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Abstract

Identifying optimal collective variables to model transformations, using atomic-scale sim-

ulations, is a long-standing challenge. We propose a new method for the generation, opti-

mization, and comparison of collective variables, which can be thought of as a data-driven

generalization of the path collective variable concept. It consists in a kernel ridge regression of

the committor probability, which encodes a transformation’s progress. The resulting collective

variable is one-dimensional, interpretable, and differentiable, making it appropriate for en-

hanced sampling simulations requiring biasing. We demonstrate the validity of the method on

two different applications: a precipitation model, and the association of Li+ and F− in water.

For the former, we show that global descriptors such as the permutation invariant vector allow

to reach an accuracy far from the one achieved via simpler, more intuitive variables. For the

latter, we show that information correlated with the transformation mechanism is contained in
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the first solvation shell only, and that inertial effects prevent the derivation of optimal collective

variables from the atomic positions only.

1 Introduction

Accurately modeling how matter transforms at the atomic scale is key in understanding many fun-

damental physical phenomena, ranging from phase transitions to chemical reactions. An ideal ap-

proach to studying such phenomena in silico would consist in simply observing the time evolution

of an atomistic system, at a given set of thermodynamic conditions; i.e. an equilibrium molecular

dynamics simulation. However, the free energy barriers associated with transformations are usu-

ally several times larger than the thermal energy kBT , so that naturally observing and sufficiently

sampling these rare phenomena is simply unachievable. Researchers have therefore developed

advanced methods to bias the dynamics of a given system, allowing to effectively lower selected

barriers of interest, and to enhance the sampling of rare events over the course of a molecular

dynamics simulation. This set of methods1 has been applied to many different physical prob-

lems, including the phase diagram of water2 and its putative liquid-liquid phase transition,3,4 ice

nucleation,5 protein folding dynamics,6 and chemical reactions governing prebiotic chemistry.7

The difficulty and subtlety associated with enhanced sampling methods comes from the high

dimensionality (3N, where N is the number of particles) of configuration space, i.e. the space

spanning all possible atomic configurations. Since it is virtually impossible to directly identify rel-

evant barriers in such a high-dimensional space, the solution is to select collective variables (CVs),

expressed as a function of the system’s degrees of freedom. By doing so, the configuration space

is projected onto one of much lower dimension. Good CVs should allow to distinguish basins of

metastability, as well as transition state ensembles. The way they are chosen affects many crucial

elements: i) the observed transformation mechanism in the context of enhanced sampling; ii) CVs

are often used as a means of analyzing a reaction mechanism, be it observed from biased or unbi-

ased dynamics. A poorly selected CV can therefore lead to a biased or incomplete rationalization
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of the transformation mechanism, even in the context of unbiased simulations; iii) free energies of

activation, ∆F‡, are sometimes extracted from gauge-invariant free energy profiles8–10 along col-

lective variables, and used to interpret the kinetics of the system of interest. Using a sub-optimal

CV will lead, in this context, to an underestimated ∆F‡ for the transformation under scrutiny;9 iv)

while in the context of the Eyring-Polanyi equation kinetic rates are independent of the choice of

CV, thus a poorly selected one will have an associated transmission coefficient far from unity; v)

sub-optimal CVs hamper the efficiency of enhanced sampling methods based on bias forces, since

the latter are partly wasted along degrees-of-freedom not related to the transformation, leading to

the unphysical overestimation of the free energy barrier height;11 vi) on the contrary, sub-optimal

CVs result also in an under-estimation of the free-energy barrier from the viewpoint of the ideal,

exact calculation based on marginalizing the canonical probability density (see, e.g., Equation 6

here below), due to overlap between metastable basins.12 The latter effect has been exploited in a

CV optimization approach based on rate minimization,13 and concerns, more generally, Langevin

models describing the high-dimensional dynamics projected on CVs, constructed from statistical

inference on unbiased MD trajectories.14,15

Selecting a CV on solid grounds is therefore an active field of research, with many methods

developed in the last decades, following different approaches. Identifying slow modes is one: this

has been achieved using diffusion maps,16–19 variational approaches based on the overdamped

Langevin equation13,20 or Markov state models21 – combined with independent component analy-

sis22,23 and deep learning24 –, or maximizing the spectral gap of a transition matrix.25,26 Another

set of methods relies on (auto)encoders27,28 and the information bottleneck principle.29,30 A few

techniques31–33 analyze fluctuations in the metastable states to extract optimal CVs.

Finally, a large body of work has been dedicated to deriving optimal collective variables based

on the committor probability p(B|X), i.e. in a system showing two metastable states A and B, the

probability of reaching basin B first, conditioned on an initial point X in configuration space. The

committor is, by construction, the reaction coordinate of the transformation under scrutiny, as it

encodes the entire dynamical process of transforming from one metastable state into the other.34
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Depending on how optimality is defined, it may or may not be an optimal collective variable: for

instance, in the presence of large free energy barriers, the committor’s strong non-linearity near

basins35 is impractical to handle. Nevertheless, an intuitive approach is therefore to perform a

regression of the committor using a flexible basis of collective variables; this has been pioneered

by Ma and Dinner34 using neural networks and a genetic algorithm. Later, Peters and Trout36

devised a fitting approach based on transition path sampling37 data and the transition path prob-

ability p(TP|X), which is analytically related to the committor under the assumption of diffusive

dynamics. This was later expanded to obtain CVs with maximal transmission coefficients,38 or

using cross-entropy minimization and regularization.39 Recently, this approach has been recast in

a reinforcement learning framework to allow the identification of CVs over the course of transi-

tion path sampling simulations,40,41 including an extension to extract free energies and rates.42

Committor-based methods have also been combined with slow process identification.43

In this article, we propose a committor regression technique for CV selection based on kernel

ridge regression, which as we show can be thought of as a data-driven generalization of path collec-

tive variables.44 The resulting optimized collective variable is one-dimensional and differentiable,

making it appropriate for biased simulations. It is interpretable, provided that the CV subspace it

is based on is interpretable as well.

This paper is structured as follows: in Section 2, we introduce the method and discuss its

connection to path collective variables. In Section 3, we apply the method to a two-dimensional

toy potential for which we can compute the committor exactly. We then turn to more realistic

examples, with a precipitation phenomenon using Lennard-Jones particles (Section 4), and the

association of small, monoatomic ions in water (Section 5). Finally, we conclude and provide an

outlook regarding possible extensions to the method, in Section 6.
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2 From standard to data-driven path collective variables

Path collective variables44,45 describe the progress along a reaction pathway connecting metastable

states. The main concept, summarized in the top part of Figure 1, is to define reference states, and

to compute, for a given atomic configuration, the similarity to these reference states using a kernel

function K(ξi,ξ j). The similarity is not computed on the raw atomic coordinates, but rather on a

vector of collective variables of arbitrary dimension, ξ . For instance, coordination numbers of a

specific set of atoms are often used for chemical reactions.45,46 Path CVs therefore involve two

projections: from the atomic positions X to intermediate CVs ξ (which live in what we call the CV

subspace), and from ξ to the one-dimensional path CV denoted s(ξ ):

s(ξ ) =
∑

N
i=1 iK(ξi,ξ )

