evolution
of the scaling and shifting coefficients, and the contribution
of each ProMP with the corresponding colors, respectively.
The last column shows the prediction errors. Here, four new
arbitrary trajectories (one in each row) are presented. The
first one (gray, Tr5) constitutes a shifted transformation of
the last example (Tr4) of Fig. 2. It seems that our method
handles the two trajectories similarly, computing a shifted
prediction for the shifted trajectory (Tr5, first row in Fig. 3),
which is also validated by their similar prediction error
plots. In the next two cases (Tr6-Tr7), where the trajectories
to predict represent a linear combination of the primitives
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Fig. 2: Comparison of the proposed methodology (blue) with a state-of-the-art method using ProMPs [12] (red), for prediction of
trajectories’ evolution. Four examples are depicted (Tr1-Tr4), one in each row. The first five columns depict the outcome of prediction
after 25, 40, 50, 60 and 75% of observed data points, where in blue and red are the predicted trajectory distributions. The green distributions
indicate the two trained ProMPs forming the library. The gray curve is the trajectory to predict. The vertical black line indicates the current
time tk. The last column illustrates the prediction error; the thick curves are the mean distance between the prediction’s expected value
and the real trajectory to predict, while the thin curves denote the same term computed using Mahalanobis distance (Eq. 16).

TABLE I: Metric indicating the novelty of each trajectory to predict compared to the trained ProMPs. The first column implies the ID
of the ProMP to compare with, the second one is the type of metric, and the rest columns contain the novelty metric - as a mean and
a standard deviation values - for each trajectory examined in the experiments (Tr1-Tr8). Two metrics have considered: (a) the mean and
standard deviation of the distance between the trajectory to predict and the expected value of the ProMP (nd), and (b) the same terms
using Mahalanobis distance (nm) computed by Eq. 16 with tk = 0. The higher the metrics, the more novel the trajectory to predict is.

ProMP dist. Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7 Tr8

nd 0.04 ± 0.03 2.05 ± 0.03 0.7 ± 0.3 2.0 ± 0.67 2.3 ± 1.0 0.46 ± 0.14 1.67 ± 0.23 3.0 ± 1.6

1 nm 0.28 ± 0.21 15.7 ± 3.92 5.73 ± 3.0 16.06 ± 6.7 18.74 ± 10.9 3.68 ± 1.8 13.1 ± 4.6 24.4 ± 16.9

nd 1.6 ± 1.0 3.02 ± 1.6 2.24 ± 1.2 1.33 ± 0.88 2.33 ± 0.88 1.62 ± 0.7 1.45 ± 0.9 3.9 ± 1.7

2 nm 15.32 ± 12.33 26.1 ± 20.55 22.04 ± 15.4 8.55 ± 5.28 17.15 ± 7.5 15.8 ± 9.84 14.48 ± 12.24 36.1 ± 25.4

and an inverted right-hand side Gaussian, respectively, the
prediction produced by our method converges fast to the real
trajectory. In contrast, the methodology fails to anticipate the
periodicity of the last trajectory (Tr8, fourth row), resulting
in large prediction error after some initial observations and
slow convergence. However, the error is still lower compared
to the state-of-the-art (red curve).

As for the coefficients, the evolution of all scaling and
shifting factors (fourth column) remains continuous, which is
algorithmically ensured by the recursive least-square method
that updates the estimations based on past ones. In the first
three cases (Tr5-Tr7), one can notice that the contribution
to the prediction is most of the time non-negligible for

both primitives, while its evolution over time is continuous.
The corresponding outcome differs in the last row (Tr8)
where the contributions constantly and abruptly alternate
over time due to the periodicity of the trajectory, resulting in
negligible contribution by one of the two primitives most of
the time. The outcomes strengthen the claim for robustness
of the proposed methodology. It is also worth mentioning
that all predictions are continuous with respect to the last
observation, which is ensured by the second addend of Eq. 3.