∑
N
j=1 K(ξ j,ξ )

. (1)

A typical choice for the kernel is K = exp
(
−λ∥ξi −ξ∥2

2
)
, i.e. the radial basis function kernel,

where λ is a bandwidth parameter, and ∥ξi − ξ∥2
2 the squared l2-norm. Conceptually, s describes

the progress along the polygonal chain in ξ -space connecting all references. An additional quan-

tity, z, is usually defined to express the distance to this pathway.44 Traditionally, O(101) equidistant

references in CV subspace are selected along the pathway using nudged-elastic-band-like algo-

rithms;44,47 they can also be optimized during enhanced sampling simulations with an adaptive

approach.48 Later, a simpler and more explorative approach proposed to set

the number of reference states to the number of identified metastable states of interest.2,45 For

instance, in the association/dissociation problem considered in Figure 1, the number of states is set

to two. In any case, it is then assumed that the path CV will be able to interpolate correctly for

configurations halfway between both states. A more important assumption is that the selected CV

subspace ξ is able to resolve the transformation. At this stage, both are uncontrolled approxima-

tions that should be thoroughly verified, as a good CV should capture the transition state ensemble,

whose configurations do not belong to either states.

It is therefore natural to consider including many reference states in the path CV definition.
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Figure 1: Standard, or two-state (left) and data-driven (right) path collective variables. Consider a
system made of a red particle, a blue particle, and several gray particles. The red and blue parti-
cles can be in two metastable states: dissociated (A) or associated (B). Left: two reference states
describing metastable states A and B are fed to the path CV. This will lead to a good description
of configurations close to or in either metastable states, but the behavior outside of the basins is
difficult to predict. This can be seen when comparing the committor p(B|X) and s(ξ ): configura-
tions far from the basins do not have close by reference states. Right: in a data-driven approach, a
much greater number of references is considered, describing the full reaction process, from state A
to state B. The committor has to be computed for each reference, and is fed to the path collective
variable through kernel ridge regression. Agreement with the true committor function is improved
as reference states are distributed over the whole reaction pathway.

As illustrated in Figure 1, this can only improve CV quality along the whole reaction path, i.e.

the pathway, in CV subpace, that connects metastable states. However, a measure of the reaction

progress is now needed. Indeed, s can be seen as a weighted average; for two reference states, i is

simply set to 1 and 2. A configuration close to basin A will therefore have a s close to 1. If one

wants to include reference states outside of metastable basins, it is therefore mandatory to use a

measure of the progress along the reaction path, with some methods implemented to evenly space

references in the CV subspace.49,50

One way to evaluate the quality of a collective variable is to compare it to the committor

probability, which is widely considered the optimal CV36 for a system of two metastable states. For
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a configuration already in basin A p(B|X ∈ A) = 0, and p(B|X ∈ B) = 1 for one in state B. At the

transition state, p(B|X ∈ TS) = 0.5. Unfortunately, for realistic – i.e. high-dimensional – systems,

computing the committor for a given configuration is computationally expensive: one has to run a

series of short independent simulations by randomly drawing initial velocities from the Maxwell-

Boltzmann distribution. These simulations end when the system reaches either basins, and to reach

a satisfying accuracy on the committor, it is necessary to generate hundreds-to-thousands of short

trajectories when the committor value is not too close to zero or one.51 In the presence of high

barriers the transition mechanism largely involves configurations with very tiny deviations of the

committor from zero or one, requiring more sophisticated estimation approaches.35

In addition, the committor, estimated numerically in this way, is not differentiable, which is

problematic for biased simulations. While it is therefore nearly impossible to use the committor

directly as a CV, one can compute values for an ensemble of reference configurations, and use

these values as weights in the path CV. This is the main idea behind the present data-driven path

collective variables.

Interestingly, the expression of s, which is shown in Figure 1, is that of a kernel regression (or

kernel smoothing) estimator. Kernel regression is a class of non-parametric methods for non-linear

regression. Since kernel regression improves with increasing amounts of data, it is even more

natural to consider using many reference states. Surprisingly, the connection to kernel regression

was not made in the original article on path CVs,44 or in any other subsequent work. In greater

detail, s is the Nadaraya-Watson estimator,52,53 which is the zeroth-order approximation to the

local polynomial estimator, also called the "local constant" approximation. We switch to a global

method in the form of kernel ridge regression (KRR), i.e. the combination of linear least squares

with l2-norm regularization and the kernel trick. The KRR estimator is:

f̂ (ξ ) =
N

∑
i=1

αiK(ξi,ξ ), (2)

optimal parameters α̂αα = [α̂1, . . . , α̂n]
T are obtained by solving the following linear system:
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α̂αα = arg min
ααα∈RN

∥y−Kααα∥2
2 +λααα

T
ααα = (KNN +λ In)

−1y, (3)

where we introduced the kernel matrix of all pairs of data KNN , the target vector y= [p(B|X1), . . . , p(B|XN)]
T ,

and the regularization parameter λ . In addition, we introduce a bandwidth matrix Σ such that our

kernel becomes:

K(ξi,ξ ) = exp
(
−(ξi −ξ )T

Σ
−1(ξi −ξ )

)
, (4)

allowing more flexibility in reproducing the target data. In the following, Σ is always diagonal

and reduces to a bandwidth vector σσσ = [σ1, . . . ,σd]
T , for ξ ∈ Rd . In this way, each component

in ξ has a corresponding weight which encodes its importance: a low σ means that the corre-

sponding CV component is highly correlated to the committor. ξ can be composed of simple,

intuitive collective variables, but can also include high-dimensional, abstract representations such

as commonly used local descriptors for machine-learned interatomic potentials (e.g. atom-centered

symmetry functions54 and the smooth overlap of atomic positions (SOAP)55), or global variants

such as the permutation-invariant vector (PIV).2,56 Optimal values for σσσ and the regularization

parameter λ are obtained through optimization, by minimizing a loss function based on a training

set, distinct from the set of configurations used in KRR (the reference set).

3 The rugged Müller-Brown potential

As a starting point, we select the two-dimensional rugged Müller-Brown57,58 (rMB) analytical po-

tential. Assuming overdamped Langevin dynamics, we can calculate the committor probability

over the whole configuration space, as explained in Section 1 of the Supporting Information. This

allows us to assess the quality of various regression models without projection errors, by consider-

ing the configuration space as the CV subspace. The rMB potential takes the form of the traditional

Müller-Brown potential59 with added ruggedness:
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Figure 2: Path collective variables for the rugged Müller-Brown potential. (a) The potential energy
surface. Shaded circles correspond to the metastable states definition used for the evaluation of the
committor, (b) test set mean absolute error for different path collective variables as a function of the
number of reference configurations included. Red circles and blue squares respectively correspond
to models built on data sampled from the uniform and Gibbs measures. Error bars correspond
to 95% confidence intervals of a distribution of predictions spanning ten different reference and
training sets. The red broken line is a power law fit. The full and broken gray lines respectively
correspond to the "12R" and "2R" path collective variables, (c) canonical and (d) geometric free
energy profiles along various path collective variables, compared to the committor (small wiggles
are due to the numerical integration and marginalization), (e-h) collective variables plotted in con-
figuration space: (e) the committor as obtained from the backward Kolmogorov equation, (f) the
kernel ridge regression based on 500 references, (g) the "2R" and (g) "12R" path collective vari-
ables.

V (x,y) =
4

∑
i=1

Di exp
[
ai(x−Xi)

2 +bi(x−Xi)(y−Yi)

+ci(y−Yi)
2]+ γ sin(2kπx)sin(2kπy),

(5)

where D1...4 = [−400,−200,−340,30], a1...4 = [−1,−1,−6.5,0.7], b1...4 = [0,0,11,0.6], c1...4 =

[−10,−10,−6.5,0.7], X1...4 = [1,0,−0.5,−1], Y1...4 = [0,0.5,1.5,1], γ = 9, and k = 5. We define

metastable states A and B, shown in Figure 2(a), as circles of radius 0.1 and centered respectively

at (−0.58,1.39) and (0.55,0.05).

To construct datasets for KRR CVs (i.e. a reference set and a training set), we sample p(B|(x,y))

values from the uniform measure or from the Gibbs measure on the configuration space. Sampling
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configurations in high-dimensional space – especially in the presence of potential energy barriers –

is a difficult task, which is why we consider two radically different sampling strategies. As we will

see in the next sections, for realistic systems, enhanced sampling strategies are leveraged. The test

set is always the same for all models, consisting of 4000 data points sampled randomly. The de-

tailed procedure for model optimization is reported in Section 2 of the Supporting Information. We

assess the accuracy of the various path collective variables by comparing their mean absolute error

(MAE) on the test set (Figure 2(b)), their value over configuration space 2(d,e)), and free energy

profiles 2(f)). Free energy profiles are obtained by evaluating the collective variable’s marginal

probability density over configuration space:

F(ξ ) =−β
−1 ln

∫∫
e−βV (x,y)

δ (ξ (x,y)−ξ )dxdy, (6)

where β = 0.1. We also report a "geometric" free energy profile, Fg(ξ ), distinct from the

canonical definition of equation 6. The canonical free energy profile is not left invariant by a

gauge transformation of a CV, which makes it impossible to compare different choices of ξ , even

if they contain the same amount of information with respect to the reaction.9,10 The geometric

definition incorporates this gauge invariance, which, as we will see later on, will be useful to

compare quantities such as free energies of activation for different CVs. The geometric free energy

profile can be derived through the application of the coarea formula, as has been discussed many

times before:8,60

Fg(ξ ) =−β
−1 ln

∫∫
e−βV (x,y) |∇ξ (x,y)|δ (ξ (x,y)−ξ )dxdy. (7)

Both profiles are related in the following way:

e−βFg(ξ ) = ⟨|∇ξ (x,y)|⟩
ξ

e−βF(ξ ), (8)

where ⟨.⟩ is an ensemble average. We also construct two variants of traditional path CVs: the

first one ("2R") containing two references – one in each basin –, and a more advanced version
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("12R"), containing twelve references equally spaced along the minimum energy path, including

the exact same two as for the "2R" version. The latter one is assumed to be more advanced than

the former since the minimum energy path is usually not available a priori for realistic, high-

dimensional settings. References are respectively labeled 1,2 and 1, . . . ,12; to compare with the

committor, the path CVs are scaled to the [0,1] interval. The scalar bandwidth parameter λ is set

so that the distance between the first and second references times λ is equal to 2.3, a common

practice leading to smooth free-energy landscapes, typically with a good separation of reactants,

products and transition states.44,45

Results are shown on Figure 2, with the global ability in reproducing the committor of each

method reported in Figure 2(b). The largest MAE attainable is roughly 0.5, since the test set is

composed of values in the [0,1] interval with mean roughly equal to 0.5. As one would expect,

the test set MAE decreases with increasing number of references. However, sampling from the

Gibbs measure is demonstrated to be largely inefficient, which obviously shows the importance

of enhanced sampling for realistic systems. Sampling from the Gibbs measure leads to selecting

points mostly in the metastable states, where the committor is constant, while it rapidly varies near

the separatrix. This is even more critical with a low temperature or large energy barriers.

Canonical path CVs, while they do not aim at reproducing the committor, perform relatively

decently, with test set MAEs respectively equal to 0.194 and 0.169 for the "2R" and "12R" variants

(see also Figure 2(g,h)). Using only two references, or aligned references in the CV subspace,

leads to constant path CVs along the direction normal to the line connecting the references. Here,

as can be seen in 2(e), there are non-negligible variations of the committor in directions normal to

the line connecting both metastable states. In addition, with no measure of the reaction progress,

one can only label references in a linear fashion.

As mentioned before, the true committor varies non-linearly, depending on the underlying po-

tential energy surface and the temperature. This highlights the importance of extracting such infor-

mation, possibly by computing committor values. We note that other methods are used for labeling

references, for instance based on transition path sampling data.50 With a "reasonable" number of
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500 references (reasonable because it can be rather easily achieved with moderate computational

cost for the realistic examples reported in the next sections), one can achieve excellent, yet still

improvable, agreement with the true committor, with a test set MAE smaller than 10−2. This also

translates into a qualitative agreement across configuration space (Figure 2(e,f)), and quantitative

agreement of free energy profiles (Figure 2(c,d)).

Features of the free energy profiles along path collective variables such as the free energy of

activation are in good agreement with the committor. Depending on the system, this might not

always be the case: in Section 3 of the Supporting Information, we show results for a three wells

model potential for which simple path collective variables do not perform as well. Realistic, high-

dimensional systems typically show many shallow intermediate states. Nevertheless, these results

demonstrate the strength of path collective variables. Of course, this is valid only in the limit where

the CV subspace is the configuration space itself, i.e. when there is no loss of information due to a

projection.

To assess the robustness of the KRR approach, we add parasitic dimensions to the potential,

uncorrelated to the committor:

V (x,y,z) =V (x,y)+
d+

∑
j=1

z2
j , (9)

in which we vary d+ from 10 to 1000. The test set mean absolute error as a function of

d+ and the number of references is presented in Figure 3. As one can see, variations along d+

are relatively negligible. This mostly demonstrates the robustness of the bandwidth optimization

approach, since the problem here is finding directions correlated with the committor in a high-

dimensional space. Finally, as shown in Section 4 of the Supporting Information, we can also

embed the two-dimensional potential in a five-dimensional space using non-linear transformations

leading to large degeneracies, and still recover a low test set MAE. This is perhaps expected, since

kernel ridge regression models can learn non-linear features.

12



101 102 103

Number of reference configurations

101

102

103

d
+

10 3

10 2

10 1

Te
st

 se
t m

ea
n 

ab
so

lu
te

 e
rro

r

Figure 3: Test set mean absolute error for KRR models trained using different number of references
and parasitic dimensions. The error is interpolated over data points represented by the intersections
of the white lines (including N = 2 and d+ = 10).