C. Evaluation of online regression

In this section, we evaluate the online regression method
(Section III-B) for computing of the target weight vector
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Fig. 3: Evaluation of the prediction provided by the proposed methodology in four new examples (Tr5-Tr8) and depiction of the evolution
of the internal coefficients over time. For the whole figure, the elements colored in purple and yellow denote the two trained ProMPs
and their corresponding coefficients, while the predicted trajectory distribution and its errors are illustrated in blue. Specifically, at each
example (row), the first three columns depict the outcome of prediction in blue after 30, 50, and 70% of observed data points, the two
trained ProMPs in purple and yellow, the trajectory to predict in gray, and the black vertical line indicating the current time tk. The solid
and dashed curves in the fourth column represent the scaling un and shifting vn coefficients for each ProMP, respectively, while the fifth
column illustrate the evolution of the contribution coefficients dn over time. The last column depicts the prediction errors using the same
format with Fig. 2. In all plots, the red elements correspond to the outcomes of the state-of-the-art method.
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Fig. 4: Evaluation of the online regression method for estimation of the observed trajectory’s target weights, in comparison with ridge
regression. At each example (row) above, the proposed methodology was executed twice under the same parameters and initial conditions,
with the only difference being the method that computes the target weights. In the figure, the blue and the orange asterisks (*), denote the
target weights as computed with the online regression and the ridge regression method, respectively. Apart from the weights’ illustration,
the format and the coloring of the whole figure follows the ones of Fig. 2, however it is noted that the orange elements here denote the
outcome of the execution of the proposed methodology using the ridge regression method.



ω̂tk . The suggested approach, which performs small updates
to previous estimations as new observations are received,
is compared with a batch method that computes the target
weights from scratch using all collected data so as to
provide a new estimation. To ensure a fair comparison and
evaluate the impact on the prediction, the same methodology
was executed twice under the same parameters and initial
conditions, with the only difference relying on the first step:
the regression from observations. Particularly, during the first
execution the computation of the target weight vector ω̂tk

is performed online using Eqs. 5, while during the second
execution the weights are derived through ridge regression
using Eq. 1 after setting the vector x(j) with the observations
collected until the current time tk.

The comparison is held for two different target trajectories
to predict, and the results are depicted in Fig. 4. Focusing
on the observed part of the trajectory, in the first example
(Tr2) the weight estimation is reliable for both approaches
since the weights coincide with the observations. However, in
the second example (Tr4) there are instances (third column)
where the estimation is clearly distorted, most likely due
to the change of trajectory’s slope. Despite this misrepre-
sentation by the suggested online method, the prediction is
quite similar in both approaches, which is also validated by
the similar prediction error plot. It seems that the robustness
of the complete methodology has considered the temporary
inaccuracy as noise, and eliminated its contribution to the
prediction. Moreover, the distorted estimation of the old
weights at time tk = 0.75 (fifth column) does not affect the
outcome, since the prediction is mainly determined by the
most recent ones. In conclusion, the online estimation of the
target weight vector suggested in Section III-B is preferred
over the batch method since it reduces significantly the
computational complexity without affecting the prediction.

V. DISCUSSION

The prediction method introduced in this paper addresses
the main drawback of other approaches, i.e. the limitation to
provide reliable predictions for trajectories that differ signif-
icantly from the trained primitives. This claim is validated
through a series of experiments where it is showcased that
the proposed strategy outperforms the state-of-the-art in such
cases. The research findings constitute important progress
in a field that recently gains increasing attention in robotic
applications, e.g., the prediction of motion intentions.

In future work, we plan to further improve the developed
methodology focusing mainly on two evident candidate
upgrades. At first, here the estimation of the total duration is
computed a priori based on the trained ProMPs, and remains
fixed as the observed trajectory evolves. Therefore, in addi-
tion to the prediction considered in this paper, the estimation
of the duration might also be updated as new observations
are received. Moreover, the static nature of the library does
not promote lifelong learning. Making the library dynamic
by refining existing ProMPs and/or adding new ones when
required would result in more reliable predictions from less
observations. Eventually, the extension of the current version

of the methodology to multi-dimensional ProMPs could be
considered, while further evaluation of the prediction under
noisy measurements is required.
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