4 Precipitation of Lennard-Jones particles

We now turn to a more realistic system involving Lennard-Jones interactions, aimed at capturing

the onset of a precipitation process. Precipitation is a critical phenomenon in inorganic or organic

chemistry, as well as in biochemistry and metallurgy. For instance, in Li-ion batteries, decom-

position products precipitate to form a solid interphase between a solid electrode and the liquid

electrolyte. Here 20 particles represent the precipitating species, and 4086 smaller particles repre-

sent the solvent. The solute species interact strongly with one another (ε11 = 3.1, σ11 = 1.2), while

the solvent-solvent and solute-solvent interactions are weaker (ε12 = ε22 = 1.0, σ12 = σ22 = 1.0).

The interaction cutoff is set to 6σ . All masses are set to 1. These parameters are chosen such that

two metastable states separated by a free energy barrier exist: an associated state, where solute

particles clump together to form an aggregate, and a dissociated state, where solvent particles co-

ordinate solute particles. The integration time step (δ t) is set to 2 · 10−3, and all simulations are

run at T = 1, p = 1, using the LAMMPS program61 (version 7 Aug 2019), with PLUMED62,63

(version 2.5.3) as an add-on to compute collective variables and perform enhanced sampling.

Our sampling strategy is the following: 1) converging free energy profiles from unbiased

molecular dynamics, 2) sampling the putative transition state ensemble using a simple collective
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Figure 4: Lennard-Jones model of a precipitation phenomenon. Left panels: system snapshots in
the dissociated and associated states. Large cyan and small gray spheres respectively represent
solute and solvent particles. (a,b) Free energy profiles along collective variables ΣN and ΣC. (c,d)
distributions of committor values for configurations at the putative transition state ensemble of ΣN
and ΣC.

variable, 3) sampling close to the true transition state ensemble using transition path sampling. The

committor is numerically estimated for configurations extracted from steps 2) and 3); these pairs of

structure and committor constitute the datasets we then use to optimize and validate KRRCV mod-

els. All computational details regarding these steps are presented in Section 5 of the Supporting

Information.

We start by obtaining free energy profiles along two simple one-dimensional collective vari-

ables, which we select to be properties of the largest aggregate. We use a depth-first search (DFS)

clustering algorithm to identify the largest aggregate in a given configuration,64 using a distance-

based criterion to assess if particles are aggregated or not. Our two collective variables correspond

to the number of particles in the largest cluster (ΣN), and of the sum of solute coordination numbers

over solute particles in the largest cluster (ΣC). Profiles are obtained from long unbiased molecular

dynamics in the canonical (nV T ) ensemble.
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Figure 5: KRRCV models for the Lennard-Jones precipitation example. (a-f) Performance on the
test set of models based on various collective variables. Small blue circles represent individual data
points. The data is also shown using boxplots (the orange line is the median, the box extends from
the first to the third quartile of the distribution, whiskers extend from the box edges to the last data
point smaller or larger than ±1.5 times the interquartile range). Data is partitioned in 0.05 wide
bins, with two additional blue bins for the basins. (g) Training and test set mean absolute error,
averaged over ten dataset splits, plotted as a function of the selected collective variable. Gray
boxes show bounds as described in the main text. (h) Sorted inverse bandwidths (blue line), and
corresponding test set mean absolute error of reduced models (red line) as a function of the number
of included components.

Free energy profiles are reported in Figure 4(a,b). As can be seen, with both ΣN and ΣC, the

associated state is considered more thermodynamically stable than the dissociated one; in addition,

both states are separated by a barrier of a few kBT .

Enhanced sampling involving biasing along ΣN is not achievable as it is a discontinuous quan-

tity; we therefore perform umbrella sampling along ΣC,64 from which we extract 500 configu-

rations. We also perform transition path sampling simulations, using the flexible-length aimless

shooting algorithm.36,65 We initialize such simulations by generating 100 reactive trajectories con-

necting both basins. The basin definition is the following: A : ΣN < 5, B : ΣN > 14. From these

initial reactive paths, we perform aimless shooting simulations, exploring configurations close to

the separatrix. We select 500 configurations from umbrella sampling simulations, and 1000 con-
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figurations from transition path sampling – 500 accepted, 500 rejected – for which we compute the

committor. The evaluation of the committor is performed by repeated, independent simulations

for which initial velocities are drawn from the Maxwell-Boltzmann distribution, and the system is

evolved in the nV T ensemble, until a basin is reached. For each configuration, we perform 200

simulations. In the end, we obtain a dataset of 1500 configurations and corresponding committors.

We are also interested in seeing how well ΣN and ΣC capture the true transition state ensem-

ble. For that purpose, from the umbrella sampling dataset, we select configurations at the putative

transition state for both simple collective variables using the following conditions: ΣN = 8 (85 con-

figurations), 7 ≤ ΣN ≤ 9 (227 configurations), 8 ≤ ΣC ≤ 10 (153 configurations), and 7 ≤ ΣC ≤ 11

(259 configurations). These conditions are selected according to the free energy profiles, and cor-

respond to configurations at or close to the transition state ensembles according to both collective

variables. Results, in the form of distributions of committor values for these sets of configurations,

are reported in Figure 4(c,d). A good CV would lead to a sharp, unimodal distribution centered

at p(B|X) = 0.5, meaning that its putative transition state ensemble overlaps well with the actual

one. Here, the distributions largely lean towards the dissociated state: that most configurations

supposed to be transition states according to these CVs are in fact close to one of the metastable

states. This means that ΣN and ΣC lack important information mandatory to appropriately describe

the transition between both states.

From our configuration-committor dataset, we optimize various KRR models, based on differ-

ent CV subspaces: ΣN, ΣC, the pairwise interaction energy between all solute particles (ΣV11), a

combination of ΣC and individual solute coordination numbers for all solute particles (C, d = 21),

and the permutation invariant vector56 of all solute particles (PIV, d = 190). The PIV consists

of all pairwise distances of the group of atoms, sorted to enforce permutation invariance. While

a cutoff function is usually used on the distances to allow focusing on a certain range, here we

simply use the inverse distance, which smoothly converges to zero with increasing distance. The

detailed procedure for model optimization is reported in Section 2 of the Supporting Information.

Performances of the various KRR models are reported in Figure 5(a-f), comparing test set
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Figure 6: Performance of various KRR(PIV) models. (a) Evolution of the full test set MAE as a
function of the number of points in the reference and training sets not in metastable basins (red
curve). Also shown is the corresponding evolution of the Pearson correlation coefficient betwen
the training set and full test set MAEs (blue curve). Results are averaged for 20 dataset splits. (b)
Full test set MAE as a function of the number of PIV components included in the model (sorted by
bandwidth importance), and number of points in datasets outside of basins. White dots correspond
to selected models for further analyses. (c) Free energy and geometric free energy profiles along
KRR(PIV). (d) Free energy profiles along reduced KRR(PIV) models. (e) Distribution of commit-
tor values for configurations at the putative transition state ensemble of KRR(PIV). (f) Same as (e),
for reduced KRR(PIV) models.

committor values with model predictions. Training and test set mean absolute errors are reported

in Figure 5(g). Two bounds on the MAE values are derived, and represented on Figure 5(g) as

gray boxes. The upper bound corresponds to the MAE of a naïve model always returning the

average of its training set. The lower bound, which represents a limit on the meaningful accuracy

a model can reach, is due to the uncertainty on the committor estimation, due to the finite number

of trials. Here, as demonstrated in Section 6 of the Supporting Information, the MAE on the

test set distribution of committor values calculated with 200 trials is about 0.017. First, from

Figure 5(g), it is apparent that CVs rank differently in correlating with the committor. The worst

performing ones are ΣC and ΣV11; looking at Figure 5(b,e), they seem weakly positively correlated
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with the committor, with larger deviations closer to the basins (p(B|X) = 0 and 1). ΣN (Figure

5(a)) performs better, in particular close to the basins. Combining ΣN and ΣC (Figure 5(c)) as a

two-dimensional CV does not seem to improve the performances, which means that all the relevant

information relative the the transition in ΣC is already captured by ΣN. The more complicated list

of solute coordination numbers C (Figure 5(d)) performs as well as ΣN. Contrarily to the latter, it

is however a continuous quantity, which makes it appropriate for biaising. Finally, the PIV based

KRR model (Figure 5(f)) performs significantly better than all other collective variables, with a test

set MAE close to the lower bound. A key difference between C and the PIV collective variables,

is that they are composed respectively of single-particle (an atom’s coordination number) and two-

particle (an interatomic distance) descriptors. While this leads to having to handle a descriptor of

much larger dimensionality, the difference in correlation to the committor hints to the importance

of two-particle features in properly describing a model precipitation transformation.

An analysis of the bandwidth components of the PIV-based model (Figure 5(h)) reveals that

most of the relevant information is contained in about 10 pairwise distances, out of 190 in total.

The analysis proceeds in the following way: inverse bandwidths are sorted in decreasing order;

the largest valued components are the most important. Then, models containing only the n (1 ≤

n ≤ 190) most important components are trained. Finally, the test set MAE of each model is

plotted as a function of the number of components included. There is a good correlation between

inverse bandwidth values and the performance of the resulting reduced model. This shows that the

descriptor can be significantly compressed, allowing to bypass the costly evaluation of all pairwise

distances.

In addition, it is beneficial to minimize the amount of reference configurations in the kernel

ridge regression model, most importantly to reduce the amount of committor evaluations, but also

to decrease training and inference times. To this end, we trained PIV models with varying amounts

of data points outside of basins (both for reference and training sets), keeping the number of points

in basins constant, where the committor can be evaluated at no cost. Results are presented in Figure

6(a,b). As expected, predictions are poor for datasets only including basin configurations. When
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Figure 7: (a) Absolute gradient in PIV space of the KRR(PIV) model, averaged and normalized
along p(B|X) bins computed over the test set. The greater the PIV component, the greater the
distance out of all pair distances of solute particles. Upper panels: inverse bandwidth values for
each PIV components, and corresponding number of particles (white and gray boxes), ranging from
2 (left) to 20 (right) particles. The gray area, from 5 to 14, corresponds to the range between basins
definition. (b,c) 2d histograms of configurations sampled from unbiased molecular dynamics,
along KRR(PIV) and either ΣN (b) or ΣC (c).

increasing the amount of points outside of basins, the accuracy of the model rapidly increases.

In addition, the correlation between the reduced training set and full test set MAEs steadily in-

creases. From Figure 6(b), it is clear that a range of models with reduced dimensionality or data

points can achieve similar performance on the full test set. Eventually, we selected four models,

represented as white points on Figure 6(b), for which we performed subsequent tests: the origi-

nal one (190 PIV components and 330 data points), one with only 10 PIV components preserved

(KRR(PIV)10), one with only 25 data points outside of basins (KRR(PIV)25), and one fully reduced

model (KRR(PIV)10
25). Ideally, selecting an appropriate number of reference points would not re-

quire obtaining a large test set. We therefore propose, in Section 5.8 of the Supporting Information,

an empirical approach for model selection based on training set error and noise level. Finally, mod-

ifying the loss function for bandwidth optimization by increasing the weight on data points outside

of basins could allow to obtain satisfying models with even less reference configurations.

To further confirm the quality of the newly obtained CVs, we perform committor analyses. To

sample new configurations at the putative transition state ensembles of KRRCVs, we implement

the approach in the hack-the-tree branch of PLUMED.63,66 Enhanced sampling simulations

are automatically enabled as long as the input collective variables forming the subspace are dif-
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ferentiable; we therefore performed umbrella sampling on all four KRRCV models based on the

PIV, and obtained datasets constrained at 0.45 ≤ ξ ≤ 0.55. We then compute the committor of

the sampled configurations, for both collective variables; committor distributions are reported in

Figure 6(e,f). These are in stark contrast with those presented in Figure 4(c,d). For all four models,

the distribution is unimodal and sharply peaked at 0.5, which demonstrates that the projection of

the configuration space onto this collective variable preserves the features of the transition state

ensemble. Furthermore, we evaluate free energy profiles along these CV models using the previ-

ously obtained unbiased molecular dynamics simulations; results are shown, for the original PIV

model, in Figure 6(c). The profile, mostly flat, and rapidly varying close to the basins, is typical

of committor approximations.67 Profiles obtained for the reduced models (Figure 6(d)) are very

similar. It should be noted that such free energy profiles – showing strongly-varying free energy

gradients close to the basins – are inconvenient to handle using enhanced sampling methods such

as metadynamics or umbrella sampling. For committor models, it is common practice to allevi-

ate this problem using sigmoid functions such as the error function38 or the logistic function;40

the same can certainly be done for KRRCVs. The ensemble-averaged gradients along Cartesian

coordinates of ΣN, ΣC, and KRR(PIV) are reported in Figure S3 of the Supporting Information.

These gradients are used to compute the geometric free energy profile, and intuitively, should be

zero in metastable basins, and for monotonous CVs like the committor, maximal at the transition

state ensemble. Obviously, this is here only achieved by KRR(CV). Finally, the free energy of

activation values for various collective variables (reported in Table 1) are significantly different,

even when enforcing gauge-invariance in the free energy profile definition. Additional information

is therefore encoded in the KRR(PIV) model, for which ∆F‡ is maximized. Since the reaction

rate is independent of the collective variable, using the Eyring-Polanyi equation, the transmission

coefficients of ΣN and ΣC should be smaller than the one of KRR(PIV). Recrossings due to a poor

choice of collective variable (and therefore separatrix) are therefore reduced.

A kernel ridge regression approach also ensures the interpretability of the model, since a single

parameter (the bandwidth) rates the importance of each component of the collective variable space.
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Table 1: Free energy of activation, for both free energy profile definitions, and for three collective
variables. The error estimates are 95% confidence intervals computed through uncertainty propa-
gation, assuming zero covariance.

ξ ∆F‡ (kBT ) ∆F‡
g (kBT )

ΣN 1.86±0.21 1.36±0.21
ΣC 2.61±0.21 1.48±0.22

KRR(PIV) 5.59±0.21 2.52±0.23

For more involved estimators, such as neural networks, this is far from being the case. Obviously,

in the end, interpretability will be dictated by the abstractness of the selected collective variable:

it is easier to extract knowledge from a small list of simple, intuitive descriptors than from broad,

general representations such as a PIV. In the top panel of Figure 7(a), we display the inverse

bandwidth values of the KRR(PIV) model, along with the corresponding number of particles in the

PIV displayed as white or gray boxes (the number of distance components grows as N(N −1)/2,

where N is the number of particles in the system). Most of the important bandwidths are in a

range corresponding to 5 to 14 particles in the largest cluster (gray boxes), which is precisely the

condition on ΣN used for basin definition. In addition, we also evaluate the gradient in PIV space of

the KRR(PIV) model along p(B|X), by binning the test set configurations. The absolute gradient,

normalized for each committor bin, is displayed in the bottom panel of Figure 7(a). This analysis

allows to identify the most important PIV components along the reaction process. Although there

is some dispersion, along the transition from the dissociated state to the associated state, important

components seem to concern larger distances with increasing transformation progress.

Finally, we can use the KRR(PIV) as a proxy to the committor, to analyze configurations along

the reaction process. To this end, we perform an analysis over configurations sampled from unbi-

ased molecular dynamics, here mostly to assess the quality of simple collective variables (ΣN and

ΣC) in describing the transformation. We emphasize that a much more thorough analysis using

other collective variables can be performed easily, if the interest is in understanding the trans-

formation process, since an inexpensive-to-compute proxy to the committor is now available. 2d

histograms along KRR(PIV) and either ΣN (b) or ΣC (c) are presented in Figure 7(b,c), computed
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over the 6 ·106 configurations sampled. Looking at the distribution of ΣN at KRR(PIV)= 0.5, it is

interesting to notice that for most configurations, ΣN ≈ 10−11, while the top of the barrier shown

in Figure 4(a) corresponds to ΣN = 8. This also explains the committor distribution in Figure 4(c),

skewed towards the dissociated state. Overall, for constant KRR(PIV) values, the ΣN distributions

are rather unimodal, although skewed towards large values. For ΣC, the distributions are very broad

over the whole transformation. The basins also overlap with the transition zone. This translates to

poor correlation with the committor, and inappropriateness in describing the transformation under

scrutiny.

5 Ion association in solution: LiF in water

Finally, we investigate the association of Li+ and F− ions in solution; this mechanism is an im-

portant precursor of the formation of the solid electrolyte interphase (SEI) in Li-ion batteries,68,69

its understanding is therefore crucial to design devices with greater lifetimes. We select water

as a solvent, both for simplicity, and because an LiF-rich SEI forms at the negative electrode in

Li-ion batteries based on aqueous electrolytes.70 LiF, being composed of the smallest monovalent

inorganic ions, has a very high lattice energy, and is therefore only very moderately soluble in

water (about 1 g/L at room temperature71). From the fundamental point of view, the association

of atomic, monovalent ions in water is a well-known illustration of the counter-intuitive failure of

simple collective variables – namely the interionic distance – in describing transformations.67,72,73

Arguments put forward include solvent degrees of freedom correlated with the transition as well

as inertial effects, i.e. when the time-derivative of degrees of freedom has to be accounted for.

We follow a similar sampling strategy as in section 4: we first converge the free energy profile

along the interionic distance (r) by running unbiased molecular dynamics simulations. Then, we

sample configurations with r = r∗ ≈ 2.63 Å, the putative transition state along this collective vari-

able, using umbrella sampling. Finally, we sample configurations near the true separatrix using

aimless shooting. Committors are then computed using repeated molecular dynamics for con-
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Figure 8: LiF association in water. (a) Contact ion pair (CIP) and solvent-separated ion pair (SSIP).
Pink, green, red, and white spheres respectively represent Li, F, O, and H atoms. (b) Free energy
profile along the interionic distance (r). (c) Distribution of committor values for configurations at
the putative transition state ensemble of r sampled using umbrella sampling.

figurations sampled using both methods. Details regarding all computational steps are included

in Section 7 of the Supporting Information. The ions are modeled using the Joung-Cheatham74

potential, and water using the SPC/E rigid model.75

The free energy along the interionic distance is reported in Figure 8(b). At short distance, ions

form a first metastable state, the contact ion pair (CIP). Separated from the CIP by a free energy

barrier of more than 7kBT is the solvent-separated ion pair (SSIP) metastable state, where one water

molecule coordinates both ions. Further increasing the distance leads to completely separating the

ions. We define both states using the following criteria: CIP, state A: r ≤ 2.036 Å, SSIP, state B:

r ≥ 4.190 Å. These distances correspond to the bottom of the free energy wells for both states.

Other state definitions are possible, such as the interionic distances corresponding to the minima

of the wells plus kBT , but a stringent state definition allows to clearly separate the transition regime

and the metastable states. The distribution of committor values for configurations sampled at r∗

using umbrella sampling is reported in Figure 8(c). The distribution is bimodal, with sharp peaks

at p(B|r∗) = 0 and 1, and mostly flat otherwise. Similar distributions have been recovered for other

monovalent ions in water, using different interatomic potentials.67,72,73

Interestingly, configurations sampled close to the true transition state ensemble correlate fairly

well with the interionic distance. This is demonstrated in Figure 9(a), showing results from aim-

less shooting simulations. At r∗, configurations sampled from aimless shooting are distributed
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Figure 9: (a) Correlation between r and p(B|X) for configurations sampled from aimless shooting
simulations. The gray zone corresponds to r ∈ [2.55,2.70] ≈ r∗. (b) Correlation between r ≈ r∗

and p(B|X) for configurations sampled from aimless shooting (red circles) and umbrella sampling
(blue circles) simulations. Distributions are also displayed on the right side, with matching colors.
(c) Hypothesis regarding the hierarchy of ensembles in configuration space.

in a unimodal fashion centered at p(B|X) = 0.5, in stark contrast with configurations extracted

from umbrella sampling, as shown in Figure 9(b). We also verify that the umbrella sampling

distribution corresponds to the the distribution under the same conditions obtained from unbiased

equilibrium simulations, in Section 7.7 of the Supporting Information. This could explain why col-

lective variable optimization techniques based exclusively on transition path sampling data show

fairly good correlation between the committor and the interionic distance40 – not forgetting that

the ions and interatomic potentials are not the same. From these observations, we formulate the

following hypothesis regarding what is lacking for the proper description of the dissociation pro-

cess, schematized in Figure 9(c): the subset of configuration space R matching the r ≈ r∗ criterion

includes the transition state ensemble T . A subset S ⊂R approximating T would match the r ≈ r∗

condition, with additional unknown constraints on degrees of freedom related to water. Identifying

these constraints has been the purpose of many studies.40,67,72,73

Following these observations, we train six KRRCV models based on different collective vari-

ables: i) r only (d = 1), ii) r and fp, the interionic force projected on the vector connecting both

ions (d = 2), iii) a list of scalar collective variables (r, Li+ and F−’s hydrogen and oxygen coordi-

nation numbers, the number of water molecules coordinating both ions, and the solvent-contributed

Madelung potential76 on Li+ and F− (d = 8), iv) the PIV of the subsystem composed of both ions
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(g)

Figure 10: KRRCV models for LiF association in water. (a-f) Performance on the test set of models
based on varius collective variables. Small blue circles represent individual data points. The data is
also shown using boxplots; data is partitioned in 0.05 wide bins, with two additional blue bins for
the basins. These are the bins used to generate homogeneous datasets. Distributions of estimated
committor values are also provided: an optimal estimator would return a constant distribution,
since the test set is homogeneous. (g) Training and test set mean absolute errors, averaged over ten
dataset splits, plotted as a function of the selected collective variable. Gray dashed lines are power
law fits on the test set MAEs.

and their first coordination sphere, the four closest oxygens to Li+ and the six closest hydrogens

to F− (d = 66), v) a compact set of atom-centered symmetry functions54 centered on both ions

(ACSFs) designed for aqueous systems77 (d = 90), and vi) a larger set of ACSFs automatically

designed for organic matter78,79 (d = 595). Reference, training and test sets are homogeneously

distributed in terms of committor values (using 22 bins, with half of the configurations from um-

brella sampling, and the other half from aimless shooting). We include basin configurations sam-

pled from equilibrium simulations. The models are trained with a variable number of reference

configurations, from 44 to 1540 (2 to 70 per bin). Training and test sets have a fixed number of

configurations (1760, or 80 per bin). Results are presented in Figure 10.

The first thing to notice is that contrary to the precipitation case, here no single model achieves

satisfying performance – although going from r to more involved collective variables certainly

leads to significant improvements. Unsurprisingly, the interionic distance alone leads to a model
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with high variance along the whole range of committor values. The performances near the basins

are particularly poor. Adding fp slightly improves the situation; in particular, the variance is re-

duced for configurations close to the transition state. The list of six scalar collective variables,

as well as the PIV of the first solvation shell, lead to an improved description of the onset of the

reversible transformation mechanism. Estimated committor distributions become noticeably flat-

ter. With the more involved ACSF collective variables, in particular with the high-dimensional

(d = 595) ACSFlarge, the performance close to the transition state becomes acceptable, although

configurations close to the basins remain poorly described. Often the committor is first mod-

eled using a switching function,36,40 with parameters controlling the shape of the actual function.

This allows to obtain a quantity which varies more linearly in the collective variable space, which

is therefore easier to fit. Here, this did not improve the situation, with performances of trans-

formed models using a sigmoid function (excluding basins in the training) almost identical to

non-transformed models. Kernel ridge regression already allows to learn non-linear patterns, al-

though enforcing these patterns, when known a priori, usually makes the learning easier. From

Figure 10(g), it is clear that complex collective variables (i) lead to larger overfitting (i.e. the in-

ability of a model to perform satisfyingly far from the training data), and ii) require more reference

configurations to converge. Increasing the number of reference configurations beyond the range

considered here would certainly improve the performances of the high-dimensional collective vari-

able models. The inability to find an accurate model for the association of LiF in water could be

explained by two causes: i) structure beyond the first solvation shell is important, since almost all

collective variables considered here focus at most on the ions’ first solvation shells (apart from the

Madelung potentials), and/or ii) structure alone cannot predict the average evolution of the system,

i.e. inertial effects are important. In the following, we test both hypotheses.

To assess the importance of structure beyond the first solvation shell, we considered PIV-based

KRRCV models centered on either the cation or the anion. These always include both ions, and

a variable number of water molecules (from 1 to 16), ranked by their distance to the central ion

(O-Li+, or H-F−). The dimension of the collective variable ranges from 10 to 1225. Performances
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of the models, using 1760 reference configurations, are reported in Figure 11.
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Figure 11: Performances of KRRCV models based on the ion-centered PIV with varying number
of surrounding water molecules. They gray zones correspond to the first solvation shell of both
ions.

While increasing the number of water molecules initially leads to reducing both training and

test set MAEs, which corresponds to including more information correlated to the transformation

mechanism, a plateau is rapidly reached. Interestingly, this plateau is exactly reached at a number

of water molecules corresponding to the first solvation shell of both ions (4 for the cation, 6 for the

anion). Increasing the number of water molecules, and therefore the dimension of the collective

variable, does not lead to KRRCV models with degraded performances, as can be seen from the

plateau in the MAEs. This means that the optimizer still performs well, for high-dimensional data.

Within a PIV representation, there is therefore no information correlated to the LiF association

mechanism beyond the first solvation shell. Assuming that the mechanism is similar for NaCl, this

finding is both in agreement80 and disagreement73 with previous studies.

To investigate inertial effects, we start by evaluating their importance in the present setting.

Hummer showed81 that in the diffusive limit, the committor and the transition path probability

p(TP|X) (the probability that a trajectory passing through configuration X connects both basins)

are related in the following way:

p(TP|X) = 2p(B|X)(1− p(B|X)) . (10)
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Figure 12: Inertial effects: (a) correlation between p(B|X) and p(TP|X) for different cases: nV T
dynamics using a chain of Nosé-Hoover thermostats (blue circles), two overdamped Langevin
dynamics with different friction values (red and green circles), and the limit of infinite friction
(black and white line), (b,c) outcome histograms over initial interionic velocity, for nV T dynamics
(b), and overdamped Langevin dynamics (c). The red and blue vertical lines correspond to the
average of each distribution.

Away from the diffusive limit, inertial effects are important and lead to a deviation from this

analytic result. For 400 configurations sampled from aimless shooting, we compute explicitly

p(TP|X); results are presented in Figure 12(a) (blue circles, nV T dynamics using a chain of Nosé-

Hoover thermostats). A strong deviation from the diffusive limit, maximal at the transition state

ensemble, is apparent. This deviation has also been observed for the association of NaCl in water.73

Configurations near the transition state ensemble have an enhanced transition path probability. In

the diffusive limit, atomic velocities are randomized at each timestep, while under nV T dynam-

ics, the persistence in time of momenta can influence directly the occurrence of a reactive event.

To further confirm the importance of inertial effects, we perform 1000 velocity initializations for

20 configurations from umbrella sampling for which 0.475 ≤ p(B|X) ≤ 0.525, and monitor the

initial atomic velocities projected on the interionic distance (∂ r/∂ t), as well as the basin the sys-

tem eventually commits to. Histograms depending on the committment outcome are presented in

Figure 12(b). In the absence of inertial effects, both histograms would overlap, indicating that the

outcome is not conditioned on the atomic velocities. However, a clear separation is visible here,

with a negative (positive) interionic velocity being more likely to lead to association (dissociation).

This is a trivial result if one assumes that the persistence of atomic momenta is non-zero. Consid-
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ering the reversibility of the equations of motion, and therefore, in particular, of committor trajec-

tories, this result can also be interpreted in a specular way: initial velocities Boltzmann-distributed

in each basin lead to reactive trajectories with transition-state velocities having an asymmetric

non-Boltzmann distribution.

Having shown that inertial effects do play a role in the context of LiF association in water, we

wish to alter the dynamics in such a way that they are reduced. To this end, we modify the equation

of motion of the ions only (i.e. that for water is unchanged), following the overdamped Langevin

equation:

dX =−γ
−1

∇Udt +
√

2kBT γ
−1/2dW, (11)

where W is a 3n-dimensional white noise term (with n the number of ions), and γ is the friction,

identical for all ions. We perform simulations with γ = 1 u/fs and 2 u/fs, corresponding to inertial

timescales – i.e., timescales for decorrelation of the CV time derivative – of about 7 fs and 14 fs on

Li+, and 19 fs and 38 fs on F−. As demonstrated in Figure 12(a), increasing the friction parameter

leads to a better agreement with the diffusive limit (which corresponds to γ → ∞). As shown

in Figure 12(c), the outcome histograms now overlap, signifying that inertial effects are removed.

We then evaluate the committor on the umbrella sampling and aimless shooting datasets previously

obtained, with both friction values, and train new KRRCV models. Results are presented in Figure

13.

The performances of KRRCV models are systematically and significantly improved compared

to nV T dynamics. This is valid for each collective variable. Obviously, in the diffusive limit, the

interionic distance would be the ideal collective variable, but considering that such an improve-

ment is already obtained at low to reasonable friction values, this demonstrates that inertial effects

prevent finding a collective variable only based on the structure that optimally reproduces the com-

mittor. In addition, even for γ = 2 u/fs, the hierarchy of performance between collective variables

is preserved.

There are therefore two effects to take into account when searching for an optimal collective
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Figure 13: Performances of various KRRCV models, for different dynamics.

variable for the association of small atomic ions in water: structural degrees of freedom related

to the solvent, which contain information correlated with the committor, and inertial effects. An

approach purely based on the committor in the case where inertial effects are important seems in-

appropriate, as p(B|X) does not encode all the necessary information describing the transformation

under scrutiny.

Note that the velocity-dependent committor p(B|X, Ẋ) is a deterministic quantity in the micro-

canonical ensemble, as it corresponds to a single point in phase space, while it retains a proba-

bilistic nature in presence of a thermostat (see, e.g., Ref.82 for a discussion of velocity-dependent

committors in transition path theory).

A possible approach suitably accounting for inertial effects could be based on a committor

conditioned on the velocity of a collective variable. This quantity is still a probability, and it would

be interesting to determine to which extent inertial effects are important: do they only concern

the ions, in which case evaluating p(B|X, ṙ) should be enough, or are the momenta of the water

molecules also correlated to the transformation mechanism? To efficiently evaluate p(B|X, ṙ),

velocity initialization techniques with fixed values of ṙ would have to be implemented.
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6 Summary and conclusions

We have introduced a new method for the construction of optimized collective variables, based on a

data-driven generalization of path collective variables. It consists in performing a regression of the

committor – which, in the absence of inertial effects, directly encodes the transformation progress

– starting from a given basis of collective variables, through kernel ridge regression. The final

collective variable is one dimensional and differentiable, which makes it appropriate for enhanced

sampling simulations. Our approach also allows to rank and compare CVs: the performance of

a certain CV subspace choice is evaluated by computing a mean absolute error with respect to

a test set of committor values. In addition, using a bandwidth vector in the kernel, with values

optimized by minimizing a loss score defined on a training set, allows for interpretability of the

resulting model. We apply the method to three different test cases: a two-dimensional toy model,

a precipitation model of Lennard-Jones particles, and the LiF association in water.

From the two-dimensional toy model test case, we learn that a reasonable number of reference

configurations is sufficient to obtain an accurate KRRCV model (Kernel Ridge Regression Col-

lective Variable), although how they are sampled is important, with enhanced sampling being a

viable strategy for constructing datasets. In addition, the optimization process of kernel bandwidth

parameters is shown to be robust even when including many collective variables uncorrelated with

the committor.

For the precipitation model of Lennard-Jones particles, we show that our method allows to

obtain an accurate collective variable from a high-dimensional representation of the structure (the

PIV). This is promising for further investigation of realistic precipitation, crystallization and nu-

cleation phenomena. The model obtained can be significantly compressed, both in terms of the

number of reference configurations and components included, without degrading its performances,

evaluated on committor distributions and free energy profiles. In particular, for committor distri-

butions, we were able to perform biased simulations using KRRCVs. The free energy of activation

of the best-performing model, extracted from the gauge-invariant free energy profile, is larger than

the ones obtained using simple collective variables, hinting at a significantly improved transmis-
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sion coefficient too. Finally, we show that the model can be interpreted, and is useful to evaluate

issues related to less well-performing collective variables.

For the association of LiF in water, we demonstrate that no information correlated with the

transformation mechanism is contained beyond the first solvation shell of the ions. We obtain

various KRRCV models performing better than the simple interionic distance. The highest accu-

racy reached is however moderate, even when resorting to flexible representations such as high-

dimensional ACSFs. We show that this is mostly due to inertial effects. In this regime, the com-

mittor depends not only on the atomic positions, but also on their momenta.

In situations where inertial effects are important, such as reactions in solution, it therefore

seems mandatory to account for the atomic momenta. A solution could be to evaluate committor

probabilities conditioned on a collective variable momentum. In this setting, much remains to be

understood. For instance, should the momenta be projected onto collective variables in the same

way as the structure? Or is there a hierarchy that would allow to use simpler projections for the

velocities, compared to the atomic positions; for instance, in the ion association example, could

we get away with only conditioning the committor on the interionic distance time derivative?

In situations where inertial effects are negligible (precipitation, nucleation, crystallization), the

method introduced here allows to help understand transformation mechanisms, select collective

variables on solid grounds, and allow for efficient enhanced sampling simulations. A word of cau-

tion should be expressed here: enhanced sampling is a strategy usually employed to gain access to

regions of configuration space difficult to reach by directly sampling from the Gibbs measure, such

as transition states, or unknown products of a chemical reaction for trajectory-based samplers (e.g.

molecular dynamics). To construct KRRCVs, as exemplified in the previous Sections, one already

needs to significantly sample the transformation under scrutiny. This is a clear example of the

"chicken or the egg?" causality dilemma faced in modeling rare events: optimal CVs are required

to sample transformations, yet designing optimal CVs requires sampling of said transformations.

For KRRCVs, we have sketched an approach aimed at minimizing the sampling (Figure 6(a,b) and

Section 5.8 of the Supporting Information), which will require more detailed, future investigations.
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An iterative sampling strategy40,83 could also be leveraged. Overall, to resolve this dilemma, there

is a need for more work on the consequences of using suboptimal – or at least uncontrolled – CVs

for enhanced sampling, and on CV selection techniques bypassing the need for significant sam-

pling. Finally, let us recall that the KRRCV model is first thought as a generalization of the path

CV concept. In cases where sampling committors is challenging, e.g. for slow commitment kinet-

ics, it is always possible to construct simple KRRCV models using only a single or few committor

estimates near the transition state, with a scalar bandwidth parameter, and a low-dimensional CV

subspace. By construction, this model will always be more accurate than a path CV constructed

only with reference configurations from the metastable basins.
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